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A B S T R A C T  
Recently, Haas and Hellerstein proposed the hash ripple join 
algorithm in the context of online aggregation. Although the 
algorithm rapidly gives a good estimate for many join-aggregate 
problem instances, the convergence can be slow if the number of 
tuples that satisfy the join predicate is small or if there are many 
groups in the output. Furthermore, if memory overflows (for 
example, because the user allows the algorithm to run to 
completion for an exact answer), the algorithm degenerates to 
block ripple join and performance suffers. In this paper, we 
build on the work of Haas and Hellerstein and propose a new 
algorithm that (a) combines parallelism with sampling to speed 
convergence, and (b) maintains good performance in the 
presence of memory overflow. Results from a prototype 
implementation in a parallel DBMS show that its rate of 
convergence scales with the number of processors, and that 
when allowed to run to completion, even in the presence of 
memory overflow, it is competitive with the traditional parallel 
hybrid hash join algorithm. 

1. Introduction 
Online aggregation was proposed by Hellerstein et al. [9] as a 

technique to enable users to obtain approximate answers to 
complex queries far more quickly than the exact answer can be 
computed. The basic idea is to sample tuples from the input 
relations and compute a continually-refining running estimate of 
the answer, along with a "confidence interval" that indicates the 
precision of the running estimate; such confidence intervals 
typically are displayed as error bars in a graphical user interface 
such as shown in Figure 1. The precision of the running estimate 
improves as more and more input tuples are processed. In [8], 
Haas and Hellerstein proposed a family of join algorithms, 
which they termed "ripple joins," to support online aggregation 
for join-aggregate queries. A typical query handled by these 
algorithms is the following: 

select online A.e, avg(B.J) 
from A, B 
where A.c = B.d 
group by A. e; 

Among the ripple join algorithms proposed by Haas and 
Hellerstein, the hash ripple join algorithm had the best 
performance. They showed that the algorithm can converge very 
quickly to a good approximation of the exact answer, and 
provided formulas for computing running estimates and 
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confidence intervals. 
Although the hash ripple join rapidly gives a good estimate 

for many join-aggregate problem instances, the convergence can 
be slow if the number of tuples that satisfy the join predicate is 
small or if  there are many groups in the output. This is not a 
property of the algorithm itself, but is inherent to statistical 
estimation. The issue is that many input tuples must be 
processed before a single relevant sample is produced. For 
example, in our example query above, suppose that A.e has 500 
distinct values. Then there will be 500 averages to be estimated, 
and each join tuple of  A.e will contribute to only one out of  the 
500. Thus if we need 100 samples to generate a satisfactory 
estimate of one of the averages, we will need to generate 50,000 
join tuples, and the hash ripple join algorithm may not converge 
quickly enough. As an even more extreme example, consider a 
join that returns only a single tuple. In this case, all of  the query- 
processing effort will be spent on finding this tuple, and there 
will be no benefit at all to sampling. 
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Figure 1. An online aggregation interface for a query of the 
form: select avg(temperature) from t group by site. 

In this paper we propose a new algorithm, the parallel hash 
ripple join algorithm, to investigate whether parallelism can be 
combined with sampling in order to extend the range of  queries 
that are amenable to online processing. While there is a long 
tradition of using parallelism to speed up join algorithms, it was 
not clear to us at the outset that parallelism could be used to 
speed up ripple joins, in which we are estimating the answer 
rather than computing it exactly. Through an implementation in 
a parallel DBMS we show that it is indeed possible - in our 
experiments we observed speedup and scaleup properties that 
closely match those of the traditional parallel hybrid hash join 
algorithm [ 14]. 

Applying parallelism to ripple joins raises some interesting 
and non-trivial statistical issues. This is in contrast to the case 
for, say, traditional hash joins, in which (at least algorithmically) 
a uniprocessor hash join generalizes in a very straightforward 
way to a multiprocessor hash join. Our general approach is to 
use stratified sampling techniques that are similar in spirit to [2]. 
In our setting, the strata must be defined very carefully to ensure 
that taking a simple random sample from each input relation at 
each "source" node (where the tuples are originally stored) 
produces a simple random sample from each stratum at each 
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"join" node (where the tuples are joined). It turns out, perhaps 
contrary to intuition, that there must be many strata 
corresponding to each join node. Moreover, in contrast to 
classical stratified sampling as in [2], samples from different 
strata are not in general independent, so that the classical 
confidence-interval formulas must be modified. 

Another issue is that the parallel hash ripple join introduces a 
new source of statistical error. Briefly, at any point during the 
execution of the algorithm, the global running estimate depends 
upon (a) the current estimates of the aggregates for each stratum, 
and (b) estimates of  the size of each stratum. The error from (b) 
of course does not arise in a uniprocessor ripple join. In this 
paper, as a first step, we analyze the error when the sizes of the 
strata are known exactly, and highlight some practical situations 
in which this will indeed be the case. For those cases in which 
the sizes of the strata cannot be known in advance, our algorithm 
is still correct, but our current analysis is not strong enough to 
allow the system to display valid "error bars" during execution. 
Extending our analysis to provide these error bars in the most 
general case appears to be a difficult open problem in statistics. 

Our parallel hash ripple join algorithm also extends the 
original hash ripple join algorithm presented in [8] to provide 
better performance when memory overflows during the 
computation. If one expects that a user will always stop a query 
after a reasonably precise estimate has been computed, there is 
probably no need for this, for with modem memory sizes it 
seems unlikely that memory will overflow before this point. We 
think, however, it is possible that in some cases a user will want 
to let a ripple join algorithm continue until it has computed the 
exact answer. In such cases memory overflow is likely, and the 
hash ripple join algorithm presented in [8] will degenerate to the 
much slower block ripple join. One desirable property of the 
algorithm in [8] is that it continues to process tuples from the 
input relations in a random and independent way throughout. 
That is, upon memory overflow, [8] maintains independence and 
randomness at the expense of performance. 

In this paper we suggest making the opposite tradeoff. That is, 
upon memory overflow, we sacrifice guarantees of randomness 
and independence in order to guarantee good performance. It is 
not that we are deliberately introducing inaccuracies in the 
estimate; rather, as ttuples are staged through memory and disk 
we may introduce correlations that break the assumptions of 
randomness required for the computation of confidence 
intervals. Our rationale is that memory is expected to overflow 
when users are running the algorithm to completion, not when 
they are still "watching" the estimate and waiting for the error 
bounds to become acceptable. We show through an analytic 
model that over a wide range of memory sizes, our hash ripple 
join algorithm is dramatically faster than the block ripple join 
algorithm upon memory overflow. 

2. Related Work 
Figure 2 illustrates the original hash ripple join algorithm [8]. 
The original two-table hash ripple join uses two hash tables, 

one for each join relation, that at any given point contain the 
tuples seen so far. At each sampling step, one previously unseen 
tuple is randomly retrieved from one of the two join relations. 
The join algorithm first decides which join relation is the source 
of the tuple. Then the tuple is joined with all matches in the hash 
table built for the other relation. Also, the tuple is inserted into 
its hash table so that tuples from the other join relation that 
arrive later can be joined correctly. As the hash tables grow in 

size, memory may overflow. When this occurs, the algorithm in 
[8] falls back to the block ripple join algorithm. At each step, the 
block ripple join algorithm retrieves a new block of one relation, 
scans all the old tuples of the other relation, and joins each tuple 
in the new block with the corresponding tuples there. 

join relation A hash table for A hash table for B 

Figure 2. The original hash ripple join algorithm. 

Ripple join algorithms for online aggregation are similar in 
some ways to the X Join algorithm [17], which dynamically 
adjusts the algorithm's behavior in accordance with changes in 
the run time environment. X Join was proposed for adaptive 
query processing [6], where tuples are assumed to be arriving 
over a wide area network such as the Intemet. To deal with this 
environment, the XJoin's behavior is complex, and if one 
attempts to use the X Join for online aggregation, it will be 
difficult to make statistical guarantees. 

In other work dealing with query processing over 
unpredictable and slow networks, [ 11 ] propose the incremental 
left flush and the incremental symmetric flush hash join 
algorithms. Like the Xjoin algorithm, these algorithms are 
complex and do not lend themselves to statistical analyses. 
Furthermore, these algorithms both block in certain situations, 
which also makes them problematic for online aggregation. 

3. Parallel Hash Ripple Join Algorithm 
3.1 Overview of the Parallel Hash Ripple 
Join Algorithm 

Suppose we want to equijoin two relations A and B on 
attributes A.c and B.d as in the following SQL query from the 
introduction: 

select online A.e, avg(B.)9 ) 
from A, B 
where A.c = B.d 
group by A. e; 

We first present the parallel hash ripple join algorithm, and then 
we show how to use it to support online aggregation in a parallel 
RDBMS in Section 3.3. 

Originally, the tuples of A and B are stored at a set of source 
nodes according to some initial partitioning strategy (such as 
hash, range, or round-robin partitioning). A split vector, which 
maps join attribute values to processors, is used to redistribute 
the tuples of A and B during join processing. The goal of 
redistribution is to allocate the tuples of the join relations so that 
each join node performs roughly equal work during the 
execution of the algorithm. 

A traditional parallel hybrid hash join algorithm [14] is 
performed in two phases. First, the algorithm redistributes the 
tuples of A (the build relation) to the nodes where the join will 
run, where some are added to the in-memory hash tables as they 
arrive, while others are spooled to disk. Then the tuples o r b  (the 
probe relation) are redistributed to the same nodes, and the hash 
tables built in the first phase are probed for some tuples of B, 
while the remainder of the B tuples are also spooled to disk. 
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Figure 3. Dataflow network of operators for the parallel hash ripple join algorithm. 

Finally, the disk-resident portions of A and B are joined. The 
result is that no output tuples are produced until the build 
relation is completely redistributed and then the second phase 
begins. This situation must be avoided in online aggregation 
because we would like to produce tuples as quickly as possible 
for the downstream aggregate operators. In a parallel ripple join 
algorithm, redistribution of the tuples should occur 
simultaneously with the join. Thus our parallel hash ripple join 
algorithm does the following three things simultaneously by 
multi-threading at each node, as shown in Figure 3: 
1. Thread RedisA redistributes the tuples of A according to the 

split vector. 
2. Thread RedisB redistributes the tuples of B according to the 

split vector. 
3. Thread JoinAB performs the local join of the incoming tuples 

of A and B from redistribution using the adaptive symmetric 
hash join algorithm described below. 

(The algorithms described in this paper simplify when the tuples 
of A and/or B are already at the appropriate join nodes and need 
not be redistributed. We omit the details for brevity.) 

To ensure that the tuples of A and B arrive at the nodes 
randomly from redistribution, we need to access them randomly 
before redistribution. One way to do so is to use a random 
sampling operator at each node as the input to the redistribution 
operator. In some applications scanning via a random sampling 
operator will be too slow so, as proposed in [9], we can utilize a 
heap scan for heap files, or an index scan if there is an index 
such that there is no correlation between the aggregate attribute 
and the indexed attribute. Alternatively, as an engineering 
approximation to "pure" sampling, the data can be stored in 
random order on disk, so that sampling reduces to scanning; in 
this scheme the data on disk must periodically be randomly 
permuted (using, e.g., an online reorganization utility) to prevent 
the samples from becoming "stale" [9]. 

At each node we maintain two hash tables on the join 
attributes, HA for A and Hn for B, using the same hash function 
H. Usually, symmetric hash join requires that both the hash 
tables HA and HB can be held in memory [3], which may not 
always be possible. Consequently, we revise the symmetric hash 
join algorithm to fit our needs, the result of which we call the 
adaptive symmetric hash join algorithm. 

3.2 Dealing with Memory Overflow 

During the join processing, tuples are stored in hash tables HA 
and HB at each node. The hash table HA (HB) is divided into 
buckets. Each bucket EA (EB) is divided into a memory part, 
MPA (MPB), and a disk part, DP~ (DPB). For performance 
reasons, one page of the disk part DPA (DPB), which we denote 
by PA (PB), is kept in memory as a write buffer. We call each 
pair of hash table buckets, EA and EB, with the same hash value 
the hash table bucket pair EAB. This is conceptual; in practice, 
due to the limited memory size and the large number of hash 
table bucket pairs, we need to group many buckets of a hash 
table together to share the same memory part, disk part, and 
write buffer. The hash table buckets that are grouped together 
should be the same for the two hash tables. 

Figure 4 shows the hash tables at a specific node: 

HA HB 

DPA PA PB DPB 

I ................. M P ,  

I 

node 

Figure 4. Hash tables at a node. 

The adaptive symmetric hash join at each node is composed 
of two stages. 

3.2.1 First Stage: Redistribution Phase 
The goal of the first stage is to redistribute and join as many 

of the tuples of A and B as possible with the available memory. 
The first stage is completed when all the tuples of both relations 
have been redistributed. 

Initially, for each hash table bucket pair, EAB, MPA in EAB 
contains one page and MPB in EAB contains one page. At the 
node, we organize the other memory pages that can be allocated 
to MPA and MPB into a buffer pool BP. 

Stage 1-1 : memory-resident redistribution phase 
When a tuple, TA of A or TB of B, comes from redistribution, we 
use the hash function H to find the corresponding hash table 
bucket pair EAB. 
If the tuple is TA, 
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TA is inserted into MPA and joined with the tuples in MPB. 
IfMPA becomes full, 

if the buffer pool BP is not empty, a page is allocated 
from BP to MP A; 
if the buffer pool BP is empty, then MPA in EAB 
becomes full first, and we enter stage 1-2 for this hash 
table bucket pair EAs. 

If the tuple is Ts, then we perform the operations described 
above, except that we switch the roles of A and B. 

Stage 1-2: memory overflow redistribution phase 
When a tuple TA of A or Ts of B comes from redistribution, we 
use the hash function H to find the corresponding hash table 
bucket pair EAB. 
If at stage 1-1 MPA in EAS became full first, then: 

If the tuple is TA, it is written to the write buffer PA. 
Whenever PA becomes full, we write PA to DPA. Thus PA 
can accept tuples from A again. 
If the tuple is TB, it is joined with the tuples in MPA. IfMPs 
is not yet full, then TB is inserted into MPB. Otherwise TB is 
written to the write buffer Ps. Whenever Ps becomes full, 
we write PB to DPB. Thus Ps can accept tuples from B 
again. 

If at stage 1-1 MPB in EAB became full first, then we perform the 
operations described above, except that we switch the roles of A 
and B. 

As a special case, for a given hash table bucket pair, EAo, by 
the time MPA (MPB) in EAB becomes full first at stage 1-1, if all 
tuples of B (A) have arrived from redistribution, DPB (DPA) in 
EAB will be empty. At stage 1-2, whenever a tuple TA ofA (TB of 
B) comes from redistribution, we only need to join it with the 
appropriate tuples in MPB (MPA) without writing it to DP~ 
(DPB). In this way, we avoid the work for that EAB at the second 
stage. 

3.2.2 S e c o n d  Stage:  D i s k  R e r e a d  P h a s e  
When all the tuples of A and B have arrived from 

redistribution, we enter the second stage for the node. That is, all 
the hash table bucket pairs enter stage 1-2 at different times, but 
they enter the second stage at the same time. At that time, for a 
given hash table bucket pair EAB, if MPA (MPB) in EAB became 
full first at stage 1-1, then all the tuples in EB (EA) have been 
joined with the tuples in MPA (MPB). We only need to join the 
tuples in EB (EA) with the tuples in DPA (DPB). We assume 
throughout that the DPA (DPs) part of each hash table bucket 
pair can fit in memory; the overall memory requirements of the 
algorithm are discussed in detail in Section 3.5. 

The second stage proceeds as follows. We select, one at a 
time and in random order, those hash table bucket pairs whose 
DPA parts or DPB parts have been used at the first stage. (If the 
hash table bucket pairs are grouped together, we actually need to 
select the groups of hash table bucket pairs instead of the 
individual bucket pairs one by one.) For each hash table bucket 
pair, we perform the following operations: 

Initialize an in-memory hash table Hop that uses a hash 
function H'different from H. 
If at stage 1-1 MPA in EAB became full first, then: 
Stage 2-1 The tuples in DPA (including the tuples in PA) are 

read from the disk into memory. At the same time, 
they are joined with the tuples in MPB and inserted 
into Hoe according to the hash values of H" for 
their join attributes. 

Stage 2-2 The tuples in DPa (including the tuples in Ps) are 
read from the disk into memory. At the same time, 

they are joined with the tuples in DPA utilizing the 
hash function H'and the hash table Hoe. 

If at stage 1-1 MPB in EA8 became full first, then we perform the 
same operations described above except that we switch the roles 
of A and B. 
Free the in-memory hash table Hop. 
3.2.3 W o r k  D o n e  at D i f f e r e n t  Stages  

For a hash table bucket pair EAB, suppose that at stage 1-1 
MPA in EAB became full first. Then the stages at which the work 
is done for joining the tuples in EA and tuples in Ea are shown in 
Figure 5: 

0 

O . ,,..,~ 

join relation A 

MPA DPA 

stage 1-1 & i 
stage 1-2 i stage 2-1 

stage 1-2 stage 2-2 

Figure 5. Work done at each stage for a hash table bucket 
pair. 

We expect our parallel hash ripple join algorithm to be 
commonly used in two modes: 
(1) Exploratory mode: It is highly likely that users will abort the 

online query execution at stage 1-1 when both of the hash 
tables HA and HB are in memory, long before the query 
execution is finished. So, usually all the operations are done 
in the memory phase and our algorithm does not need to deal 
with the disk phase, which helps ensure high performance. 

(2) Exact result mode: If users do not abort the query execution, 
our parallel hash ripple join algorithm has the advantage that 
the disk phase is handled efficiently without compromising 
the performance of the memory phase. 

3.2.4 R a n d o m  Se lec t ion  A l g o r i t h m  
In some cases, users may be still looking for an approximate 

answer upon memory overflow. To partially fulfill this 
requirement, we may generate the join result tuples in a nearly 
random order at the second stage of the algorithm. Note that we 
are not claiming true statistical randomness here; rather, we are 
using heuristics to try to avoid correlation in the memory 
overflow ease. As mentioned in the previous subsection, we do 
this by selecting those hash table bucket pairs whose DPA parts 
or DPB parts have been used at the first stage individually on a 
random and non-repetitive basis. If the join attributes have no 
correlation with the aggregate attribute, we only need to select 
the hash table bucket pairs sequentially at the second stage. 
Otherwise, we can use a random shuffling algorithm [12] to 
rearrange the hash table bucket pairs prior to selection. 

global results 

T 
Qc~ord ina to r~  

local S ~ l ° c a "  - ~ - " - - - - ' - - ' ~  1 local 

~ ~ l t  I . . . . .  ~ 

Figure 6. Computing global results from local results. 
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disk into memory 

(5) all tuples of A and B have 
arrived from redistribution 
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disk into memory 

(6) DPAi is read from the 
disk into memory 
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(9) DPA2 is read from the 
disk into memory 

Figure 7. Work done in different phases of the running example. 

3.3 Supporting Online Aggregation 
Ripple joins [8] were proposed to support online aggregation 

[9]. To support online aggregation in a parallel environment, we 
use the strategy of  the Centralized Two Phase aggregation 
algorithm [15], as shown in Figure 6. First, each data server 
node does aggregation on its local partition of the relations. 
Then these local results are sent to a centralized query 
coordinator node from time to time to be merged for the global 
online results. In this way, we can support operators such as 
SUM, COUNT, A VG, VARIANCE, STDEV, COVARIANCE, and 
CORRELATION. 

3.4 Running Join Example 
We illustrate the operation of a join with a running example 

as follows. We only consider one node, at which each hash table 
has two buckets. Then we have the following parts: MPAi, DPm, 
MPA2, DPA2, MPBi, DPBi, MPB:, and DPB:. Suppose MPAz 
becomes full first, then MPBz, then MPB2, and finally MPA2. 

Notice that no work needs to be done for joining the tuples in 
MPAi/DPAi and MPBj / DPBj when i ~ j .  Let • denote the tuples 
arrived, and ® denote the join work done. Then the progress of 
the join may look as shown in Figure 7. 

3.5 Memory Requirements 
The total memory requirement of the parallel hash ripple join 

algorithm is the combined size of all the memory parts (MPA and 
MPB), all the write buffers (PA and Ps), and HDp. The size of  
HDp is roughly equal to the size of the largest disk part (either 
DPA or DPB). Assume there are H hash table bucket pairs 
(groups of hash table bucket pairs) at the node, and all the tuples 
are evenly distributed among the hash table bucket pairs. Let [~x[[ 
denote the size o fx  in pages and M denote the size of available 
memory in pages. The memory size M is sufficient if  

M2HdlMP AII÷IIMPBII÷IIP AII÷IIPBI~+IIHDPII. 
Since IIHoell~axOIAII, IIBIP/H, IIMPA->I, IIMPBII->/, IIPAII-->I, and 
IIe~ll_>l, it follows that the minimal sufficient memory size is 
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M=4H+max(l~4[[, [[BIO/H. Thus the parallel hash ripple join 
algorithm requires that the sizes of the input relations satisfy the 
condition maxO~ll, IIBID.SH(M-4H). If this condition cannot be 
satisfied, the parallel hash ripple join algorithm falls back to the 
block ripple join algorithm at each node upon memory overflow. 

3.6 Analytical Performance Model 
To gain insight into the algorithms' behavior upon memory 

overflow, we use a simple analytical model. Table 1 shows the 
system parameters used. The original hash ripple join algorithm 
only works in the uniprocessor environment. Our parallel hash 
ripple join algorithm also works in the uniprocessor environment 
by degenerating to the adaptive symmetric hash join algorithm. 
To make the comparison fair, we only consider the uniprocessor 
environment. We assume that I~II=IIBII, H = 1 1 ~ / 2 ,  and the 

time required to join a tuple with tuples of the other relation is a 
constant. 

Table 1. System parameters used in the analytical model. 
11,411 size of relation A in pages 
lIB I[ size of relation B in pages 
S number of tuples/page 

join time required to join a tuple with tuples of the other 
relation 

I 0  time required to read/write a page 
BLOCK block size of the block ripple join algorithm in pages 

We differentiate between the time to run to completion for the 
original hash ripple join algorithm [8] and our parallel hash 
ripple join algorithm in three cases: 
(1) If [[A[[+[[B[[_/, i.e., both join relations can fit into memory, 

then both the memory requirement of the parallel hash 
ripple join algorithm and that of the original hash ripple 
join algorithm are met. Both algorithms read the tuples of 
the join relations from the disk only once, so the execution 
time of either algorithm is 

(IIAII + IIBII)× i o  + (11̀411 + Ilnll) × s × join 

(2) If  I~II+IIBII>M and max(~411, IlnlOa-I(M-4n), then the 
memory requirement of the parallel hash ripple join 
algorithm is met but that of the original hash ripple join 
algorithm is not. For the parallel hash ripple join algorithm, 
upon memory overflow, each tuple of a join relation is 
written to the disk at most once, and read from the disk at 
most twice. The execution time of the parallel hash ripple 
join algorithm is: 

(M + (11̀411 + [[BI[- M) × 3) × IO + (11`411+ liB[l)× s × join 

= 0(114 + IIBII)- 2M)× 10 + ( M  + M )  × s × join.  

In contrast, the original hash ripple join algorithm falls 
back to the block ripple join algorithm in this situation. 
Upon memory overflow, each block of relation A needs to 
be joined with from M/2 to ]]BI[ pages of tuples of B, so the 
average number of disk I/Os for a given block of ,4 is 
approximately BLOCK+(M/2+llBIL)/2. There are (~[I- 
M/2)/BLOCK such blocks ofA. For relation B it is the same 
except that we switch the roles of A and B in the formulas. 
Thus the execution time of the original hash ripple join 
algorithm is: 

114 - M / 2 M / 2 + IIBII) (M + x (BLOCK ÷ - + 
BLOCK 2 

IIB[I M /_____..___~ × (BLOCK+ ~,l,,A_______~t))g/2 + × , o  + (114 + IIBll)× s × join 
BLOCK 2 

A × B - M 2 / 4  
=(llAll+lIBlt ÷ II II 11 II )×IO+( l l `41 l+ l IB l l )×s×jo in  

BLOCK 
(3) If maxd~ll, IIBIP>H(M-4H), then neither the memory 

requirement of the parallel hash ripple join algorithm nor 
that of the original hash ripple join algorithm is met. Both 
algorithms fall back to the block ripple join algorithm upon 
memory overflow. Thus the execution time of either of 
them is: 

(114 + IIBII ÷ M × IIBII- M2 / 4) × IO + (114 + [IBII) × s × join" 
BLOCK 

Setting the system parameters as shown in Table 2, we 
present in Figure 8 the resulting performance of the parallel hash 
ripple join algorithm (PHRJ) and the original hash ripple join 
algorithm (OHRJ). 

Table 2. Sys 
11,411 
IIBII 
S 

join 
I 0  

BLOCK 
page size 

tem parameter settings. 
2000 
2000 

40 
400 microseconds 

30 milliseconds 
60 

8000 bytes 

2500 

2000 

1500 

"~ 1000 

500 

* OHRJ 

• PHRJ 

0.00% 100.00% 200.00% 

M/(IIAII+IIBII) in percentage 

Figure 8. Execution time of join algorithms. 

4. Statistical Issues 
During Stage 1-1, the parallel hash ripple join algorithm 

supports the same online aggregation functionality as the 
original hash ripple join algorithm in [8]. Specifically, the 
algorithm permits running estimates and associated confidence 
intervals ("error bars") to be displayed to the user; see, for 
example, Figure 1. In this section we give an overview of  the 
statistical methodology used to obtain these quantities. 

Given the structure of the parallel hash join algorithm, it is 
natural to try to compute statistics locally and asynchronously at 
each join node and then combine these local results into a global 
running estimate and confidence interval, as outlined in Section 
3.3. Classical stratified sampling techniques [2] work in exactly 
this manner: the population to be sampled is divided into disjoint 
strata, sampling and estimation are performed independently in 
each stratum, and then global estimates are computed as a 
weighted sum of the local estimates, where the weight for the 
estimate from the i-th stratum is the stratum size divided by the 
population size. 

In our setting, the strata must be chosen carefully. The most 
obvious choice in an L-node multiprocessor is to have the strata 
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be the Cartesian products Ai x Bi, for i ranging from 1 to L, 
where Ai (resp., Bi) is the set of tuples ofA (resp., B) that are 
sent to node i for join processing. A moment 's  thought, 
however, shows that this choice is not correct, because even if 
the tuples being redistributed constitute random samples from 
their source nodes, the tuples arriving at a join node i do not, in 
general, constitute a growing simple random sample of Ai and 
B~. To see this, suppose that there are two source nodes, say j 
and k, and the rate oftuple arrivals at node i is the same for each 
source node. Also suppose that at some point 1000 tuples of Ai 
have arrived at node i for processing, and consider two possible 
cases: in the first case there are about 500 tuples from each of 
nodes j and k, and in the second case all 1000 tuples are from 
nodej .  If the 1000 tuples are a true simple random sample from 
Ai, then both cases should be equally likely (because every 
sample of 1000 tuples from Ai is equally likely). Of course, the 
probability that the second case occurs is 0, whereas the first 
case occurs with positive probability. Our solution to this 
problem, as described in Section 4.1, is to define many strata, 
one for each (source node, join node) pair. This solution leads to 
another complication: unlike in classical stratified sampling, 
estimates computed from strata at the same join node are not 
statistically independent, so that the classical stratified sampling 
formulas are not applicable. We show, however, that the 
classical formulas can be extended to handle the correlations 
between estimates, leading to extensions of the estimation 
formulas in [7, 8] to the setting of parallel sampling. 

Defining the strata in the foregoing manner provides 
statistically valid random samples at each join node. However, 
as mentioned in the introduction, there is another problem. The 
estimation formulas for stratified sampling assume that the size 
of each stratum is known. There are cases in which the sizes of 
the strata are known precisely. For example, if detailed 
distribution statistics on the join attribute are maintained at each 
source node. Another important case is the "in-place" join, 
where relations A and B are already partitioned on the join 
attribute. In practice, for performance reasons, DBA's for 
parallel RDBMSs try to choose partitioning strategies so that the 
most common joins are indeed in-place joins. However, in 
general the sizes of the strata can only be estimated. 

Developing estimation formulas that take into account both 
the uncertainty in the sizes of the strata and the uncertainty in 
the estimates at each node is a daunting task that requires the 
solution of some open statistical problems. Accordingly, as a 
first step, we provide estimation formulas that are valid when 
the sizes of the strata are indeed known precisely. This 
simplification lets us obtain some insight into the statistical 
performance of the parallel hash ripple join algorithm. When 
strata sizes are unknown, our algorithm is correct (in that the 
running estimate converges to the true answer as more and more 
tuples are processed) but we cannot provide statistically 
meaningful error bars for the user as the algorithm progresses. 

4.1 Assumptions and Notation 
We focus on queries of the form 

select op(expression) 
from A, B 
where predicate; 

where op is one of SUM, COUNT, or AVG. All of our formulas 
extend naturally to the case of multiple tables. When op is equal 
to COUNT, we assume that expression reduces to the SQL "*" 
identifier. The predicate in the query can in general consist of  

conjunctions and/or disjunctions of boolean expressions 
involving multiple attributes from both A and B; we make no 
simplifying assumptions about the joint distributions of the 
attributes in either of these relations. We restrict attention to 
"large-sample" confidence intervals; see [4, 5, 7] for a 
discussion of other types of confidence intervals, as well as 
methods for dealing with GROUP BY and DISTINCT clauses. 

Denote by At/the set of tuples of A that are stored on source 
node j  and sent to join node i for join processing, and let ~t/[ be 
the size of At/in tuples. Similarly defne  Bt/and [B(/[. We allow i 
and j to be equal, so that source and join nodes may coincide. 
Assume for ease of exposition that any local predicates are 
processed at the join node and not at the source nodes. If local 
predicates are processed at the source nodes (actually a more 
likely scenario, for performance reasons), then the calculations 
given below are valid as stated, provided that Ati is interpreted as 
the set of tuples that would be sent from node j to node i for 
processing if local predicates were ignored. As noted in the 
beginning of this section, we make the simplifying assumption 
that each quantity ~q[ and [B0[ is known precisely. For example, 
given detailed distribution statistics on the join attribute at each 
source node, together with the split vector entries, each [At/[ and 
IBt/I can readily be computed. For reasons of efficiency, it may 
be desirable to pre-compute each [At/[ and IBt/I and store this set 
of derived statistics with the base tables. 

4.2 Running Estimator and Confidence 
Interval for SUM 

First consider a fixed join node i. Suppose that there are Li 
(resp., Mi) source nodes sending tuples ofA (resp., B) to node i. 
Also suppose that n~/tuples from Aq and mik tuples from Bik have 
been processed for each 1-~.--~i and l_<k__~, and denote by 
At/(nq) and Bik(mi~) the respective sets of tuples. Under our 
assumptions, each set A~i(n ~ can be viewed as a simple random 
sample from At/, and similarly for each set Bik(mi~. As before, 

L, M, B set A i : U j=IAij and B i = [-Jk=, ik , and observe that 

Li Mi 

Ai ~'~ Bi = U U At~ t ~  Bik , 
j=l  k=l 

where each join Aqt~Bik can be viewed as being computed by 
means of a standard (nonparallel) hash ripple join. 

4.2.1 Running Estimator 
For fixed j ,  k, observe that, as in [8], 

I1i# - 1 Z expressionp (a,b) 
n~m , (a,b~A~l(n~)×Ba (m~ 4 ) 

is an unbiased and strongly consistent estimator of 

I ~ expressionp (a, b), 

where expressionp(a,b) equals expression(a,b) if  (a,b) satisfies 
the WHERE clause, and equals 0 otherwise. Here "strongly 
consistent" means that, with probability 1, the estimator /lqk 

converges to the true value /./~/~ as more and more tuples are 

sampled. "Unbiased" means that the estimator flt/k would be 

equal on average to /-/~/k if the sampling and estimation process 
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were repeated over and over. Setting wa,=~4alIB,~,IIB,I for 1_< 
j._.~ and 1.._~_~/~, it follows easily that 

/.q M~ 

j=l k=l 

is an unbiased estimator of 
1 

- B ~ expression~(a,b). 
~' 1411 ,1<o.~,~, 

It then follows that, with w,=~,llB,I for each i, the estimator 
/~ = ~ wfi, is unbiased for 

/ . t = ~ w f l , =  y~ expression~(a,b), 
( a,b )~ A× B 

which is the overall quantity that we are trying to estimate. 

4.2.2 Confidence Interval 
Recall that a lOOp% confidence interval for an unknown 

parameter/2 is a random interval of the form l=lZ, U] such that 
P(/.t~l)=p. Typically, a confidence interval has the symmetric 
form I = [fi - e,,h + e], where fi is an estimator of/2 based on a 

random sample, and e is also a quantity computed from the 
sample. In this formulation, e is a measure of the precision of 
/~ : with probability 100p%, the estimator h is within ~-~ of the 

true value/1. In our setting, h is the running estimator of the 

SUM query, the parameter ,u is the true answer to the query 
based on all of  the data, and e is the length of the "error bar" on 
either side of the point estimate as in, e.g., Figure 1. 

To obtain formulas for large-sample confidence intervals, we 
assume as an approximation that sampling is performed with 
replacement; the error in this approximation is negligible 
provided that we sample only a small fraction of  the data. Then 
successive samples drawn from a specified set A,/or Bq can be 
viewed as independent and identically distributed observations. 
We also make the technical assumption that for each A~/there 
exist positive constants q / an d  d~/such that, with probability 1, 
n~i(k)/k--gcq and mij(k)/k--gd, 1 as k--9~, where nij(k) (resp., m,~(k)) 
is the number of tuples from A o. (resp., B~/) that have been 
processed after k tuples have been processed throughout the 
entire system. As a practical matter, we require that there be no 
large disparities between or among the cq's and do.'s. This will 
certainly be the case when relations A and B are initially 
partitioned in a round robin manner and both processor speeds 
and transmission times between nodes are homogeneous 
throughout the system. 

As before, suppose that n O. tuples from A, 7 and m~ tuples from 
B~, have been processed for each 1_~__~ and l _ < k ~ .  Using 
arguments as in [10], the results in [7, 8] can be extended in an 
algebraically tedious but straightforward manner to show that, 
provided each n,~ and m~k is large, the estimator ]~ defined above 

is approximately normally distributed with mean/z and variance 
aZ=Var[/~]. As discussed in [8, Sec. 5.2.2], this asymptotic 

normality is not a simple consequence of the usual central limit 
theorem for independent and identically distributed (i.i.d.) 
random variables - -  the terms that are added together to 
compute f i  are far from being statistically independent. Given 

the foregoing extension of the usual central limit theorem, 
standard algebraic manipulations then show that the random 

interval l=Lfi-zp~,t~+zp6. ] is an approximate 100p% 

confidence interval for u. Here 6 .2 is any strongly consistent 
estimator of 02, and z t, is the unique number such that the area 
under the standard normal curve between -zp and zp is equal top. 
The crux of the problem, then, is to determine the form of o e 
and identify a strongly consistent estimator 6.z. 

To this end, observe that the samples {Ao(ni~, BMmik): i,j, k21} 
are mutually independent, so that /~ is independent of ,hi for 

i~3". It follows that a 2 = VarLh ] = ~ w  ~ Var[fi,]. Now fix i and 

observe that Var[IJ]=~,~j.k.j..k.wijkw~.k.Cov[l~k,~t~.k.]. Each 

term Cov[/.~,j k,/~u,k,] can be computed as follows. For Bo_cB and 

aeA, denote by Ill(a;Ba) the average of expressionp(a,b) over 
beBo, and similarly denote by lte(b;Ao) the average of 
expressionp(a,b) over aeAo for beB and Ao_~A. Next, denote by 
o-~.~.,.,, the covariance of the pairs { (~  (a; B,),/1, (a; B~,.)) : a e A,j } 

and by ate)./., the covariance of the pairs 

{(I-t2(b;A~),B2(b;4;)) :b~ B~k}. Also denote by o-~ ~] the variance 

of the numbers {/.t~(a;~k):ae A~} and by a~2k ~ the variance of 

the numbers {/t 2 (b; Av) : b ~ B, k }. Then straightforward 

calculations show that 

J 
0 if j ¢ j '  and k ~: k' 
n/~lo'~,~,Lk, if j = j '  and k ¢ k' 

Cov[/~, ,/~q,~,] = ]m.~,o.~,~j,, k if j ¢ j '  and k = k' 

| -1,¢1"(I) +m- In (2 )  + t 3 t t  ~-I~ [ni~i~ ~ i ~  ~niimi~ ~ ~ if j=j 'andk=k' .  

Note that in the case j=j" and k=k; the formula for 
Cov[fi~,~o,~,] is essentially the same as that given in [8]. An 

estimator 6.~ for o e can be computed as above, with each Aq 
replaced by the sample Aiy(n~ and each Bib replaced by Bik(mi~. 
Calculations as in [10] show that 6.~ is indeed strongly 
consistent for 02. A development along the lines of [7] leads to 
efficient and stable numerical procedures for computing the 
various estimates described above. 

4.3 Running Estimator and Confidence 
Interval for COUNT and A VG 

Point estimates and confidence intervals for COUNT queries 
are computed almost exactly as described for SUM queries, but 
with expressionp(a,b) replaced by onep(a,b), where onep(a,b) 
equals 1 if  (a,b) satisfies the WHERE clause, and equals 0 
otherwise. 

We now consider running estimates for A VG queries. Denote 
by/.zs the answer to the A VG query when A VG is replaced by 
SUM, and by gc the answer to the A VG query when A VG is 
replaced by COUNT. Observe that the answer ,ua to the A VG is 
simply the SUM divided by the COUNT: ,ua=uJfl¢. As in [8], a 
natural estimator of #~ is therefore rio =,h~/fi~, where h and 

,h c are the respective estimators of l t  s and gc as in Section 4.2.1. 

The estimator ga is strongly consistent for ,ua; this assertion 

follows from the strong consistency of ~ for ,u~ and ~,. for/tc. 

Although ~ is biased, the bias is typically negligible except 

when the samples are very small. (Indeed, the bias decreases as 
O(n -~) , where n is the number of samples, as opposed to the 

259 



O(n -~/z) rate at which the confidence-interval length 

decreases.) 
Several approaches are available for obtaining confidence 

intervals for A VG queries. As in [8], we can apply standard 
results on ratio estimation to find that when each nq and mik is 
large, the estimator ,h~ is distributed approximately according to 

a normal distribution with mean ,no and variance 
o "2 = ( ~  - 2/.t,~,~ +/..t,Zo'~)///~, where o~ 2 = Var[h,], 

a[ =Var[/5o], and a, =Cov[fi.,,fi~]. Both a~ and a) can be 

estimated as described in Section 4.2.2, and a~o can be 

estimated in a similar manner, yielding an estimate ~ of o2, 
and hence a confidence interval. The details of estimating a~ 

are somewhat cumbersome and we omit them for brevity. 
An alternative approach computes separate 100q% confidence 

intervals for g~ and/.t~ as above, where q=(l+p)/2, and combines 
the intervals using Bonferroni's inequality. This latter inequality 
asserts that P(C and D)>_ 1-P(C)-P(D) for any events C and 

D, where 2 denotes the complement of an event X. Thus the 
probability that the two 100q% confidence intervals 
simultaneously contain /.t~ and /.t~, respectively, is at least 
l - 2 ( l - q ) = p .  The resulting simultaneous bounds on the 

possible values of u, and/t~ then lead directly to bounds on the 
possible values of/t~; by construction, these latter bounds hold 
with probability at least p. This approach is used in [5] to obtain 
the symmetric lOOp% confidence interval [ /~ -e ' , /~ .+e ' ] ,  

where [/~ -e,,/~, +e~] and [/~ -e¢,/.~ +e~] are the initial lOOq% 

confidence intervals, and 

e, Le~+lLlec 

A variant of this technique yields confidence intervals that are 
asymmetric about the point estimator, but are shorter than the 

symmetric intervals given above. Set L = ~ - e  and 

U, =/J~ + e,, where x equals s or c. Then the confidence interval 

for/.t~ is/L~, U j ,  where 

{ (U,/&, L,/UD if U,_>L,_>O; 

(U, ,L)= (U /U c, L /L ) if L _<U,_<O; 
(U, IL<, ~11~) if U, >O>L,. 

In general, techniques based on Bonferroni's inequality are 
somewhat less burdensome computationally than techniques 
based on large-sample results for ratios, but yield longer 
confidence intervals. 

5. Performance 
In this section, we present results from a prototype 

implementation of the parallel hash ripple join algorithm in the 
parallel ORDBMS TOR 2.0.02. Our measurements were 
performed with the database client application and server 
running on four Intel x86 Family 6 Model 5 Stepping 3 
workstations, each with four 400MHz processors, 1GB main 
memory, six 8GB disks. We allocated a processor and a disk for 
each data server, so there were at most four data servers on each 
workstation. 

The relations used for the benchmarks were based on the 
standard Wisconsin Benchmark relations [ 1]. We have two join 
relations: A and B. The relevant fields from their common 
schema is shown as follows: 
create table ,4 
( unique1 bigint not null, 

unique2integer not null, 
... 11 more integer attributes, 
... three 52 character string attributes 

); 
In order to get more meaningfial results, 500,000 and 50,000 

tuple versions of the standard relations were constructed for A 
and B, respectively. We use the unique1 attribute as the 
aggregate attribute and the unique2 attribute as the join attribute. 
To prevent numerical overflow when doing aggregation, the 
type of the unique1 attribute was changed from integer to bigint, 
which corresponds to the 8-byte long long type in C. Thus each 
relation consists of one 8-byte bigint attribute, twelve 4-byte 
integer attributes, and three 52-byte string attributes. Assuming 
no storage overhead, the length of each tuple is 212 bytes. The 
sizes of the relations A and B are approximately 106 and 10.6 
megabytes, respectively. The unique1 attribute of A was 
uniformly distributed between 0 and 499,999. There is no 
correlation between the aggregate attribute uniquel and the join 
attribute unique2. No index was created for the attributes. At 
each node, we set the memory that a join operator can utilize to 
22 megabytes. 

5.1 Speedup Experiments 
The most important performance metric for online 

aggregation is the rate at which the real-time results 
continuously produced by the online data exploration system 
converge to the final precise results. 

We ran the following query on 1-node, 2-node, 4-node, 8- 
node, and 16-node configurations (where each node is a data 
server) with a global query coordinator using the parallel hash 
ripple join (PHRJ) algorithm and the classical blocking parallel 
hybrid hash join (PHHJ) algorithm. We chose the PHHJ 
algorithm for comparison because it performs the best among all 
the four traditional blocking parallel join algorithms in [14]. 

select online avg (A.uniquel) 
ffrom A, B 
where ,4. unique2 = B.unique2; 

2 5 5 0 0 0  

2 5 0 0 0 0  

2 4 5 0 0 0  

oi l -node  
2-node 

-,,,ll,,- 4 -no de 
• 8-node 
- 16-node 

10 20 30 
t ime  in seconds 

~gure 9. Average value computed over time (high 
join selectivity). 

At the beginning, we generated the unique2 attributes of both 
relations such that each tuple of A matches exactly one tuple of 
B. For the PHRJ algorithm. Figure 9 shows how the computed 
average value converges to the final precise result over time, 
with the final precise result indicated by the horizontal dotted 
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line. Figure 10 shows how the number of join result tuples 
generated increases over time. 

600000 

500000 

400000 

300000 = 

200000 

100000 

= 0 

0 20 40 60 

time in seconds 

Figure 10. Join result tuples generated over time 
(high join selectivity).  

80 

Because relatively many tuples satisfy the join predicate and 
we are estimating for a single group (no "group by" clause), 
only a small number of samples need to be taken from the two 
join relations to generate enough join result tuples for a good 
approximation. The approximate answer converges to the final 
precise answer within seconds even in the uniprocessor 
environment. 
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Figure  11. Average value computed over t i m e  (low 
join select iv i ty) .  
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Figure 12. Join result tuples generated over t ime 
(low join select ivi ty) .  

In the remainder of this section, we reduced the number of 
tuples that satisfy the join predicate by a factor of 20 in order to 
present a more challenging problem statistically (note that in 
terms of difficulty of the estimation problem, this is similar to 

doing a "group by" on an attribute with 20 distinct values). That 
is, we generated the unique2 attributes of both relations such 
that each tuple of A matches at most one tuple of B on unique2, 
and on average 1/20 of all the tuples of A have such a match. 
The corresponding results are shown in Figure 11 and Figure 12, 
respectively. Note that now, in contrast to the results in Figure 9, 
the multiple-node configurations converge noticeably quicker 
than the single node configurations. 

Table 3 shows the time at which memory overflow occurs in 
the five configurations. We can see that memory overflow does 
not greatly influence the speed of generating the join result 
tuples. The average value that the PHRJ algorithm estimates 
achieves a relatively small tolerance within seconds, well before 
memory overflow occurs. Even after the memory overflows the 
join result tuples are still generated steadily, and the computed 
average value still approximates the final result very well. 

Table 3. Time (seconds) that memory overflow occurs. 
1-node 2-node 4-node 8-node 16-node 

8.1 10.3 11.8 none none 
In each configuration, all nodes fetch tuples from the join 

relations and do the join work in parallel, so one might think that 
memory overflow would occur at the same time for all five 
configurations. In fact, as the number of nodes increases, the 
number of different values that the join attribute can take at each 
node decreases and the local join selectivity at each node 
increases. Thus in the same amount of time, a larger percentage 
of time is spent on joining rather than fetching tuples from the 
join relations at each node, and memory overflow occurs later. 
The delayed memory overflow lengthens the period in which 
our PHRJ algorithm can make strong statistical guarantee. 

Table 4 shows the execution to completion time of the PHRJ 
algorithm and the traditional PHHJ algorithm [14] in the five 
configurations. 

Table 4. Execution to completion time (seconds) of the two 

1-node 2-node 4-node 8-node 16-node 
PHRJ 43 29 15 6 3 
PHHJ 37 i 19 10 4 2 

In all five configurations, 'the blocking PHHJ algorithm 
produced the final result about 13% to 33% faster than our 
PHRJ algorithm. This is mainly due to the fact that our 
algorithm needs to build two hash tables, one for each join 
relation, while the blocking algorithm only needs to build one 
hash table for the inner join relation. For the PHRJ algorithm, 
the speed at which the join result tuples are generated in these 
five configurations is nearly proportional to the number of nodes 
used. 

The PHRJ algorithm produces a reasonably precise 
approximation within seconds. It is up to two orders of 
magnitude faster than the time required by the PHHJ algorithm 
(which does not produce results until the join is nearly 
completed) to produce exact answers. 

5.2 Scale-up Experiments 
We ran the query on 1-node, 2-node, 4-node, 8-node, and 16- 

node confgurations. Compared with that of the 1-node 
configuration (106M & 10.6M), the sizes of the relations for the 
other configurations were increased proportionally to the 
number of data server nodes. Thus the average workload at each 
node, which was measured by the sizes of the join relations 
there, was kept the same for the scale-up experiments. 
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Figure 13 shows the execution to completion time of the two 
parallel join algorithms in the five configurations. In all five 
configurations, the blocking PHHJ algorithm produced the final 
result about 13% to 32% faster than our PHRJ algorithm. The 
scaleup characteristics of the PHRJ algorithm match those of the 
traditional PHHJ algorithm. 

150 

z: 
,~ lOO 

50 

A PHRJ 

• PHHJ 

0 4 8 12 16 
number of  data server nodes 

Figure 13. Execution to completion time of the 
two paral le l  join a lgor i thms  (scale-up).  

6. Summary and Conclusions 
The two primary tools that permit online exploration of 

massive data sets are sampling and parallel processing. In this 
paper we initiate an effort to combine these tools, and introduce 
the parallel hash ripple join algorithm. This efficient non- 
blocking join algorithm permits extension of online aggregation 
techniques to a much broader collection of queries than could 
previously be handled. 

Our analytic model suggests that in cases where memory 
overflows, the parallel hash ripple join algorithm is as much as a 
factor of five faster than the previously proposed hash ripple join 
algorithm (which degenerates to the block ripple join algorithm) 
in the uniprocessor environment. Furthermore, our 
implementation in a parallel DBMS shows that the parallel hash 
ripple join algorithm is able to use multiple processors to extend 
the speedup and scale-up properties of the traditional parallel 
hybrid hash join algorithm to the realm of online aggregation. 

To complement the new join algorithm, we extend the results 
in [8] to provide formulas for running estimates and associated 
confidence intervals that account for the complexities of 
sampling in a parallel environment. Such formulas are a crucial 
ingredient of an interactive user interface that permits early 
termination of queries when the approximate answer is 
sufficiently precise. 

There is substantial scope for future work on parallel ripple 
joins. For example, the development of the confidence interval 
formulas in Section 4.1 used the assumption that each [A/jl and 
IB~I is known precisely. When this not the ease, it appears 
possible to essentially estimate each ]AuI and ]Bq] on the fly. The 
required modification of the confidence interval formulas to 
reflect the resulting increase in uncertainty is quite complex. As 
another example, the original uniprocessor hash ripple join in [8] 
permits the relative sampling rates from the various input 
relations to adapt over time to the statistical properties of the 
data. The goal is to achieve sampling rates that optimally trade 
off decreases in confidence interval length against times 
between successive updates of the point estimate and confidence 
interval. Such adaptive sampling also is possible in the parallel 
processing context, but the implementation issues, cost models, 

statistical formulas, and optimization methods are much more 
complex. We intend to pursue these issues in future work. 
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