
Database Support for Weighted Match Joins

Ameet Kini, Jeffrey F. Naughton
Computer Sciences Department

1210 West Dayton Street, Madison, WI 53705
{akini, naughton} @ cs.wisc.edu

Abstract

As relational database management systems are
applied to non-traditional domains such as scientific
data management, there is an increasing need to
support queries with semantics that differ from those
appropriate for traditional RDBMS applications. Two
interesting ideas currently being explored in the DBMS
community are ranking query results (e.g., top-k
computations) and, more recently, "match joins." In
this paper we combine these two ideas and study
weighted match joins, in which (a) like match joins,
each tuple joins with at most one matching tuple, and
(b) like top-k joins, the system attempts to provide a set
of answer tuples that maximizes a weight function. We
explore exact and approximate strategies for
evaluating weighted match joins. Using a prototype
implementation in PostgreSQL, we explore the
performance characteristics of these strategies. Our
results suggest that the DBMS optimization-based
approach of providing several implementations of an
operator and then choosing an appropriate one at run
time can be useful in computing weighted match joins.

1. Introduction

In this paper, we focus on supporting “weighted
matching” queries in an RDBMS. In mathematical
terms, a weighted matching problem can be expressed
as follows: given a bipartite graph G with weighted
edge set E, find a maximally weighted subset of E,
denoted M, such that for each e = (u,v) ∈ M, neither u
nor v appears in any other edge in M.

Our work is motivated by two recent trends. The
first trend is that instances of matching problems and
weighted matching in particular have sprung up in
diverse domains. These domains can be classified into
two groups. In the first group, matching is used to
allocate resources to consumers subject to certain
quality metrics. These domains (with corresponding
resources and consumers in parentheses) include grid
job scheduling [10,12] (matching user jobs to available

machines), online advertising [8] (matching search
keywords to advertiser bids placed on the keywords),
and gaming [11] (matching players based on skill level,
etc.). Problems in the second group involve matching
two sets of entities in an effort to find pairs of entities
that are most similar. These domains include data
cleaning [4,9] and protein matching in biological
databases [14]. The second trend is that applications
that differ substantially from traditional data
processing have started to harness the power of
RDBMSs. As more and more of these applications
start using RDBMSs to store their data, a natural
question to ask is whether we can leverage the query
machinery in the RDBMS to support matching
operations (instead of merely treating the RDBMS as
an expensive file system by exporting/importing all the
data to/from an external C/C++ function that
implements the matching operation.) The premise of
this paper is that by exposing the semantics of the
matching operation to the RDBMS, one can efficiently
support these matching operations by exploiting
existing RDBMS query machinery.

One’s initial reaction might be that the weighted
matching problem has been well-studied by the
algorithms community, and that the DBMS community
is likely to have little to contribute. We think this is
false for two reasons. First, there is the interesting
question of how to exploit existing RDBMS
capabilities to compute matchings. Second, weighted
matching problems as they arise in RDBMSs differ in
significant ways from the classical graph-theoretic
matching problems.

For the second point, in the context of an RDBMS,
matching occurs between two entity sets, one stored in
a table, say R, and the other in another table, say S, that
need to have their elements paired in a one-to-one
fashion. Compared to classical graph theory, an
interesting difference immediately arises: rather than
storing the graph’s complete edge set E, DBMS-
resident applications will typically store only the nodes
of the graph, representing the edge set E implicitly as a
match join predicate θ and weight function F. That is,
for any two tuples r∈R and s∈S, θ(r,s) is true if and

only if there is an edge from r to s in the graph; the
weight on each such edge can be computed using the
weight function F(r,s).

Given such a problem formulation, one way to
compute the weighted matching would be to
materialize the implicit edge set by computing the
standard relational join of R and S, with θ as the join
predicate, then to feed the result to a classical matching
algorithm. Unfortunately, this scheme is unlikely to be
successful – often such a join will be very large (for
example, when R and S are large and/or each row in R
joins with many rows in S). Moreover, this approach
ignores an important opportunity present due to the
implicit graph aspect of the problem. In particular, it is
possible to design faster matching algorithms for a
specific problem instance by exploiting special
properties of the match predicates, weight functions,
and data characteristics of the problem at hand. This in
turn fits in well with the classical relational query
optimization paradigm: we implement several
matching algorithms, and choose between them based
upon the query and data instance at run time.

This work builds on our earlier work [7], in which
we studied (non-weighted) match joins, where the
quality of the join is the number of matching tuples
rather than a sum of a weight function applied to the
matches. While we showed that RDBMS technology
can be brought to bear on such problems, there are
many problems that do not fit into the limitations of a
non-weighted matching problem.

For example, consider a simplified version of job
scheduling in a grid. One can view this as a matching
problem (matching jobs to processors). In this case the
non-weighted matching problem corresponds to
finding an assignment of jobs to machines such that the
number of (job, machine) pairs is maximized.
However, one can imagine that the quality of the
matching may not be just a function of how many jobs
get matched to machines but also a function of how
well the jobs match the machines to which they are
assigned. (For example, some users want a lot of
memory, others want a fast CPU, some users have
higher priority than others, and so forth.) This notion
of “how well” translates to weights on the matches.
Our goal in this paper is to begin to explore how well
RDBMS technology can be applied to the more
complex weighted matching problem.

2. Background

We formally describe the weighted match join

problem, which takes as input two relations R and S, a
predicate θ, and weight function F. Here, the rows of R
and S represent the nodes of the graph, the predicate θ

is used to implicitly denote edges in the graph, and
each of these edges has a weight assigned by function
F. The complete edge set can be materialized using the
standard relational join R θ S. We use n = |R| + |S| and
m = |R θ S| to refer to the number of nodes and edges,
respectively, in the bipartite graph.

Definition 1 (Weighted Match Join) Let M ⊆ R θ S.
Then M is a weighted matching or a weighted match
join of R and S with predicate θ and non-negative
weight function F(t), t∈ R θ S, iff each tuple of R and
S appears in at most one tuple (r,s) in M. We use M(R)
and M(S) to refer to the R and S tuples in M, and w(M)
to refer to the sum of weights of all tuples in M.

Definition 2 (Maximum Weighted Matching) Let M*
be the set of all weighted matchings of relations R and
S with predicate θ and weight function F. Then MM is
a maximum weighted matching iff MM∈M* and ∀M’∈
M*, w(MM) ≥ w(M’).

We frequently refer to a matching being maximal,
which means that the size of the matching cannot be
increased by simply adding edges.

Definition 3 (Maximal Weighted Matching) A
matching M’ is a maximal weighted matching of
relations R and S with predicate θ and weight function
F if ∀r∈R-M’(R), s∈S-M’(S), (r,s) ∉ R θ S.

Note that “maximal” here refers to the number of edges
in the matching, not the weight of the matching. If a
weighted matching M is not maximum, then it is an
approximate weighted matching. We quantify its
degree of approximation by an optimality ratio: w(M) /
w(MM) (w(MM) > 0). For example, if w(M) = 50
whereas w(MM) = 100, then the optimality ratio = ½,
in other words, M is ½-optimal.

By definition, the weighted match join is a
weighted one-to-one subset of the relational θ-join of R
and S. Recent work in the database community has
addressed the closely related problem of computing the
top-k join (also known as rank join) [6,13], which
seeks an ordered set of the k highest weighted tuples in
the relational join. A critical difference between the
top-k join and the weighted match join is that the result
of a top-k join need not satisfy the one-to-one matching
constraint.

3. Weighted Match join Algorithms

3.1. Overview

As mentioned in the introduction, by exploiting

the semantics of the match predicates and weight
functions, we can explore ways to compute weighted

matchings on these special graphs potentially more
efficiently than general weighted matching algorithms.
Our algorithms each exploit some combination of the
following properties of the underlying graph: a)
properties of match join predicates, b) properties of
weight functions, and c) uniformity in the input
relations.

Before we dive into a description of our weighted
match join algorithms, we describe a simple
approximate weighted matching algorithm [2] that can
always be used to compute weighted match joins. This
algorithm, referred to as GREEDY, computes and sorts
the edges of the underlying graph in descending order
of weight and iterates through this sorted list marking
edges as “matched” while maintaining the one-to-one
invariant. GREEDY can be easily implemented in
procedural SQL: first, a relational θ-join can be used to
compute the edges of the underlying bipartite graph,
which can be then sorted in descending order of the
weight function F using a SQL order-by clause.
Finally, an iterator can be used to loop over the sorted
results and construct a one-to-one matching. It can be
shown that GREEDY returns a maximal matching that
is at least ½-optimal [2]. It also has the benefit of
working for any match predicate θ and weight function
F. Unfortunately this generality comes at the price of
performance as it requires building and sorting the
edges of the underlying bipartite graph, an O(m log m)
operation (note that m ~ n2 in dense graphs). GREEDY
is a “catch-all” algorithm that can be always applied;
however, as the rest of our algorithms show, better
performance can be gained by exploiting structural
properties of the underlying graph.

3.2. A Nested Loops Based Technique

Our next algorithm W_MJNL (Weighted Match

Join Nested Loops) exploits a property of weight
functions, formalized here.

Property 1 (Decomposable Monotonic Weight
Function) A function F(t), t ∈ R θ S is said to be
decomposable monotone if F can be expressed as
F(f1({attributes of R}), f2({attributes of S}) where F is
monotone on its components f1 and f2. In other words,
for any two tuples t1,t2 ∈ R θ S if f1(t1) < f1(t2) and
f2(t1) < f2(t2) then F(t1) < F(t2).

An example of decomposable monotonic weight
functions is a linear weighted sum of attributes of R
and S, frequently referred to as a preference function in
existing literature on top-k algorithms [5]. Consider
such a preference function F = (0.3 * R.a1 + 0.4 * R.a2
+ 0.1 * S.a1 + 0.2 * S.a2). Then F can be expressed as f1
+ f2 where f1 = (0.3 * R.a1 + 0.4 * R.a2) and f2 = (0.1 *

S.a1 + 0.2 * S.a2). Another decomposable monotonic
function is F = max(R.a, S.b). Here, F can be expressed
as max(f1, f2) where f1 = R.a and f2 = S.b. On the other
hand, a function that is not decomposable monotone is
the Euclidean distance function.

W_MJNL, illustrated in Figure 1, first sorts both R
and S in descending order of f1 and f2 respectively.
Matching tuples are then found by executing a nested
loops algorithm over these sorted relations, marking
each matched tuple so that it is not matched again.
Note that unlike GREEDY, which computes and sorts
the full relational join of R and S, W_MJNL never
materializes the full edge relation and sorts R and S
individually.

While the resulting weighted matching is not
guaranteed to be optimal, the following theorem gives
guarantees as to its quality. Due to space constraints,
all proofs are omitted here.

Theorem 1. Consider a weighted match join of R and S
with predicate θ and a decomposable monotonic weight
function F. Then W_MJNL on this weighted match join
problem takes time O(n2) and produces a maximal
matching that is at least ½-optimal.

If W_MJNL is applied to a problem instance in
which F is not decomposable monotonic, it will still
produce a maximal matching, although it is not
guaranteed to be ½ -optimal.

Procedure W_MJNL
Input relations R and S, match predicate θ(R,S), and
 decomposable monotonic weight function F(f1(R), f2(S))
Output weighted match join M ⊆ R θ S
Begin
1. Sort R in descending order of f1
2. for each tuple r∈R
3. Let cand_s be the list of all tuples s∈S such

that θ(r,s)= true and s is not already matched
4. Sort cand_s in descending order of f2
5. Retrieve the highest tuple s’ in this list
6. Mark s’ as matched
7. Add <r,s’> tuple to M

end for
End

Figure 1. W_MJNL pseudocode.

3.3. A Sort-Merge Based Technique

While W_MJNL exploits properties of weight

functions, our second approach, W_MJSM (Weighted
Match Join Sort Merge) exploits properties of match
predicates. To see the insight behind it, consider the
case when the match predicate is a conjunction of
equality predicates. Also, for now, lets focus only on
decomposable monotonic functions; we relax this

assumption later in the section. Given this setup, we
can sort the two relations on their join attributes and
then execute a “merge” on the two relations, looking
for matches, marking tuples as “matched” as we go.
Since the join predicate consists of equalities, matches
can be found only within the “bucket” consisting of R
and S tuples that agree on all the join attributes.
Moreover, each bucket is independent of the other – in
other words, an R tuple from one bucket can never be
matched with an S tuple from another bucket since they
will not satisfy the join predicate. Now, within each
bucket, all tuples of R and S satisfy the join predicate
and are therefore eligible for matching. As such, we
can simply sort the R and S parts of the bucket in
descending order of f1 and f2 respectively, iterate down
the two lists and match each pair of tuples as we go.
Figure 2 illustrates W_MJSM on the equality predicate
(R.a1 = S.a1).

Theorem 2 Consider a weighted match join of R and S
with decomposable monotonic weight function F(f1(R),
f2(S)) and predicate θ consisting of a conjunction of k
equality predicates (k > 0) of the form R.a1 = S.a1
AND R.a2 = S.a2 AND, …, AND R.ak = S.ak. Then
W_MJSM on this weighted match join problem takes
time O(n log n) and produces a maximum weighted
matching.

We now discuss extensions to the basic form of
W_MJSM to handle various forms of match predicates
and weight functions. We first show how W_MJSM
can be extended to functions that are not decomposable
monotone. To see how this works, recall that within a
bucket, all pairs of R and S tuples satisfy the join
predicate and are therefore eligible for matching. In
graph theoretic terms, the tuples within a bucket form a
complete bipartite sub-graph since every r tuple joins
with every s tuple within the bucket. Here, we can use
the idea from GREEDY – that is, compute the edges of
this complete sub-graph by joining all tuples within the
bucket, sort them in descending order by weight, and
then iterate through this sorted list greedily picking
edges as we go. Just as GREEDY, this extended
version of W_MJSM can be applied to any weight
function. However, unlike GREEDY, it is optimal, i.e.,
it returns the maximum weighted matching. In general,
it can be shown that applying GREEDY on any
complete bipartite graph results in the maximum
weighted matching, a result that is validated in our
experiments. However, in the interest of space, we do
not pursue the details of this extension here.

Before proceeding to the second extension, recall
that the main idea behind W_MJSM is that it uses the
fact that the join predicate consists of equalities to par-

Procedure W_MJSM
Input relations R and S, match predicate

θ (R.a1 = S.a1), and decomposable monotonic
function F(f1(R), f2(S))

Output weighted match join M ⊆ R θ S
Begin
1. Sort R on (a1 ascending, f1 descending)
2. Sort S on (a1 ascending, f2 descending)

 Do sort-merge style iteration
3. open iterators on R and S
4. while neither R nor S iterators are exhausted
5. while r.a1 < s.a1 and R iterator is not exhausted
6. r = get next tuple from R iterator;
 end while
7. while r.a1 > s.a1 and S iterator is not exhausted
8. s = get next tuple from S iterator;
 end while
9. while r.a1 = s.a1
10. add <r,s> tuple to M
11. r = get next tuple from R iterator;
12. s = get next tuple from S iterator;
 end while
 end while
End

Figure 2. W_MJSM pseudocode.

-tition the relations into disjoint buckets. If the join
predicate consists of equalities and other predicates
(e.g., R.a1 = S.a1 and R.a2 < S.a2), one can still apply
this basic idea with a minor extension. In particular,
now within each bucket, there may be tuples that do
not match each other – even if they agree on the
equality attributes (R.a1, S.a1), they may not satisfy the
additional predicates (R.a2 < S.a2) and hence fail to
satisfy the overall join predicate. In general, matching
tuples can be scattered anywhere within the bucket.
Assuming for now that the weight function is
decomposable monotone (we will relax this
assumption later), the main observation is that within a
bucket, we can effectively apply a technique like
W_MJNL, that is, first sort R and S within a bucket in
descending order of f1 and f2 respectively, then iterate
through both sorted lists in nested loops fashion
finding r and s tuples that satisfy the join predicate and
marking them as “matched” so that they are not
matched again.

Note that this extension combines ideas from both
W_MJSM and W_MJNL. By sorting on the equality
attributes, it partitions the relation into disjoint buckets,
like the basic W_MJSM discussed earlier in the
section; however, unlike W_MJSM, it uses a nested
loops style evaluation to find matching tuples within
each bucket.

Theorem 3 Consider a weighted match join of R and S
with decomposable monotonic weight function F(f1(R),
f2(S)) and predicate θ consisting of a conjunction of k
equality predicates (k > 0) and other arbitrary
predicates of the form (R.a1 = S.a1 AND R.a2 = S.a2
AND, …, AND R.ak = S.ak.) AND (other predicates).
Then W_MJSM on this weighted match join problem
takes time O(n2) and produces a maximal matching
that is at least ½-optimal.

In the discussion following Theorem 2, we
described how W_MJSM can be extended to work on
arbitrary weight functions when the join predicate
consists of only equalities, using the GREEDY
technique to find matching tuples within each bucket.
This extension can be applied unmodified when the
join predicate consists of equalities and other
predicates. The worst case running time and quality of
resulting matching for this extension is the same as that
of GREEDY, i.e., O(m log m) and a maximal matching
that is at least ½-optimal, respectively.

3.4. A Network Optimization Based Technique

Our previous algorithms exploit properties of
match join predicates and weight functions. In this
section, we present an approach that exploits data
uniformity to efficiently compute weighted match joins
on arbitrary join predicates and weight functions.

The motivation and basic ideas for this algorithm,
henceforth referred to as W_MJMC (Weighted Match
Join Min-Cost), come from the observation that in
many problem instances it is possible to partition the
input relations into groups such that tuples within a
group are identical with respect to the match (that is,
either all tuples of a given group will join with a given
tuple from the other table, or none will). For example,
when scheduling jobs on grids, most clusters have
relatively few unique machine configurations and
similarly many users submit large number of jobs with
almost identical resource requirements. In such
situations, it is possible to aggregate the input relations
to the match join, as was done for MJMF [7], using
standard relational grouping techniques.

The basic idea of our approach is to perform a
relational group-by operation on the attributes in the
join predicate and the weight function. Using one
representative of each group along with its weight and
the total size of the group, we transform the weighted
matching problem into a minimum cost circulation
problem, or simply min-cost circulation [1].

Definition 4 (Minimum Cost Circulation) Consider a
directed network G = (N, E) with a cost cij and
nonnegative flow capacity uij associated with each

edge (i,j) ∈ E. There are two special nodes in the
network G: a start node u and an end node v. The
minimum cost circulation problem can be stated
formally as:
Minimize z(x) =

(,)

ij ij

i j E

c x
∈
∑

subject to:

:(,) :(,)
0 for all ,

 0 for all

ij ji

ij ij

j i j E j j i E
x x i N

x u (i, j) E.
∈ ∈

− = ∈

≤ ≤ ∈

∑ ∑

Here, we refer to the vector x = {xij} satisfying the
constraints as a flow.

Figures 3 and 4 illustrate the construction of network G
= (N1 U N2, E) with start node u and end node v (line 1)
that is input to the min-cost circulation algorithm.

The following main steps describe how to build network
G (parenthesized line numbers refer to Figure 3):

1. (Build node set) add a node n1∈N1 for every group of
tuples in R which have the same value on the attributes
used in the match join predicate and weight function
(line 5); similarly for N2 (line 10).

2. (Build edge set) add an edge between n1 and n2 if the
groups of tuples that they represent satisfy the match
predicate (line 14).

3. (Connect nodes to start and end) add an edge between
u and n1, and between n2 and v (lines 6 and 11).

4. (Assign edge capacities) For edges of the form (u, n1)
the capacity is set to the size of the group represented by
n1 (line 7). Similarly, the capacity on (n2,v) is set to the
size of the group represented by n2 (line 12). Finally, the
capacity on edges of the form (n1, n2) is set to the
minimum of the two group sizes (line 15).

5. (Assign edge weights) Here, recall that what we
eventually want is a maximum weighted matching when
in fact this is a min-cost problem. This duality is
achieved by setting weights on edges of the form (n1, n2)
to the additive inverse (negative) of the weight of the
underlying join tuple (line 16). For edges of the form (u,
n1) and (n2,v), the weights are to set -1 (lines 8 and 13).

6. Finally, we add a “reverse” edge (v,u) with infinitely
high capacity and infinitely low weight (lines 17-19).

Procedure W_MJMC
Input relations R and S,

match predicate θ(R.a, R.b, S.a, S.b), and weight
function F(R.score,S.score)

Output weighted match join M ⊆ R θ S
Begin

Build the reduced directed network G
1. First, add start node u and end node v to G
 The rest of the nodes and edges can be obtained using

following SQL
2. SELECT * FROM
 (SELECT count(*) as r_count,

a as r_a, b as r_b, score as r_score
 FROM R
 GROUP BY a, b, score) as R_grouped,
 (SELECT count(*) as s_count,

a as s_a, b as s_b, score as s_score
 FROM S
 GROUP BY a, b, score) as S_grouped
 WHERE θ(R.a, R.b, S.a, S.b) is true
 Iterate over result tuples t of the form

<r_count, r_a, r_b, r_score, s_count, s_a, s_b,
s_score>

3. for each tuple t {
4. if we are seeing this r node for the first time

5. add this r node to G
6. add an edge connecting r to u
7. set the edge flow capacity to t.count_r
8. set the edge weight to -1
 end if
9. if we are seeing this s node for the first time
10. add this s node to G
11. add an edge connecting s to v
12. set the edge flow capacity to t.count_s
13. set the edge weight to -1
 end if
14. add an edge connecting r and s
15. set the flow capacity to min(t.count_r, t.count_s)
16. set the edge weight to (-1 * F(R.score,S.score))
 end for
17. add the reverse edge connecting v to u
18. set the edge flow capacity to infinity
19. set the edge weight to negative infinity
20. invoke the GOBLIN min-cost flow algorithm on G
 .
 .
 reconstruct matching from obtained flow
 .
 .
End

R
a1 Score

1 10

6 10

6 10

S

a1 Score

4 11

4 12

8 14

8 14

9 10

Figure 3. W_MJMC pseudocode. For illustrative purposes, the weighted match join query on relations R and
S has a match predicate θ on attributes (a, b) and weight function F on attribute score from both relations.

(a) (b)

Figure 4. A 3-step transformation from (a) Base tables to (b) A directed weighted network to (c) A reduced
network that is input to the min-cost algorithm. θ = R.a1 < S.a1, and F = 0.5 * R.score + 0.5 * S.score.

(c)

(1, -1)

u 6, 10

6, 10

4, 11

4, 12

8, 14

8, 14

9, 10

(1, -10.5)

 (1, -11)

 (1, -12)

v

(1, -10)

(∞, -∞)

1, 10

(1, -12)

(1, -1)

u
1, 10

4, 11

4, 12

8, 14

9, 10

(1, -10.5)

 (1, -11)

(2, -1)

 (1, -1)

 (2, -1)

 (1, -1)
(2, -12)

(1, -10)

(1, -10)

6, 10

v

 (1, -1)
 (1, -1)

(∞, -∞)

After converting the matching problem to a min-cost
problem, we can use any standard min-cost solver (e.g.,
GOBLIN [3]) on the transformed problem (line 20), and
then translate the solution to that problem back to a
solution to the original weighted matching problem.
While omitted from Figure 3, this phase is exactly the
same as that in the MJMF algorithm [7] – by solving the
min-cost problem subject to the capacity constraints, we
obtain a flow value on every edge in the network.
Consider an edge of the form (n1, n2). Let the flow value
on this edge be f. We can then match f members of n1 to f
members of n2. Due to the capacity constraint on edge
(n1, n2), we know that f ≤ the minimum of the sizes of the
two groups represented by n1 and n2. Similarly, we can
take the flows on every edge and transform them to a
matching in the original graph. It can be shown that this
matching is an optimal solution to the original weighted
matching problem; due to space constraints, we omit the
proof, which is elaborate and follows a similar argument
as that given in [7] for MJMF.

W_MJMC yields a maximum weighted matching
on arbitrary match join predicates and weight
functions. For efficiency, it relies heavily on the
premise that the initial grouping before transforming
the matching problem to a min-cost problem results in
a small number of groups, as the min-cost algorithm is
ultimately O(n3), where n is proportional to the number
of groups. Our next and last algorithm combines the
benefits of grouping without relying on an O(n3)
algorithm at the cost of obtaining the maximum
weighted matching.

3.5. Combining Grouping and Nested Loops

Our previous algorithm W_MJMC was based on
two distinct ideas: compressing the two input relations
using grouping, and then transforming the matching
problem to a min-cost circulation problem. In this
section, we explore the idea of compressing by
grouping but then using a variant of W_MJNL to work
on such compressed relations. Since this approach does
not invoke the O(n3) min-cost algorithm we expect it
to be more robust in the face of less compressible
inputs. We call this algorithm W_MJGNL (Weighted
Match Join Grouped Nested Loops) and just like
W_MJNL, it yields an approximate weighted match
join over decomposable monotonic weight functions
and arbitrary match join predicates.

This hybrid algorithm begins by grouping the two
input relations R and S and writing this to temporary
relations Grouped_R and Grouped_S respectively.
Like W_MJMC, each tuple in this compressed relation
represents a group in the original relation; it consists of
the attributes that were grouped over, i.e., the match
join and weight function attributes, and a count that
represents the size of the group. After materializing the

temporary relations, it sorts them in descending order
of f1 and f2 respectively. Finally, it iterates over them in
nested loops fashion finding r and s tuples that satisfy
the join predicate. However, when it finds tuples r and
s that satisfy the match join predicate, instead of just
marking the s tuple as “matched” as was done in
W_MJNL, it outputs as many matching r and s tuples
as is the smaller of the two counts and decrements the
counts accordingly. As in the case of W_MJNL,
certain guarantees can be made about the quality of the
matching computed by W_MJGNL.

Theorem 5 Consider a weighted match join of R and S
with predicate θ and a decomposable monotonic
weight function F(f1(R), f2(S)). Then W_MJGNL on this
weighted match join problem takes time O(n2) and
produces a maximal matching that is at least ½-
optimal.

4. Experiments

In this section, we describe the implementation of
our weighted match join algorithms and report
experimental results exploring their performance.

4.1. Implementation

Our algorithms are implemented as user defined
functions (UDFs) in PostgreSQL version 8.1. Most of
the implementation was done in PL/pgSQL,
PostgreSQL’s procedural interface; only part of
W_MJMC was written as a C UDF since it required
integration with the GOBLIN C++ network
optimization library. At a little under 1000 lines, the
code-base is fairly small. This includes not only the
algorithms themselves but scripts used to run the
experiments. We credit this simplicity to two factors:
first, the algorithms were built on top of the database
system using already supported primitives such as
grouping, sorting, among others. Second, the high level
interface offered by PL/pgSQL either encapsulates or
simplifies common tasks such as creating cursors and
looping over query results, thereby allowing the
application programmer to focus on the algorithm
itself.

There is, however, an inherent performance
tradeoff by choosing a UDF-based implementation
versus implementing these algorithms natively inside
the database. To get a rough estimate of this overhead,
we implemented the regular sort-merge algorithm as a
PL/pgSQL UDF and compared its running time to that
of the natively implemented sort-merge join algorithm;
we observed that the UDF based implementation
consistently performed 20-25% slower than the native
implementation over a range of equijoin queries. As

such, we expect that our algorithms could be sped up
by a similar percentage if they were implemented
natively.

4.2. Experimental Setup

All experiments were run on an Intel Pentium 4
dual-processor machine with 1 GB physical memory
running CentOS 4. The database buffer pool size was
set to 256 MB. Each experiment was run 4-5 times,
flushing the buffer pool and system memory between
runs. The numbers were fairly consistent across runs,
and hence we report their average across all the runs.

In order to control various data characteristics
such as selectivity and group size, the experiments
were conducted on synthetic data; the two tables being
matched, R and S, each had the same schema: (id:
integer, a: integer, b: integer, score: float), where a and
b were used as match join attributes, and score was
used as an input to a weight function. Unless explicitly
mentioned, R and S each contained 10000 tuples. All
times reported include the time to output the weighted
match join result, which was written to a temporary
table.

Experiment 1

The first experiment measures the performance of
GREEDY, W_MJNL, W_MJSM, W_MJMC, and
W_MJGNL on a weighted match join query whose
predicate consists of two equalities: (R.a = S.a AND
R.b = S.b) and whose weight function F is the
decomposable monotonic function (0.5 * R.score + 0.5
* S.score).

On the x-axis, we vary a parameter called group
size, which controls the number of tuples in each group
as determined by the combination of the match join
and weight function attributes; in this case, those
attributes are (a, b, score). Thus this experiment
explores how well the grouping algorithms are able to
exploit the compression provided by their grouping.

Recall that W_MJMC works by performing a
group-by on the combined match join and weight
function attributes, followed by a full join, thus
building a graph which is then fed to the min-cost
algorithm. The size of the graph |G| plays a major role
in the overall performance of the O(n3) min-cost
algorithm, and |G| is a function of two variables: the
average group size g and the full join selectivity µ.
More precisely, |G| ~ µ *((|R| * |S|) / g). For a fixed
selectivity then, the larger the group size, the smaller
the graph. As such, for the dataset in this experiment,
we vary the group size from small (g = 5) to large (g =
500) and keep the join selectivity constant (µ = 0.1).
Accordingly, |G| ranges from approximately 400000 to
40.

Experiment 1 - Selectivity = 0.1

0.01
0.1

1
10

100
1000

10000

5 10 50 100 500
Group Size

Ti
m

e
(s

ec
s)

W_MJNL
W_MJSM
W_MJMC
W_MJGNL
GREEDY

Figure 5. Experiment 1

To see how g is varied while keeping µ fixed,

recall that grouping is done on the composite (match-
join-attributes, weight-function-attributes), in this case,
(a, b, score), whereas the join selectivity is solely
dependent on the match join attributes (a, b). As such,
by changing the value of only the weight function
attribute, while at the same time, keeping the match
join attribute value fixed, we can control the two
parameters g and µ accordingly. Putting some numbers
in, if g = 5 and µ = 0.1, then values for attributes (a, b)
of both relations R and S are fixed for batches of 0.1 *
10000 = 1000 tuples, and no two tuples from two
different batches are assigned the same value on (a, b);
since the join predicate in this experiment consists of
only equalities, this ensures that µ = 0.1. Now the
desired g value of 5 is obtained by ensuring that within
the batch of 1000 tuples, attribute score is assigned 200
distinct values, each appearing 5 times. Similarly, if g
were 500, then score would be assigned 2 distinct
values, each appearing 500 times.

Figure 5 shows the execution times for the five
algorithms. Due to the wide range of values taken by
the various algorithms (from 60 ms to 45 minutes), the
y-axis is displayed on a log-scale. The figure highlights
a number of features of the algorithms. First, we
comment on the behavior of each of the algorithms
individually and then comment on their relative
performance. Here, as expected, the performance of
W_MJMC and W_MJGNL are directly dependent on
the degree of compression achieved by grouping. On
the other hand, W_MJNL and W_MJSM are
unaffected by grouping; their performance is only
dependent on the sizes of the input relations. This
observation was validated by another experiment
where we varied the selectivity and kept group size
constant, but since the trends are similar, we omit those
figures.

Finally, GREEDY is also unaffected by varying
group sizes; since it materializes the full relational join,
its performance is dependent only on the sizes of the
input relations and the selectivity, both of which are
fixed.

Of the algorithms, W_MJMC has the most varied
performance, ranging from being the slowest to the
fastest depending on input graph size. The figure also
shows that W_MJGNL consistently outperforms
W_MJNL by over two orders of magnitude for even
the smallest group sizes. W_MJSM stays around the
one second mark for all cases and dominates the other
algorithms when there are many groups. Finally,
GREEDY is outperformed by at least one and usually
all the other algorithms by a wide margin.

Experiment 1 also highlights an interesting
property of the quality of the matchings obtained by
our approximate algorithms. Recall that W_MJMC is
always optimal, i.e., it returns the maximum weighted
matching, as is W_MJSM on equality predicates. On
the other hand, GREEDY, W_MJNL, and W_MJGNL
return, in general, approximate weighted matchings. It
turns out that when the match predicate consists of
only equalities and the weight function is
decomposable monotone - as is the case in this
experiment - all the algorithms are optimal. This is
because, as mentioned in the discussion immediately
following Theorem 2 in Section 3.3, when the match
predicate consists of only equalities, one can divide the
relations into buckets of R and S tuples such that each
bucket represents a complete bipartite sub-graph. It can
indeed be shown that on complete graphs, GREEDY is
optimal regardless of the weight function, whereas
W_MJNL and W_MJGNL are optimal when the
weight function is decomposable monotone; the basic
idea behind this is that on complete bipartite graphs,
one can build a maximum weighted matching by
incrementally adding to the result set the highest
weighted (r,s) tuple such that neither r nor s are
previously matched. GREEDY achieves this by
computing and sorting the complete edge set in
descending order of weight, whereas W_MJNL and
W_MJGNL exploit the property of decomposable
monotone weight functions to sort both relations by
their weight function components before iterating over
them in nested loops fashion.

Experiment 2

Our second experiment measures the performance
of all five algorithms on a weighted match join query
with predicate (R.a = S.a AND R.b < S.b) and whose
weight function F is again (0.5 * R.score + 0.5 *
S.score).

Recall from Section 3.3 that W_MJSM can be
extended to work on match predicates consisting of
equalities and other predicates. Since, in such cases, it
relies on the equality predicate to limit the range of
tuples over which it performs nested loops, the
selectivity of the equality predicate plays a major role
in its performance. On the other hand, as was shown in
the previous experiment, the performance of

W_MJMC and W_MJGNL depends on the degree of
compression due to grouping on the combination of the
match join and weight function attributes (a, b, score).
Accordingly, we report the performance of the five
algorithms on three different group sizes: small,
medium and large (g = 1, 50, and 500 respectively).
Within each group size, we vary the selectivity of only
the equality predicate from 0.05 to 1.

The results are shown in Figures 6 a, b, and c
respectively. W_MJNL is, as expected, unaffected by
either the group size or selectivity and consistently
takes around a minute. The sensitivity of GREEDY to
the selectivity, which in turn controls the size of the
full relational join is also evident from the rise in each
of the curves; for large selectivities (µ ≥ 0.8),
GREEDY took longer than an hour, at which point we
aborted it. The take-away message of this experiment
is that it shows instances where the grouping-based
algorithms outperform the sorting-based W_MJSM,
and vice versa. In particular, when there is ample
compression due to grouping (Figures 6b and 6c), both
W_MJMC and W_MJGNL clearly outperform
W_MJSM. On the other hand, when grouping does not
help at all (g = 1), W_MJMC took longer than 12 hours
for the smallest of these graphs and we aborted it at
that point; as such, the times for W_MJMC are not
included in Figure 6a. In such cases one can still use
W_MJSM when the selectivity of the equality
predicate is low (the left half of Figure 6a). Finally,
when neither grouping nor the selectivity of the
equality predicate help (the right half of Figure 6a),
W_MJNL becomes the algorithm of choice.

Now we comment on the quality of the matchings
found by the various algorithms. First recall that
W_MJMC always obtains the maximum weighted
matching whereas the other four can yield approximate
results. While they are each guaranteed to produce a ½-
optimal maximal matching, their actual results were,
on average, 0.7-optimal and in about 25% of the cases,
greater than 0.8-optimal.

Experiment 2 - Group Size = 1

1

10

100

1000

0.05 0.1 0.2 0.4 0.8 1
Selectivity

Ti
m

e
(s

ec
s)

W_MJNL
W_MJSM
W_MJGNL
GREEDY

Experiment 2 - Group Size = 50

0.1

1

10

100

1000

0.05 0.1 0.2 0.4 0.8 1
Selectivity

Ti
m

e
(s

ec
s)

W_MJNL
W_MJSM
W_MJMC
W_MJGNL
GREEDY

Experiment 2 - Group Size = 500

0.01

0.1

1

10

100

1000

0.05 0.1 0.2 0.4 0.8 1
Selectivity

Ti
m

e
(s

ec
s)

W_MJNL
W_MJSM
W_MJMC
W_MJGNL
GREEDY

Figures 6 a, b, and c. Experiment 2

5. Conclusion

It is clear from our results in both Experiment 1
and Experiment 2 that of the algorithms we consider,
no single algorithm is applicable and superior in all
cases. The choice of algorithm for a particular problem
instance rests on two factors: 1) finding algorithms that
are applicable to this problem instance, and 2) of all
applicable algorithms, picking one that promises to
work best. The first question can be answered by just
inspecting the match predicate and weight function
(that is, W_MJNL and W_MJGNL work only on
decomposable monotone functions, the basic
W_MJSM works only on equality predicates, and so
forth.) However, the second question is more involved,
since the “best” choice depends on query and data
characteristics. For the various algorithms we propose,
this decision frequently boils down to choosing
between the grouping-based and the sorting-based
algorithms, and ultimately rests on data characteristics
such as the amount of compression achieved by

grouping and selectivity of the underlying match
predicates. Since commercial query optimizers already
make such decisions when optimizing joins with
aggregates, we think this is a natural fit for an
RDBMS.

6. References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,

Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs, NJ,
1993.

[2] D. Avis. “A Survey of Heuristics for the Weighted
Matching Problem”. Journal of the ACM (JACM),
Vol. 35, No. 4, p. 769-776, 1983.

[3] “GOBLIN: A Graph Object Library for Network
Programming Problems”, http://www.math.uni-
augsburg.de/~fremuth/goblin.html

[4] S. Guha et al. “Merging the Results of
Approximate Match Operations”. In VLDB 2004,
p. 636-647.

[5] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
“PREFER: A System for the Efficient Execution
of Multi-parametric Ranked Queries”. In ACM
SIGMOD 2000, p. 259-270.

[6] I. Ilyas, W. Aref, and A. Elmagarmid. “Supporting
Top-k Join Queries in Relational Databases”.
VLDB Journal, v.13 n.3, p. 207-221, 2004.

[7] A. Kini, S. Shankar, J. F. Naughton, and D. J.
Dewitt. “Database Support For Matching:
Limitations and Opportunities”. In ACM SIGMOD
2006, p. 85-96.

[8] A. Mehta et al. “Adwords and Generalized Online
Matching”. In IEEE FOCS 2005, p. 264-273.

[9] B.-W. On et al. “Group Linkage”. To appear in
ICDE 2007.

[10] R. Raman et al. “Matchmaking: Distributed
Resource Management for High Throughput
Computing”. In IEEE HPDC 1998, p. 140-146.

[11] C. Schlup. “Automatic Game Matching”,
http://dcg.ethz.ch/theses/ws0203/OnlineMatching_
abstract.pdf

[12] T. Tannenbaum et al. “Condor – A Distributed Job
Scheduler”. Beowulf Cluster Computing with
Linux, The MIT Press, 2002.

[13] P. Tsaparas et al. “Ranked Join Indices”. In IEEE
ICDE 2003, p. 277-288.

[14] Y. Wang et al. “A Bipartite Graph Matching
Framework for Finding Correspondences between
Structural Elements in Two Proteins”. In IEEE
EMBS 2004, p. 2972-2975.

