
A Scalable Hash Ripple Join Algorithm
Gang Luo 1 Curt J. EIImann 2 Peter J. Haas 3 Jeffrey F. Naughton 1

University of Wisconsin-Madison 1 NCR Advance Development Lab 2 IBM Almaden Research Center 3

gangluo@cs.wisc.edu curt.ellmann@ncr.com peterh@almaden.ibm.com naughton@cs.wisc.edu

A B S T R A C T
Recently, Haas and Hellerstein proposed the hash ripple join
algorithm in the context of online aggregation. Although the
algorithm rapidly gives a good estimate for many join-aggregate
problem instances, the convergence can be slow if the number of
tuples that satisfy the join predicate is small or if there are many
groups in the output. Furthermore, if memory overflows (for
example, because the user allows the algorithm to run to
completion for an exact answer), the algorithm degenerates to
block ripple join and performance suffers. In this paper, we
build on the work of Haas and Hellerstein and propose a new
algorithm that (a) combines parallelism with sampling to speed
convergence, and (b) maintains good performance in the
presence of memory overflow. Results from a prototype
implementation in a parallel DBMS show that its rate of
convergence scales with the number of processors, and that
when allowed to run to completion, even in the presence of
memory overflow, it is competitive with the traditional parallel
hybrid hash join algorithm.

1. Introduction
Online aggregation was proposed by Hellerstein et al. [9] as a

technique to enable users to obtain approximate answers to
complex queries far more quickly than the exact answer can be
computed. The basic idea is to sample tuples from the input
relations and compute a continually-refining running estimate of
the answer, along with a "confidence interval" that indicates the
precision of the running estimate; such confidence intervals
typically are displayed as error bars in a graphical user interface
such as shown in Figure 1. The precision of the running estimate
improves as more and more input tuples are processed. In [8],
Haas and Hellerstein proposed a family of join algorithms,
which they termed "ripple joins," to support online aggregation
for join-aggregate queries. A typical query handled by these
algorithms is the following:

select online A.e, avg(B.J)
from A, B
where A.c = B.d
group by A. e;

Among the ripple join algorithms proposed by Haas and
Hellerstein, the hash ripple join algorithm had the best
performance. They showed that the algorithm can converge very
quickly to a good approximation of the exact answer, and
provided formulas for computing running estimates and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD 2002, June 4-6, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06...$5.00

confidence intervals.
Although the hash ripple join rapidly gives a good estimate

for many join-aggregate problem instances, the convergence can
be slow if the number of tuples that satisfy the join predicate is
small or if there are many groups in the output. This is not a
property of the algorithm itself, but is inherent to statistical
estimation. The issue is that many input tuples must be
processed before a single relevant sample is produced. For
example, in our example query above, suppose that A.e has 500
distinct values. Then there will be 500 averages to be estimated,
and each join tuple of A.e will contribute to only one out of the
500. Thus if we need 100 samples to generate a satisfactory
estimate of one of the averages, we will need to generate 50,000
join tuples, and the hash ripple join algorithm may not converge
quickly enough. As an even more extreme example, consider a
join that returns only a single tuple. In this case, all of the query-
processing effort will be spent on finding this tuple, and there
will be no benefit at all to sampling.

oo°,L.,.,: ~[W--~o f f - ' - o _ _ ~ l r e ' ~ q ~ , - I d: , , T

1 2 3 4

I I I I

7B

76

14

70

68

Figure 1. An online aggregation interface for a query of the
form: select avg(temperature) from t group by site.

In this paper we propose a new algorithm, the parallel hash
ripple join algorithm, to investigate whether parallelism can be
combined with sampling in order to extend the range of queries
that are amenable to online processing. While there is a long
tradition of using parallelism to speed up join algorithms, it was
not clear to us at the outset that parallelism could be used to
speed up ripple joins, in which we are estimating the answer
rather than computing it exactly. Through an implementation in
a parallel DBMS we show that it is indeed possible - in our
experiments we observed speedup and scaleup properties that
closely match those of the traditional parallel hybrid hash join
algorithm [14].

Applying parallelism to ripple joins raises some interesting
and non-trivial statistical issues. This is in contrast to the case
for, say, traditional hash joins, in which (at least algorithmically)
a uniprocessor hash join generalizes in a very straightforward
way to a multiprocessor hash join. Our general approach is to
use stratified sampling techniques that are similar in spirit to [2].
In our setting, the strata must be defined very carefully to ensure
that taking a simple random sample from each input relation at
each "source" node (where the tuples are originally stored)
produces a simple random sample from each stratum at each

252

"join" node (where the tuples are joined). It turns out, perhaps
contrary to intuition, that there must be many strata
corresponding to each join node. Moreover, in contrast to
classical stratified sampling as in [2], samples from different
strata are not in general independent, so that the classical
confidence-interval formulas must be modified.

Another issue is that the parallel hash ripple join introduces a
new source of statistical error. Briefly, at any point during the
execution of the algorithm, the global running estimate depends
upon (a) the current estimates of the aggregates for each stratum,
and (b) estimates of the size of each stratum. The error from (b)
of course does not arise in a uniprocessor ripple join. In this
paper, as a first step, we analyze the error when the sizes of the
strata are known exactly, and highlight some practical situations
in which this will indeed be the case. For those cases in which
the sizes of the strata cannot be known in advance, our algorithm
is still correct, but our current analysis is not strong enough to
allow the system to display valid "error bars" during execution.
Extending our analysis to provide these error bars in the most
general case appears to be a difficult open problem in statistics.

Our parallel hash ripple join algorithm also extends the
original hash ripple join algorithm presented in [8] to provide
better performance when memory overflows during the
computation. If one expects that a user will always stop a query
after a reasonably precise estimate has been computed, there is
probably no need for this, for with modem memory sizes it
seems unlikely that memory will overflow before this point. We
think, however, it is possible that in some cases a user will want
to let a ripple join algorithm continue until it has computed the
exact answer. In such cases memory overflow is likely, and the
hash ripple join algorithm presented in [8] will degenerate to the
much slower block ripple join. One desirable property of the
algorithm in [8] is that it continues to process tuples from the
input relations in a random and independent way throughout.
That is, upon memory overflow, [8] maintains independence and
randomness at the expense of performance.

In this paper we suggest making the opposite tradeoff. That is,
upon memory overflow, we sacrifice guarantees of randomness
and independence in order to guarantee good performance. It is
not that we are deliberately introducing inaccuracies in the
estimate; rather, as ttuples are staged through memory and disk
we may introduce correlations that break the assumptions of
randomness required for the computation of confidence
intervals. Our rationale is that memory is expected to overflow
when users are running the algorithm to completion, not when
they are still "watching" the estimate and waiting for the error
bounds to become acceptable. We show through an analytic
model that over a wide range of memory sizes, our hash ripple
join algorithm is dramatically faster than the block ripple join
algorithm upon memory overflow.

2. Related Work
Figure 2 illustrates the original hash ripple join algorithm [8].
The original two-table hash ripple join uses two hash tables,

one for each join relation, that at any given point contain the
tuples seen so far. At each sampling step, one previously unseen
tuple is randomly retrieved from one of the two join relations.
The join algorithm first decides which join relation is the source
of the tuple. Then the tuple is joined with all matches in the hash
table built for the other relation. Also, the tuple is inserted into
its hash table so that tuples from the other join relation that
arrive later can be joined correctly. As the hash tables grow in

size, memory may overflow. When this occurs, the algorithm in
[8] falls back to the block ripple join algorithm. At each step, the
block ripple join algorithm retrieves a new block of one relation,
scans all the old tuples of the other relation, and joins each tuple
in the new block with the corresponding tuples there.

join relation A hash table for A hash table for B

Figure 2. The original hash ripple join algorithm.

Ripple join algorithms for online aggregation are similar in
some ways to the X Join algorithm [17], which dynamically
adjusts the algorithm's behavior in accordance with changes in
the run time environment. X Join was proposed for adaptive
query processing [6], where tuples are assumed to be arriving
over a wide area network such as the Intemet. To deal with this
environment, the XJoin's behavior is complex, and if one
attempts to use the X Join for online aggregation, it will be
difficult to make statistical guarantees.

In other work dealing with query processing over
unpredictable and slow networks, [11] propose the incremental
left flush and the incremental symmetric flush hash join
algorithms. Like the Xjoin algorithm, these algorithms are
complex and do not lend themselves to statistical analyses.
Furthermore, these algorithms both block in certain situations,
which also makes them problematic for online aggregation.

3. Parallel Hash Ripple Join Algorithm
3.1 Overview of the Parallel Hash Ripple
Join Algorithm

Suppose we want to equijoin two relations A and B on
attributes A.c and B.d as in the following SQL query from the
introduction:

select online A.e, avg(B.)9)
from A, B
where A.c = B.d
group by A. e;

We first present the parallel hash ripple join algorithm, and then
we show how to use it to support online aggregation in a parallel
RDBMS in Section 3.3.

Originally, the tuples of A and B are stored at a set of source
nodes according to some initial partitioning strategy (such as
hash, range, or round-robin partitioning). A split vector, which
maps join attribute values to processors, is used to redistribute
the tuples of A and B during join processing. The goal of
redistribution is to allocate the tuples of the join relations so that
each join node performs roughly equal work during the
execution of the algorithm.

A traditional parallel hybrid hash join algorithm [14] is
performed in two phases. First, the algorithm redistributes the
tuples of A (the build relation) to the nodes where the join will
run, where some are added to the in-memory hash tables as they
arrive, while others are spooled to disk. Then the tuples o r b (the
probe relation) are redistributed to the same nodes, and the hash
tables built in the first phase are probed for some tuples of B,
while the remainder of the B tuples are also spooled to disk.

253

Ai
I

ID-

[- ~ V ~ -] [- ~ -] I Adaptive Symmetric. I I 1
I Join I I Hash Join I

Figure 3. Dataflow network of operators for the parallel hash ripple join algorithm.

Finally, the disk-resident portions of A and B are joined. The
result is that no output tuples are produced until the build
relation is completely redistributed and then the second phase
begins. This situation must be avoided in online aggregation
because we would like to produce tuples as quickly as possible
for the downstream aggregate operators. In a parallel ripple join
algorithm, redistribution of the tuples should occur
simultaneously with the join. Thus our parallel hash ripple join
algorithm does the following three things simultaneously by
multi-threading at each node, as shown in Figure 3:
1. Thread RedisA redistributes the tuples of A according to the

split vector.
2. Thread RedisB redistributes the tuples of B according to the

split vector.
3. Thread JoinAB performs the local join of the incoming tuples

of A and B from redistribution using the adaptive symmetric
hash join algorithm described below.

(The algorithms described in this paper simplify when the tuples
of A and/or B are already at the appropriate join nodes and need
not be redistributed. We omit the details for brevity.)

To ensure that the tuples of A and B arrive at the nodes
randomly from redistribution, we need to access them randomly
before redistribution. One way to do so is to use a random
sampling operator at each node as the input to the redistribution
operator. In some applications scanning via a random sampling
operator will be too slow so, as proposed in [9], we can utilize a
heap scan for heap files, or an index scan if there is an index
such that there is no correlation between the aggregate attribute
and the indexed attribute. Alternatively, as an engineering
approximation to "pure" sampling, the data can be stored in
random order on disk, so that sampling reduces to scanning; in
this scheme the data on disk must periodically be randomly
permuted (using, e.g., an online reorganization utility) to prevent
the samples from becoming "stale" [9].

At each node we maintain two hash tables on the join
attributes, HA for A and Hn for B, using the same hash function
H. Usually, symmetric hash join requires that both the hash
tables HA and HB can be held in memory [3], which may not
always be possible. Consequently, we revise the symmetric hash
join algorithm to fit our needs, the result of which we call the
adaptive symmetric hash join algorithm.

3.2 Dealing with Memory Overflow

During the join processing, tuples are stored in hash tables HA
and HB at each node. The hash table HA (HB) is divided into
buckets. Each bucket EA (EB) is divided into a memory part,
MPA (MPB), and a disk part, DP~ (DPB). For performance
reasons, one page of the disk part DPA (DPB), which we denote
by PA (PB), is kept in memory as a write buffer. We call each
pair of hash table buckets, EA and EB, with the same hash value
the hash table bucket pair EAB. This is conceptual; in practice,
due to the limited memory size and the large number of hash
table bucket pairs, we need to group many buckets of a hash
table together to share the same memory part, disk part, and
write buffer. The hash table buckets that are grouped together
should be the same for the two hash tables.

Figure 4 shows the hash tables at a specific node:

HA HB

DPA PA PB DPB

I M P ,

I

node

Figure 4. Hash tables at a node.

The adaptive symmetric hash join at each node is composed
of two stages.

3.2.1 First Stage: Redistribution Phase
The goal of the first stage is to redistribute and join as many

of the tuples of A and B as possible with the available memory.
The first stage is completed when all the tuples of both relations
have been redistributed.

Initially, for each hash table bucket pair, EAB, MPA in EAB
contains one page and MPB in EAB contains one page. At the
node, we organize the other memory pages that can be allocated
to MPA and MPB into a buffer pool BP.

Stage 1-1 : memory-resident redistribution phase
When a tuple, TA of A or TB of B, comes from redistribution, we
use the hash function H to find the corresponding hash table
bucket pair EAB.
If the tuple is TA,

254

TA is inserted into MPA and joined with the tuples in MPB.
IfMPA becomes full,

if the buffer pool BP is not empty, a page is allocated
from BP to MP A;
if the buffer pool BP is empty, then MPA in EAB
becomes full first, and we enter stage 1-2 for this hash
table bucket pair EAs.

If the tuple is Ts, then we perform the operations described
above, except that we switch the roles of A and B.

Stage 1-2: memory overflow redistribution phase
When a tuple TA of A or Ts of B comes from redistribution, we
use the hash function H to find the corresponding hash table
bucket pair EAB.
If at stage 1-1 MPA in EAS became full first, then:

If the tuple is TA, it is written to the write buffer PA.
Whenever PA becomes full, we write PA to DPA. Thus PA
can accept tuples from A again.
If the tuple is TB, it is joined with the tuples in MPA. IfMPs
is not yet full, then TB is inserted into MPB. Otherwise TB is
written to the write buffer Ps. Whenever Ps becomes full,
we write PB to DPB. Thus Ps can accept tuples from B
again.

If at stage 1-1 MPB in EAB became full first, then we perform the
operations described above, except that we switch the roles of A
and B.

As a special case, for a given hash table bucket pair, EAo, by
the time MPA (MPB) in EAB becomes full first at stage 1-1, if all
tuples of B (A) have arrived from redistribution, DPB (DPA) in
EAB will be empty. At stage 1-2, whenever a tuple TA ofA (TB of
B) comes from redistribution, we only need to join it with the
appropriate tuples in MPB (MPA) without writing it to DP~
(DPB). In this way, we avoid the work for that EAB at the second
stage.

3.2.2 S e c o n d Stage: D i s k R e r e a d P h a s e
When all the tuples of A and B have arrived from

redistribution, we enter the second stage for the node. That is, all
the hash table bucket pairs enter stage 1-2 at different times, but
they enter the second stage at the same time. At that time, for a
given hash table bucket pair EAB, if MPA (MPB) in EAB became
full first at stage 1-1, then all the tuples in EB (EA) have been
joined with the tuples in MPA (MPB). We only need to join the
tuples in EB (EA) with the tuples in DPA (DPB). We assume
throughout that the DPA (DPs) part of each hash table bucket
pair can fit in memory; the overall memory requirements of the
algorithm are discussed in detail in Section 3.5.

The second stage proceeds as follows. We select, one at a
time and in random order, those hash table bucket pairs whose
DPA parts or DPB parts have been used at the first stage. (If the
hash table bucket pairs are grouped together, we actually need to
select the groups of hash table bucket pairs instead of the
individual bucket pairs one by one.) For each hash table bucket
pair, we perform the following operations:

Initialize an in-memory hash table Hop that uses a hash
function H'different from H.
If at stage 1-1 MPA in EAB became full first, then:
Stage 2-1 The tuples in DPA (including the tuples in PA) are

read from the disk into memory. At the same time,
they are joined with the tuples in MPB and inserted
into Hoe according to the hash values of H" for
their join attributes.

Stage 2-2 The tuples in DPa (including the tuples in Ps) are
read from the disk into memory. At the same time,

they are joined with the tuples in DPA utilizing the
hash function H'and the hash table Hoe.

If at stage 1-1 MPB in EA8 became full first, then we perform the
same operations described above except that we switch the roles
of A and B.
Free the in-memory hash table Hop.
3.2.3 W o r k D o n e at D i f f e r e n t Stages

For a hash table bucket pair EAB, suppose that at stage 1-1
MPA in EAB became full first. Then the stages at which the work
is done for joining the tuples in EA and tuples in Ea are shown in
Figure 5:

0

O . ,,..,~

join relation A

MPA DPA

stage 1-1 & i
stage 1-2 i stage 2-1

stage 1-2 stage 2-2

Figure 5. Work done at each stage for a hash table bucket
pair.

We expect our parallel hash ripple join algorithm to be
commonly used in two modes:
(1) Exploratory mode: It is highly likely that users will abort the

online query execution at stage 1-1 when both of the hash
tables HA and HB are in memory, long before the query
execution is finished. So, usually all the operations are done
in the memory phase and our algorithm does not need to deal
with the disk phase, which helps ensure high performance.

(2) Exact result mode: If users do not abort the query execution,
our parallel hash ripple join algorithm has the advantage that
the disk phase is handled efficiently without compromising
the performance of the memory phase.

3.2.4 R a n d o m Se lec t ion A l g o r i t h m
In some cases, users may be still looking for an approximate

answer upon memory overflow. To partially fulfill this
requirement, we may generate the join result tuples in a nearly
random order at the second stage of the algorithm. Note that we
are not claiming true statistical randomness here; rather, we are
using heuristics to try to avoid correlation in the memory
overflow ease. As mentioned in the previous subsection, we do
this by selecting those hash table bucket pairs whose DPA parts
or DPB parts have been used at the first stage individually on a
random and non-repetitive basis. If the join attributes have no
correlation with the aggregate attribute, we only need to select
the hash table bucket pairs sequentially at the second stage.
Otherwise, we can use a random shuffling algorithm [12] to
rearrange the hash table bucket pairs prior to selection.

global results

T
Qc~ord ina to r~

local S ~ l ° c a " - ~ - " - - - - ' - - ' ~ 1 local

~ ~ l t I ~

Figure 6. Computing global results from local results.

255

MPAI DPA~ MPA2 DPA2

~ ® ®

(1) MPA1 becomes full

MPA~ DPa~ MP~2 DPAz

• @ ®®
@ ®®

@ ®®

MPm DPAt MPA2 DPA2

~ ®®
~ ®®

d

(2) MPsl becomes full

MPAt DPAt MPA2 DPAe

~ ®®
@ ® ®

@ ® ®

• @ @® ®®
@ ®® ®®

~ ,

MPAt DPm MPA2 DPA2

~ @®
$ ® ®

~ ®®

• ®

(3) MPs2 becomes full

MPAi DPAI MPA2 DPA:

@® ®®

~ @®
@ ®®

@ ®@ ®®

(4) MPA2 becomes full

MP,. DPm MPA2 DPAz

@® ®@
@ ®® ®®

~ @ ®@ ®®
Q • ®® ®®

@ ®® ®®
®® ®@

(7) DPsz is read from the
disk into memory

(5) all tuples of A and B have
arrived from redistribution

MPAi DPAt MPa2 DPA2

®® ®@
®® ®®

~ ®@ ®®

®® ®®
$ ®® ®®

(8) DPa2 is read from the
disk into memory

(6) DPAi is read from the
disk into memory

MPAt DPAi MPA: DPA:

:~ $ ®® ®®

• $ ®® ®®
$ ®® @®

~ $ ®® ®®
$ ®® ®®

~ $ ®@ @®
~ $ @® ®@

(9) DPA2 is read from the
disk into memory

Figure 7. Work done in different phases of the running example.

3.3 Supporting Online Aggregation
Ripple joins [8] were proposed to support online aggregation

[9]. To support online aggregation in a parallel environment, we
use the strategy of the Centralized Two Phase aggregation
algorithm [15], as shown in Figure 6. First, each data server
node does aggregation on its local partition of the relations.
Then these local results are sent to a centralized query
coordinator node from time to time to be merged for the global
online results. In this way, we can support operators such as
SUM, COUNT, A VG, VARIANCE, STDEV, COVARIANCE, and
CORRELATION.

3.4 Running Join Example
We illustrate the operation of a join with a running example

as follows. We only consider one node, at which each hash table
has two buckets. Then we have the following parts: MPAi, DPm,
MPA2, DPA2, MPBi, DPBi, MPB:, and DPB:. Suppose MPAz
becomes full first, then MPBz, then MPB2, and finally MPA2.

Notice that no work needs to be done for joining the tuples in
MPAi/DPAi and MPBj / DPBj when i ~ j . Let • denote the tuples
arrived, and ® denote the join work done. Then the progress of
the join may look as shown in Figure 7.

3.5 Memory Requirements
The total memory requirement of the parallel hash ripple join

algorithm is the combined size of all the memory parts (MPA and
MPB), all the write buffers (PA and Ps), and HDp. The size of
HDp is roughly equal to the size of the largest disk part (either
DPA or DPB). Assume there are H hash table bucket pairs
(groups of hash table bucket pairs) at the node, and all the tuples
are evenly distributed among the hash table bucket pairs. Let [~x[[
denote the size o fx in pages and M denote the size of available
memory in pages. The memory size M is sufficient if

M2HdlMP AII÷IIMPBII÷IIP AII÷IIPBI~+IIHDPII.
Since IIHoell~axOIAII, IIBIP/H, IIMPA->I, IIMPBII->/, IIPAII-->I, and
IIe~ll_>l, it follows that the minimal sufficient memory size is

256

M=4H+max(l~4[[, [[BIO/H. Thus the parallel hash ripple join
algorithm requires that the sizes of the input relations satisfy the
condition maxO~ll, IIBID.SH(M-4H). If this condition cannot be
satisfied, the parallel hash ripple join algorithm falls back to the
block ripple join algorithm at each node upon memory overflow.

3.6 Analytical Performance Model
To gain insight into the algorithms' behavior upon memory

overflow, we use a simple analytical model. Table 1 shows the
system parameters used. The original hash ripple join algorithm
only works in the uniprocessor environment. Our parallel hash
ripple join algorithm also works in the uniprocessor environment
by degenerating to the adaptive symmetric hash join algorithm.
To make the comparison fair, we only consider the uniprocessor
environment. We assume that I~II=IIBII, H = 1 1 ~ / 2 , and the

time required to join a tuple with tuples of the other relation is a
constant.

Table 1. System parameters used in the analytical model.
11,411 size of relation A in pages
lIB I[size of relation B in pages
S number of tuples/page

join time required to join a tuple with tuples of the other
relation

I 0 time required to read/write a page
BLOCK block size of the block ripple join algorithm in pages

We differentiate between the time to run to completion for the
original hash ripple join algorithm [8] and our parallel hash
ripple join algorithm in three cases:
(1) If [[A[[+[[B[[_/, i.e., both join relations can fit into memory,

then both the memory requirement of the parallel hash
ripple join algorithm and that of the original hash ripple
join algorithm are met. Both algorithms read the tuples of
the join relations from the disk only once, so the execution
time of either algorithm is

(IIAII + IIBII)× i o + (11̀411 + Ilnll) × s × join

(2) If I~II+IIBII>M and max(~411, IlnlOa-I(M-4n), then the
memory requirement of the parallel hash ripple join
algorithm is met but that of the original hash ripple join
algorithm is not. For the parallel hash ripple join algorithm,
upon memory overflow, each tuple of a join relation is
written to the disk at most once, and read from the disk at
most twice. The execution time of the parallel hash ripple
join algorithm is:

(M + (11̀411 + [[BI[- M) × 3) × IO + (11`411+ liB[l)× s × join

= 0(114 + IIBII)- 2M)× 10 + (M + M) × s × join.

In contrast, the original hash ripple join algorithm falls
back to the block ripple join algorithm in this situation.
Upon memory overflow, each block of relation A needs to
be joined with from M/2 to]]BI[pages of tuples of B, so the
average number of disk I/Os for a given block of ,4 is
approximately BLOCK+(M/2+llBIL)/2. There are (~[I-
M/2)/BLOCK such blocks ofA. For relation B it is the same
except that we switch the roles of A and B in the formulas.
Thus the execution time of the original hash ripple join
algorithm is:

114 - M / 2 M / 2 + IIBII) (M + x (BLOCK ÷ - +
BLOCK 2

IIB[I M /_____..___~ × (BLOCK+ ~,l,,A_______~t))g/2 + × , o + (114 + IIBll)× s × join
BLOCK 2

A × B - M 2 / 4
=(llAll+lIBlt ÷ II II 11 II)×IO+(l l `41 l+ l IB l l)×s×jo in

BLOCK
(3) If maxd~ll, IIBIP>H(M-4H), then neither the memory

requirement of the parallel hash ripple join algorithm nor
that of the original hash ripple join algorithm is met. Both
algorithms fall back to the block ripple join algorithm upon
memory overflow. Thus the execution time of either of
them is:

(114 + IIBII ÷ M × IIBII- M2 / 4) × IO + (114 + [IBII) × s × join"
BLOCK

Setting the system parameters as shown in Table 2, we
present in Figure 8 the resulting performance of the parallel hash
ripple join algorithm (PHRJ) and the original hash ripple join
algorithm (OHRJ).

Table 2. Sys
11,411
IIBII
S

join
I 0

BLOCK
page size

tem parameter settings.
2000
2000

40
400 microseconds

30 milliseconds
60

8000 bytes

2500

2000

1500

"~ 1000

500

* OHRJ

• PHRJ

0.00% 100.00% 200.00%

M/(IIAII+IIBII) in percentage

Figure 8. Execution time of join algorithms.

4. Statistical Issues
During Stage 1-1, the parallel hash ripple join algorithm

supports the same online aggregation functionality as the
original hash ripple join algorithm in [8]. Specifically, the
algorithm permits running estimates and associated confidence
intervals ("error bars") to be displayed to the user; see, for
example, Figure 1. In this section we give an overview of the
statistical methodology used to obtain these quantities.

Given the structure of the parallel hash join algorithm, it is
natural to try to compute statistics locally and asynchronously at
each join node and then combine these local results into a global
running estimate and confidence interval, as outlined in Section
3.3. Classical stratified sampling techniques [2] work in exactly
this manner: the population to be sampled is divided into disjoint
strata, sampling and estimation are performed independently in
each stratum, and then global estimates are computed as a
weighted sum of the local estimates, where the weight for the
estimate from the i-th stratum is the stratum size divided by the
population size.

In our setting, the strata must be chosen carefully. The most
obvious choice in an L-node multiprocessor is to have the strata

257

be the Cartesian products Ai x Bi, for i ranging from 1 to L,
where Ai (resp., Bi) is the set of tuples ofA (resp., B) that are
sent to node i for join processing. A moment 's thought,
however, shows that this choice is not correct, because even if
the tuples being redistributed constitute random samples from
their source nodes, the tuples arriving at a join node i do not, in
general, constitute a growing simple random sample of Ai and
B~. To see this, suppose that there are two source nodes, say j
and k, and the rate oftuple arrivals at node i is the same for each
source node. Also suppose that at some point 1000 tuples of Ai
have arrived at node i for processing, and consider two possible
cases: in the first case there are about 500 tuples from each of
nodes j and k, and in the second case all 1000 tuples are from
nodej . If the 1000 tuples are a true simple random sample from
Ai, then both cases should be equally likely (because every
sample of 1000 tuples from Ai is equally likely). Of course, the
probability that the second case occurs is 0, whereas the first
case occurs with positive probability. Our solution to this
problem, as described in Section 4.1, is to define many strata,
one for each (source node, join node) pair. This solution leads to
another complication: unlike in classical stratified sampling,
estimates computed from strata at the same join node are not
statistically independent, so that the classical stratified sampling
formulas are not applicable. We show, however, that the
classical formulas can be extended to handle the correlations
between estimates, leading to extensions of the estimation
formulas in [7, 8] to the setting of parallel sampling.

Defining the strata in the foregoing manner provides
statistically valid random samples at each join node. However,
as mentioned in the introduction, there is another problem. The
estimation formulas for stratified sampling assume that the size
of each stratum is known. There are cases in which the sizes of
the strata are known precisely. For example, if detailed
distribution statistics on the join attribute are maintained at each
source node. Another important case is the "in-place" join,
where relations A and B are already partitioned on the join
attribute. In practice, for performance reasons, DBA's for
parallel RDBMSs try to choose partitioning strategies so that the
most common joins are indeed in-place joins. However, in
general the sizes of the strata can only be estimated.

Developing estimation formulas that take into account both
the uncertainty in the sizes of the strata and the uncertainty in
the estimates at each node is a daunting task that requires the
solution of some open statistical problems. Accordingly, as a
first step, we provide estimation formulas that are valid when
the sizes of the strata are indeed known precisely. This
simplification lets us obtain some insight into the statistical
performance of the parallel hash ripple join algorithm. When
strata sizes are unknown, our algorithm is correct (in that the
running estimate converges to the true answer as more and more
tuples are processed) but we cannot provide statistically
meaningful error bars for the user as the algorithm progresses.

4.1 Assumptions and Notation
We focus on queries of the form

select op(expression)
from A, B
where predicate;

where op is one of SUM, COUNT, or AVG. All of our formulas
extend naturally to the case of multiple tables. When op is equal
to COUNT, we assume that expression reduces to the SQL "*"
identifier. The predicate in the query can in general consist of

conjunctions and/or disjunctions of boolean expressions
involving multiple attributes from both A and B; we make no
simplifying assumptions about the joint distributions of the
attributes in either of these relations. We restrict attention to
"large-sample" confidence intervals; see [4, 5, 7] for a
discussion of other types of confidence intervals, as well as
methods for dealing with GROUP BY and DISTINCT clauses.

Denote by At/the set of tuples of A that are stored on source
node j and sent to join node i for join processing, and let ~t/[be
the size of At/in tuples. Similarly defne Bt/and [B(/[. We allow i
and j to be equal, so that source and join nodes may coincide.
Assume for ease of exposition that any local predicates are
processed at the join node and not at the source nodes. If local
predicates are processed at the source nodes (actually a more
likely scenario, for performance reasons), then the calculations
given below are valid as stated, provided that Ati is interpreted as
the set of tuples that would be sent from node j to node i for
processing if local predicates were ignored. As noted in the
beginning of this section, we make the simplifying assumption
that each quantity ~q[and [B0[is known precisely. For example,
given detailed distribution statistics on the join attribute at each
source node, together with the split vector entries, each [At/[and
IBt/I can readily be computed. For reasons of efficiency, it may
be desirable to pre-compute each [At/[and IBt/I and store this set
of derived statistics with the base tables.

4.2 Running Estimator and Confidence
Interval for SUM

First consider a fixed join node i. Suppose that there are Li
(resp., Mi) source nodes sending tuples ofA (resp., B) to node i.
Also suppose that n~/tuples from Aq and mik tuples from Bik have
been processed for each 1-~.--~i and l_<k__~, and denote by
At/(nq) and Bik(mi~) the respective sets of tuples. Under our
assumptions, each set A~i(n ~ can be viewed as a simple random
sample from At/, and similarly for each set Bik(mi~. As before,

L, M, B set A i : U j=IAij and B i = [-Jk=, ik , and observe that

Li Mi

Ai ~'~ Bi = U U At~ t ~ Bik ,
j=l k=l

where each join Aqt~Bik can be viewed as being computed by
means of a standard (nonparallel) hash ripple join.

4.2.1 Running Estimator
For fixed j , k, observe that, as in [8],

I1i# - 1 Z expressionp (a,b)
n~m , (a,b~A~l(n~)×Ba (m~ 4)

is an unbiased and strongly consistent estimator of

I ~ expressionp (a, b),

where expressionp(a,b) equals expression(a,b) if (a,b) satisfies
the WHERE clause, and equals 0 otherwise. Here "strongly
consistent" means that, with probability 1, the estimator /lqk

converges to the true value /./~/~ as more and more tuples are

sampled. "Unbiased" means that the estimator flt/k would be

equal on average to /-/~/k if the sampling and estimation process

258

were repeated over and over. Setting wa,=~4alIB,~,IIB,I for 1_<
j._.~ and 1.._~_~/~, it follows easily that

/.q M~

j=l k=l

is an unbiased estimator of
1

- B ~ expression~(a,b).
~' 1411 ,1<o.~,~,

It then follows that, with w,=~,llB,I for each i, the estimator
/~ = ~ wfi, is unbiased for

/ . t = ~ w f l , = y~ expression~(a,b),
(a,b)~ A× B

which is the overall quantity that we are trying to estimate.

4.2.2 Confidence Interval
Recall that a lOOp% confidence interval for an unknown

parameter/2 is a random interval of the form l=lZ, U] such that
P(/.t~l)=p. Typically, a confidence interval has the symmetric
form I = [fi - e,,h + e], where fi is an estimator of/2 based on a

random sample, and e is also a quantity computed from the
sample. In this formulation, e is a measure of the precision of
/~ : with probability 100p%, the estimator h is within ~-~ of the

true value/1. In our setting, h is the running estimator of the

SUM query, the parameter ,u is the true answer to the query
based on all of the data, and e is the length of the "error bar" on
either side of the point estimate as in, e.g., Figure 1.

To obtain formulas for large-sample confidence intervals, we
assume as an approximation that sampling is performed with
replacement; the error in this approximation is negligible
provided that we sample only a small fraction of the data. Then
successive samples drawn from a specified set A,/or Bq can be
viewed as independent and identically distributed observations.
We also make the technical assumption that for each A~/there
exist positive constants q / an d d~/such that, with probability 1,
n~i(k)/k--gcq and mij(k)/k--gd, 1 as k--9~, where nij(k) (resp., m,~(k))
is the number of tuples from A o. (resp., B~/) that have been
processed after k tuples have been processed throughout the
entire system. As a practical matter, we require that there be no
large disparities between or among the cq's and do.'s. This will
certainly be the case when relations A and B are initially
partitioned in a round robin manner and both processor speeds
and transmission times between nodes are homogeneous
throughout the system.

As before, suppose that n O. tuples from A, 7 and m~ tuples from
B~, have been processed for each 1_~__~ and l _ < k ~ . Using
arguments as in [10], the results in [7, 8] can be extended in an
algebraically tedious but straightforward manner to show that,
provided each n,~ and m~k is large, the estimator]~ defined above

is approximately normally distributed with mean/z and variance
aZ=Var[/~]. As discussed in [8, Sec. 5.2.2], this asymptotic

normality is not a simple consequence of the usual central limit
theorem for independent and identically distributed (i.i.d.)
random variables - - the terms that are added together to
compute f i are far from being statistically independent. Given

the foregoing extension of the usual central limit theorem,
standard algebraic manipulations then show that the random

interval l=Lfi-zp~,t~+zp6.] is an approximate 100p%

confidence interval for u. Here 6 .2 is any strongly consistent
estimator of 02, and z t, is the unique number such that the area
under the standard normal curve between -zp and zp is equal top.
The crux of the problem, then, is to determine the form of o e
and identify a strongly consistent estimator 6.z.

To this end, observe that the samples {Ao(ni~, BMmik): i,j, k21}
are mutually independent, so that /~ is independent of ,hi for

i~3". It follows that a 2 = VarLh] = ~ w ~ Var[fi,]. Now fix i and

observe that Var[IJ]=~,~j.k.j..k.wijkw~.k.Cov[l~k,~t~.k.]. Each

term Cov[/.~,j k,/~u,k,] can be computed as follows. For Bo_cB and

aeA, denote by Ill(a;Ba) the average of expressionp(a,b) over
beBo, and similarly denote by lte(b;Ao) the average of
expressionp(a,b) over aeAo for beB and Ao_~A. Next, denote by
o-~.~.,.,, the covariance of the pairs { (~ (a; B,),/1, (a; B~,.)) : a e A,j }

and by ate)./., the covariance of the pairs

{(I-t2(b;A~),B2(b;4;)) :b~ B~k}. Also denote by o-~ ~] the variance

of the numbers {/.t~(a;~k):ae A~} and by a~2k ~ the variance of

the numbers {/t 2 (b; Av) : b ~ B, k }. Then straightforward

calculations show that

J
0 if j ¢ j ' and k ~: k'
n/~lo'~,~,Lk, if j = j ' and k ¢ k'

Cov[/~, ,/~q,~,] =]m.~,o.~,~j,, k if j ¢ j ' and k = k'

| -1,¢1"(I) +m- In (2) + t 3 t t ~-I~ [ni~i~ ~ i ~ ~niimi~ ~ ~ if j=j 'andk=k' .

Note that in the case j=j" and k=k; the formula for
Cov[fi~,~o,~,] is essentially the same as that given in [8]. An

estimator 6.~ for o e can be computed as above, with each Aq
replaced by the sample Aiy(n~ and each Bib replaced by Bik(mi~.
Calculations as in [10] show that 6.~ is indeed strongly
consistent for 02. A development along the lines of [7] leads to
efficient and stable numerical procedures for computing the
various estimates described above.

4.3 Running Estimator and Confidence
Interval for COUNT and A VG

Point estimates and confidence intervals for COUNT queries
are computed almost exactly as described for SUM queries, but
with expressionp(a,b) replaced by onep(a,b), where onep(a,b)
equals 1 if (a,b) satisfies the WHERE clause, and equals 0
otherwise.

We now consider running estimates for A VG queries. Denote
by/.zs the answer to the A VG query when A VG is replaced by
SUM, and by gc the answer to the A VG query when A VG is
replaced by COUNT. Observe that the answer ,ua to the A VG is
simply the SUM divided by the COUNT: ,ua=uJfl¢. As in [8], a
natural estimator of #~ is therefore rio =,h~/fi~, where h and

,h c are the respective estimators of l t s and gc as in Section 4.2.1.

The estimator ga is strongly consistent for ,ua; this assertion

follows from the strong consistency of ~ for ,u~ and ~,. for/tc.

Although ~ is biased, the bias is typically negligible except

when the samples are very small. (Indeed, the bias decreases as
O(n -~) , where n is the number of samples, as opposed to the

259

O(n -~/z) rate at which the confidence-interval length

decreases.)
Several approaches are available for obtaining confidence

intervals for A VG queries. As in [8], we can apply standard
results on ratio estimation to find that when each nq and mik is
large, the estimator ,h~ is distributed approximately according to

a normal distribution with mean ,no and variance
o "2 = (~ - 2/.t,~,~ +/..t,Zo'~)///~, where o~ 2 = Var[h,],

a[=Var[/5o], and a, =Cov[fi.,,fi~]. Both a~ and a) can be

estimated as described in Section 4.2.2, and a~o can be

estimated in a similar manner, yielding an estimate ~ of o2,
and hence a confidence interval. The details of estimating a~

are somewhat cumbersome and we omit them for brevity.
An alternative approach computes separate 100q% confidence

intervals for g~ and/.t~ as above, where q=(l+p)/2, and combines
the intervals using Bonferroni's inequality. This latter inequality
asserts that P(C and D)>_ 1-P(C)-P(D) for any events C and

D, where 2 denotes the complement of an event X. Thus the
probability that the two 100q% confidence intervals
simultaneously contain /.t~ and /.t~, respectively, is at least
l - 2 (l - q) = p . The resulting simultaneous bounds on the

possible values of u, and/t~ then lead directly to bounds on the
possible values of/t~; by construction, these latter bounds hold
with probability at least p. This approach is used in [5] to obtain
the symmetric lOOp% confidence interval [/~ -e ' , /~ .+e '] ,

where [/~ -e,,/~, +e~] and [/~ -e¢,/.~ +e~] are the initial lOOq%

confidence intervals, and

e, Le~+lLlec

A variant of this technique yields confidence intervals that are
asymmetric about the point estimator, but are shorter than the

symmetric intervals given above. Set L = ~ - e and

U, =/J~ + e,, where x equals s or c. Then the confidence interval

for/.t~ is/L~, U j , where

{ (U,/&, L,/UD if U,_>L,_>O;

(U, ,L)= (U /U c, L /L) if L _<U,_<O;
(U, IL<, ~11~) if U, >O>L,.

In general, techniques based on Bonferroni's inequality are
somewhat less burdensome computationally than techniques
based on large-sample results for ratios, but yield longer
confidence intervals.

5. Performance
In this section, we present results from a prototype

implementation of the parallel hash ripple join algorithm in the
parallel ORDBMS TOR 2.0.02. Our measurements were
performed with the database client application and server
running on four Intel x86 Family 6 Model 5 Stepping 3
workstations, each with four 400MHz processors, 1GB main
memory, six 8GB disks. We allocated a processor and a disk for
each data server, so there were at most four data servers on each
workstation.

The relations used for the benchmarks were based on the
standard Wisconsin Benchmark relations [1]. We have two join
relations: A and B. The relevant fields from their common
schema is shown as follows:
create table ,4
(unique1 bigint not null,

unique2integer not null,
... 11 more integer attributes,
... three 52 character string attributes

);
In order to get more meaningfial results, 500,000 and 50,000

tuple versions of the standard relations were constructed for A
and B, respectively. We use the unique1 attribute as the
aggregate attribute and the unique2 attribute as the join attribute.
To prevent numerical overflow when doing aggregation, the
type of the unique1 attribute was changed from integer to bigint,
which corresponds to the 8-byte long long type in C. Thus each
relation consists of one 8-byte bigint attribute, twelve 4-byte
integer attributes, and three 52-byte string attributes. Assuming
no storage overhead, the length of each tuple is 212 bytes. The
sizes of the relations A and B are approximately 106 and 10.6
megabytes, respectively. The unique1 attribute of A was
uniformly distributed between 0 and 499,999. There is no
correlation between the aggregate attribute uniquel and the join
attribute unique2. No index was created for the attributes. At
each node, we set the memory that a join operator can utilize to
22 megabytes.

5.1 Speedup Experiments
The most important performance metric for online

aggregation is the rate at which the real-time results
continuously produced by the online data exploration system
converge to the final precise results.

We ran the following query on 1-node, 2-node, 4-node, 8-
node, and 16-node configurations (where each node is a data
server) with a global query coordinator using the parallel hash
ripple join (PHRJ) algorithm and the classical blocking parallel
hybrid hash join (PHHJ) algorithm. We chose the PHHJ
algorithm for comparison because it performs the best among all
the four traditional blocking parallel join algorithms in [14].

select online avg (A.uniquel)
ffrom A, B
where ,4. unique2 = B.unique2;

2 5 5 0 0 0

2 5 0 0 0 0

2 4 5 0 0 0

oi l -node
2-node

-,,,ll,,- 4 -no de
• 8-node
- 16-node

10 20 30
t ime in seconds

~gure 9. Average value computed over time (high
join selectivity).

At the beginning, we generated the unique2 attributes of both
relations such that each tuple of A matches exactly one tuple of
B. For the PHRJ algorithm. Figure 9 shows how the computed
average value converges to the final precise result over time,
with the final precise result indicated by the horizontal dotted

260

line. Figure 10 shows how the number of join result tuples
generated increases over time.

600000

500000

400000

300000 =

200000

100000

= 0

0 20 40 60

time in seconds

Figure 10. Join result tuples generated over time
(high join selectivity).

80

Because relatively many tuples satisfy the join predicate and
we are estimating for a single group (no "group by" clause),
only a small number of samples need to be taken from the two
join relations to generate enough join result tuples for a good
approximation. The approximate answer converges to the final
precise answer within seconds even in the uniprocessor
environment.

270000

265000

• 260000

• 255000

250000

245000

1 -node
2-node

• 4-node
• 8-node

r p ~ ' ~ ~ ~ . - 16-node

. ~ , , 4 . . L ~ - x . . ~ - ~ .

10 20 30 40 50
time in seconds

Figure 11. Average value computed over t i m e (low
join select iv i ty) .

60

25000 t ~ 20000

15000 : 1-node
2-node

= • 4-node
"~ 10000 * 8-node

~) l 16-node

5000

0 ~- , , . , , , , , ,

0 10 20 30 40 50 60

time in seconds

Figure 12. Join result tuples generated over t ime
(low join select ivi ty) .

In the remainder of this section, we reduced the number of
tuples that satisfy the join predicate by a factor of 20 in order to
present a more challenging problem statistically (note that in
terms of difficulty of the estimation problem, this is similar to

doing a "group by" on an attribute with 20 distinct values). That
is, we generated the unique2 attributes of both relations such
that each tuple of A matches at most one tuple of B on unique2,
and on average 1/20 of all the tuples of A have such a match.
The corresponding results are shown in Figure 11 and Figure 12,
respectively. Note that now, in contrast to the results in Figure 9,
the multiple-node configurations converge noticeably quicker
than the single node configurations.

Table 3 shows the time at which memory overflow occurs in
the five configurations. We can see that memory overflow does
not greatly influence the speed of generating the join result
tuples. The average value that the PHRJ algorithm estimates
achieves a relatively small tolerance within seconds, well before
memory overflow occurs. Even after the memory overflows the
join result tuples are still generated steadily, and the computed
average value still approximates the final result very well.

Table 3. Time (seconds) that memory overflow occurs.
1-node 2-node 4-node 8-node 16-node

8.1 10.3 11.8 none none
In each configuration, all nodes fetch tuples from the join

relations and do the join work in parallel, so one might think that
memory overflow would occur at the same time for all five
configurations. In fact, as the number of nodes increases, the
number of different values that the join attribute can take at each
node decreases and the local join selectivity at each node
increases. Thus in the same amount of time, a larger percentage
of time is spent on joining rather than fetching tuples from the
join relations at each node, and memory overflow occurs later.
The delayed memory overflow lengthens the period in which
our PHRJ algorithm can make strong statistical guarantee.

Table 4 shows the execution to completion time of the PHRJ
algorithm and the traditional PHHJ algorithm [14] in the five
configurations.

Table 4. Execution to completion time (seconds) of the two

1-node 2-node 4-node 8-node 16-node
PHRJ 43 29 15 6 3
PHHJ 37 i 19 10 4 2

In all five configurations, 'the blocking PHHJ algorithm
produced the final result about 13% to 33% faster than our
PHRJ algorithm. This is mainly due to the fact that our
algorithm needs to build two hash tables, one for each join
relation, while the blocking algorithm only needs to build one
hash table for the inner join relation. For the PHRJ algorithm,
the speed at which the join result tuples are generated in these
five configurations is nearly proportional to the number of nodes
used.

The PHRJ algorithm produces a reasonably precise
approximation within seconds. It is up to two orders of
magnitude faster than the time required by the PHHJ algorithm
(which does not produce results until the join is nearly
completed) to produce exact answers.

5.2 Scale-up Experiments
We ran the query on 1-node, 2-node, 4-node, 8-node, and 16-

node confgurations. Compared with that of the 1-node
configuration (106M & 10.6M), the sizes of the relations for the
other configurations were increased proportionally to the
number of data server nodes. Thus the average workload at each
node, which was measured by the sizes of the join relations
there, was kept the same for the scale-up experiments.

261

Figure 13 shows the execution to completion time of the two
parallel join algorithms in the five configurations. In all five
configurations, the blocking PHHJ algorithm produced the final
result about 13% to 32% faster than our PHRJ algorithm. The
scaleup characteristics of the PHRJ algorithm match those of the
traditional PHHJ algorithm.

150

z:
,~ lOO

50

A PHRJ

• PHHJ

0 4 8 12 16
number of data server nodes

Figure 13. Execution to completion time of the
two paral le l join a lgor i thms (scale-up).

6. Summary and Conclusions
The two primary tools that permit online exploration of

massive data sets are sampling and parallel processing. In this
paper we initiate an effort to combine these tools, and introduce
the parallel hash ripple join algorithm. This efficient non-
blocking join algorithm permits extension of online aggregation
techniques to a much broader collection of queries than could
previously be handled.

Our analytic model suggests that in cases where memory
overflows, the parallel hash ripple join algorithm is as much as a
factor of five faster than the previously proposed hash ripple join
algorithm (which degenerates to the block ripple join algorithm)
in the uniprocessor environment. Furthermore, our
implementation in a parallel DBMS shows that the parallel hash
ripple join algorithm is able to use multiple processors to extend
the speedup and scale-up properties of the traditional parallel
hybrid hash join algorithm to the realm of online aggregation.

To complement the new join algorithm, we extend the results
in [8] to provide formulas for running estimates and associated
confidence intervals that account for the complexities of
sampling in a parallel environment. Such formulas are a crucial
ingredient of an interactive user interface that permits early
termination of queries when the approximate answer is
sufficiently precise.

There is substantial scope for future work on parallel ripple
joins. For example, the development of the confidence interval
formulas in Section 4.1 used the assumption that each [A/jl and
IB~I is known precisely. When this not the ease, it appears
possible to essentially estimate each]AuI and]Bq] on the fly. The
required modification of the confidence interval formulas to
reflect the resulting increase in uncertainty is quite complex. As
another example, the original uniprocessor hash ripple join in [8]
permits the relative sampling rates from the various input
relations to adapt over time to the statistical properties of the
data. The goal is to achieve sampling rates that optimally trade
off decreases in confidence interval length against times
between successive updates of the point estimate and confidence
interval. Such adaptive sampling also is possible in the parallel
processing context, but the implementation issues, cost models,

statistical formulas, and optimization methods are much more
complex. We intend to pursue these issues in future work.

Acknowledgements
We would like to thank Josef Burger, Joe Hellerstein, Kevin

O'Connor, and Vijayshankar Raman for useful discussions. This
work was supported by the NCR Corporation and also by NSF
grants CDA-9623632 and ITR 0086002.

R e f e r e n c e s
[1] D. Bitton, D.J. DeWitt, and C. Turbyfill. Benchmarking

Database Systems: A Systematic Approach. VLDB 1983:
8-19.

[2] W.G. Cochran. Sampling Techniques. John Wiley and Sons,
Inc., New York, 3rd edition, 1977.

[3] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surveys, 25(2):73-170, June
1993.

[4] P.J. Haas. Large-Sample and Deterministic Confidence
Intervals for Online Aggregation. Proc. Ninth Intl. Conf.
Scientific and Statistical Database Management, 1997, 51-
62.

[5] P.J. Haas. Hoeffding inequalities for online aggregation.
Proc. Computing Sci. Statist.: 31st Syrup. on the Interface,
74-78. Interface Foundation of North America, 2000.

[6] J.M. Hellerstein, M. Franklin, and S. Chandrasekaran et al.
Adaptive Query Processing: Technology in Evolution.
IEEE Data Engineering Bulletin, June 2000.

[7] P.J. Haas and J.M. Hellerstein. Join algorithms for online
aggregation. IBM Research Report RJ 10126, IBM
Almaden Research Center, San Jose, CA, 1998.

[8] P.J. Haas, J.M. Hellerstein. Ripple Joins for Online
Aggregation. SIGMOD Conf. 1999: 287-298.

[9] J.M. Hellerstein, P.J. Haas, and H. Wang. Online
Aggregation. SIGMOD Conf. 1997: 171-182.

[10] P.J. Haas, J.F. Naughton, and S.Seshadri et al. Selectivity
and cost estimation for joins based on random sampling. J.
Comput. System Sci., 52:550-569, 1996.

[11] Z.G. Ives, D. Florescu, and M. Friedman et al. An Adaptive
Query Execution System for Data Integration. SIGMOD
Conf. 1999: 299-310.

[12] D.E. Knuth. The Art of Computer Programming, Vol 2.
Addison Wesley, 3rd edition, 1998.

[13] F. Olken. Random Sampling from Databases. Ph.D.
dissertation, UC Berkeley, April 1993. Available as Tech.
Report LBL-32883, Lawrence Berkeley Laboratories.

[14] D.A. Schneider, D.J. DeWitt. A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-Nothing
Multiprocessor Environment. SIGMOD Conf. 1989: 110-
121.

[15] A. Shatdal, J.F. Naughton. Adaptive Parallel Aggregation
Algorithms. SIGMOD Conf. 1995:104-114.

[16] K.L. Tan, C.H. Goh, and B.C. Ooi. Online Feedback for
Nested Aggregate Queries with Multi-Threading. VLDB
1999: 18-29.

[17] T. Urhan, M. Franklin. XJoin: Getting Fast Answers from
Slow and Bursty Networks. Technical Report. CS-TR-
3994, UMIACS-TR-99-13. February, 1999.

262

