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Abstract 
 
As relational database management systems are 
applied to non-traditional domains such as scientific 
data management, there is an increasing need to 
support queries with semantics that differ from those 
appropriate for traditional RDBMS applications. Two 
interesting ideas currently being explored in the DBMS 
community are ranking query results (e.g., top-k 
computations) and, more recently, "match joins."  In 
this paper we combine these two ideas and study 
weighted match joins, in which (a) like match joins, 
each tuple joins with at most one matching tuple, and 
(b) like top-k joins, the system attempts to provide a set 
of answer tuples that maximizes a weight function.  We 
explore exact and approximate strategies for 
evaluating weighted match joins. Using a prototype 
implementation in PostgreSQL, we explore the 
performance characteristics of these strategies.  Our 
results suggest that the DBMS optimization-based 
approach of providing several implementations of an 
operator and then choosing an appropriate one at run 
time can be useful in computing weighted match joins. 
 
1. Introduction 
 

In this paper, we focus on supporting “weighted 
matching” queries in an RDBMS. In mathematical 
terms, a weighted matching problem can be expressed 
as follows: given a bipartite graph G with weighted 
edge set E, find a maximally weighted subset of E, 
denoted M, such that for each e = (u,v) ∈ M, neither u 
nor v appears in any other edge in M.  

Our work is motivated by two recent trends. The 
first trend is that instances of matching problems and 
weighted matching in particular have sprung up in 
diverse domains. These domains can be classified into 
two groups. In the first group, matching is used to 
allocate resources to consumers subject to certain 
quality metrics. These domains (with corresponding 
resources and consumers in parentheses) include grid 
job scheduling [10,12] (matching user jobs to available 

machines), online advertising [8] (matching search 
keywords to advertiser bids placed on the keywords), 
and gaming [11] (matching players based on skill level, 
etc.). Problems in the second group involve matching 
two sets of entities in an effort to find pairs of entities 
that are most similar. These domains include data 
cleaning [4,9] and protein matching in biological 
databases [14]. The second trend is that applications 
that differ substantially from traditional data 
processing have started to harness the power of 
RDBMSs. As more and more of these applications 
start using RDBMSs to store their data, a natural 
question to ask is whether we can leverage the query 
machinery in the RDBMS to support matching 
operations (instead of merely treating the RDBMS as 
an expensive file system by exporting/importing all the 
data to/from an external C/C++ function that 
implements the matching operation.) The premise of 
this paper is that by exposing the semantics of the 
matching operation to the RDBMS, one can efficiently 
support these matching operations by exploiting 
existing RDBMS query machinery. 

One’s initial reaction might be that the weighted 
matching problem has been well-studied by the 
algorithms community, and that the DBMS community 
is likely to have little to contribute. We think this is 
false for two reasons. First, there is the interesting 
question of how to exploit existing RDBMS 
capabilities to compute matchings. Second, weighted 
matching problems as they arise in RDBMSs differ in 
significant ways from the classical graph-theoretic 
matching problems.  

For the second point, in the context of an RDBMS, 
matching occurs between two entity sets, one stored in 
a table, say R, and the other in another table, say S, that 
need to have their elements paired in a one-to-one 
fashion. Compared to classical graph theory, an 
interesting difference immediately arises: rather than 
storing the graph’s complete edge set E, DBMS-
resident applications will typically store only the nodes 
of the graph, representing the edge set E implicitly as a 
match join predicate θ and weight function F. That is, 
for any two tuples r∈R and s∈S, θ(r,s) is true if and 



only if there is an edge from r to s in the graph; the 
weight on each such edge can be computed using the 
weight function F(r,s).  

Given such a problem formulation, one way to 
compute the weighted matching would be to 
materialize the implicit edge set by computing the 
standard relational join of R and S, with θ as the join 
predicate, then to feed the result to a classical matching 
algorithm. Unfortunately, this scheme is unlikely to be 
successful – often such a join will be very large (for 
example, when R and S are large and/or each row in R 
joins with many rows in S). Moreover, this approach 
ignores an important opportunity present due to the 
implicit graph aspect of the problem. In particular, it is 
possible to design faster matching algorithms for a 
specific problem instance by exploiting special 
properties of the match predicates, weight functions, 
and data characteristics of the problem at hand. This in 
turn fits in well with the classical relational query 
optimization paradigm: we implement several 
matching algorithms, and choose between them based 
upon the query and data instance at run time.  

This work builds on our earlier work [7], in which 
we studied (non-weighted) match joins, where the 
quality of the join is the number of matching tuples 
rather than a sum of a weight function applied to the 
matches. While we showed that RDBMS technology 
can be brought to bear on such problems, there are 
many problems that do not fit into the limitations of a 
non-weighted matching problem.  

For example, consider a simplified version of job 
scheduling in a grid. One can view this as a matching 
problem (matching jobs to processors). In this case the 
non-weighted matching problem corresponds to 
finding an assignment of jobs to machines such that the 
number of (job, machine) pairs is maximized.  
However, one can imagine that the quality of the 
matching may not be just a function of how many jobs 
get matched to machines but also a function of how 
well the jobs match the machines to which they are 
assigned. (For example, some users want a lot of 
memory, others want a fast CPU, some users have 
higher priority than others, and so forth.) This notion 
of “how well” translates to weights on the matches.  
Our goal in this paper is to begin to explore how well 
RDBMS technology can be applied to the more 
complex weighted matching problem. 

 
2. Background 

 
We formally describe the weighted match join 

problem, which takes as input two relations R and S, a 
predicate θ, and weight function F. Here, the rows of R 
and S represent the nodes of the graph, the predicate θ 

is used to implicitly denote edges in the graph, and 
each of these edges has a weight assigned by function 
F. The complete edge set can be materialized using the 
standard relational join R θ S. We use n = |R| + |S| and 
m = |R θ S| to refer to the number of nodes and edges, 
respectively, in the bipartite graph. 

Definition 1 (Weighted Match Join) Let M ⊆ R θ S. 
Then M is a weighted matching or a weighted match 
join of R and S with predicate θ and non-negative 
weight function F(t), t∈ R θ S,  iff each tuple of R and 
S appears in at most one tuple (r,s) in M. We use M(R) 
and M(S) to refer to the R and S tuples in M, and w(M) 
to refer to the sum of weights of all tuples in M.   

Definition 2 (Maximum Weighted Matching) Let M* 
be the set of all weighted matchings of relations R and 
S with predicate θ and weight function F. Then MM is 
a maximum weighted matching iff MM∈M* and ∀M’∈ 
M*, w(MM) ≥ w(M’). 

We frequently refer to a matching being maximal, 
which means that the size of the matching cannot be 
increased by simply adding edges.  

Definition 3 (Maximal Weighted Matching) A 
matching M’ is a maximal weighted matching of 
relations R and S with predicate θ and weight function 
F if ∀r∈R-M’(R), s∈S-M’(S), (r,s) ∉ R θ S.  

Note that “maximal” here refers to the number of edges 
in the matching, not the weight of the matching. If a 
weighted matching M is not maximum, then it is an 
approximate weighted matching. We quantify its 
degree of approximation by an optimality ratio: w(M) / 
w(MM) (w(MM) > 0). For example, if w(M) = 50 
whereas w(MM) = 100, then the optimality ratio = ½, 
in other words, M is ½-optimal. 

By definition, the weighted match join is a 
weighted one-to-one subset of the relational θ-join of R 
and S. Recent work in the database community has 
addressed the closely related problem of computing the 
top-k join (also known as rank join) [6,13], which 
seeks an ordered set of the k highest weighted tuples in 
the relational join. A critical difference between the 
top-k join and the weighted match join is that the result 
of a top-k join need not satisfy the one-to-one matching 
constraint. 
 
3. Weighted Match join Algorithms 
 
3.1. Overview 

 
As mentioned in the introduction, by exploiting 

the semantics of the match predicates and weight 
functions, we can explore ways to compute weighted 



matchings on these special graphs potentially more 
efficiently than general weighted matching algorithms. 
Our algorithms each exploit some combination of the 
following properties of the underlying graph: a) 
properties of match join predicates, b) properties of 
weight functions, and c) uniformity in the input 
relations. 

Before we dive into a description of our weighted 
match join algorithms, we describe a simple 
approximate weighted matching algorithm [2] that can 
always be used to compute weighted match joins. This 
algorithm, referred to as GREEDY, computes and sorts 
the edges of the underlying graph in descending order 
of weight and iterates through this sorted list marking 
edges as “matched” while maintaining the one-to-one 
invariant. GREEDY can be easily implemented in 
procedural SQL: first, a relational θ-join can be used to 
compute the edges of the underlying bipartite graph, 
which can be then sorted in descending order of the 
weight function F using a SQL order-by clause. 
Finally, an iterator can be used to loop over the sorted 
results and construct a one-to-one matching. It can be 
shown that GREEDY returns a maximal matching that 
is at least ½-optimal [2]. It also has the benefit of 
working for any match predicate θ and weight function 
F. Unfortunately this generality comes at the price of 
performance as it requires building and sorting the 
edges of the underlying bipartite graph, an O(m log m) 
operation (note that m ~ n2 in dense graphs). GREEDY 
is a “catch-all” algorithm that can be always applied; 
however, as the rest of our algorithms show, better 
performance can be gained by exploiting structural 
properties of the underlying graph.  
 
3.2. A Nested Loops Based Technique 

 
Our next algorithm W_MJNL (Weighted Match 

Join Nested Loops) exploits a property of weight 
functions, formalized here. 
 
Property 1 (Decomposable Monotonic Weight 
Function) A function F(t), t ∈ R θ S  is said to be 
decomposable monotone if F can be expressed as  
F(f1({attributes of R}), f2({attributes of S}) where F is 
monotone on its components f1 and f2. In other words, 
for any two tuples t1,t2 ∈ R θ S if f1(t1) < f1(t2) and 
f2(t1) < f2(t2) then F(t1) < F(t2). 

An example of decomposable monotonic weight 
functions is a linear weighted sum of attributes of R 
and S, frequently referred to as a preference function in 
existing literature on top-k algorithms [5]. Consider 
such a preference function F = (0.3 * R.a1 + 0.4 * R.a2 
+ 0.1 * S.a1 + 0.2 * S.a2). Then F can be expressed as f1 
+ f2 where f1 = (0.3 * R.a1 + 0.4 * R.a2) and f2 = (0.1 * 

S.a1 + 0.2 * S.a2). Another decomposable monotonic 
function is F = max(R.a, S.b). Here, F can be expressed 
as max(f1, f2) where f1 = R.a and f2 = S.b. On the other 
hand, a function that is not decomposable monotone is 
the Euclidean distance function. 

W_MJNL, illustrated in Figure 1, first sorts both R 
and S in descending order of f1 and f2 respectively. 
Matching tuples are then found by executing a nested 
loops algorithm over these sorted relations, marking 
each matched tuple so that it is not matched again. 
Note that unlike GREEDY, which computes and sorts 
the full relational join of R and S, W_MJNL never 
materializes the full edge relation and sorts R and S 
individually.   

While the resulting weighted matching is not 
guaranteed to be optimal, the following theorem gives 
guarantees as to its quality. Due to space constraints, 
all proofs are omitted here. 

Theorem 1. Consider a weighted match join of R and S 
with predicate θ and a decomposable monotonic weight 
function F. Then W_MJNL on this weighted match join 
problem takes time O(n2) and produces a maximal 
matching that is at least ½-optimal. 

If W_MJNL is applied to a problem instance in 
which F is not decomposable monotonic, it will still 
produce a maximal matching, although it is not 
guaranteed to be ½ -optimal. 
 
Procedure W_MJNL  
Input   relations R and S, match predicate θ(R,S), and 
           decomposable monotonic weight function F(f1(R), f2(S)) 
Output weighted match join M ⊆ R θ S 
Begin 
1. Sort R in descending order of f1 
2. for each tuple r∈R 
3.  Let cand_s be the list of all tuples s∈S such  

that θ(r,s)= true and s is not already matched 
4.  Sort cand_s in descending order of f2  
5.  Retrieve the highest tuple s’ in this list 
6. Mark s’ as matched  
7.  Add <r,s’> tuple to M  

end for 
End 

Figure 1. W_MJNL pseudocode. 
 
3.3. A Sort-Merge Based Technique 

 
While W_MJNL exploits properties of weight 

functions, our second approach, W_MJSM (Weighted 
Match Join Sort Merge) exploits properties of match 
predicates. To see the insight behind it, consider the 
case when the match predicate is a conjunction of 
equality predicates. Also, for now, lets focus only on 
decomposable monotonic functions; we relax this 



assumption later in the section. Given this setup, we 
can sort the two relations on their join attributes and 
then execute a “merge” on the two relations, looking 
for matches, marking tuples as “matched” as we go. 
Since the join predicate consists of equalities, matches 
can be found only within the “bucket” consisting of R 
and S tuples that agree on all the join attributes. 
Moreover, each bucket is independent of the other – in 
other words, an R tuple from one bucket can never be 
matched with an S tuple from another bucket since they 
will not satisfy the join predicate. Now, within each 
bucket, all tuples of R and S satisfy the join predicate 
and are therefore eligible for matching. As such, we 
can simply sort the R and S parts of the bucket in 
descending order of f1 and f2 respectively, iterate down 
the two lists and match each pair of tuples as we go. 
Figure 2 illustrates W_MJSM on the equality predicate 
(R.a1 = S.a1). 
 
Theorem 2 Consider a weighted match join of R and S 
with decomposable monotonic weight function F(f1(R), 
f2(S)) and predicate θ consisting of a conjunction of k 
equality predicates (k > 0) of the form  R.a1 = S.a1 
AND R.a2 = S.a2 AND, …, AND R.ak = S.ak. Then 
W_MJSM on this weighted match join problem takes 
time O(n log n) and produces a maximum weighted 
matching.  
 
We now discuss extensions to the basic form of 
W_MJSM to handle various forms of match predicates 
and weight functions. We first show how W_MJSM 
can be extended to functions that are not decomposable 
monotone. To see how this works, recall that within a 
bucket, all pairs of R and S tuples satisfy the join 
predicate and are therefore eligible for matching. In 
graph theoretic terms, the tuples within a bucket form a 
complete bipartite sub-graph since every r tuple joins 
with every s tuple within the bucket. Here, we can use 
the idea from GREEDY – that is, compute the edges of 
this complete sub-graph by joining all tuples within the 
bucket, sort them in descending order by weight, and 
then iterate through this sorted list greedily picking 
edges as we go. Just as GREEDY, this extended 
version of W_MJSM can be applied to any weight 
function. However, unlike GREEDY, it is optimal, i.e., 
it returns the maximum weighted matching. In general, 
it can be shown that applying GREEDY on any 
complete bipartite graph results in the maximum 
weighted matching, a result that is validated in our 
experiments. However, in the interest of space, we do 
not pursue the details of this extension here. 

Before proceeding to the second extension, recall 
that the main idea behind W_MJSM is that it uses the 
fact that the join predicate consists of equalities to par- 

 

 
Procedure W_MJSM  
Input relations R and S, match predicate  

θ (R.a1 = S.a1), and decomposable monotonic 
function F(f1(R), f2(S)) 

Output weighted match join M ⊆ R θ S 
Begin 
1. Sort R on (a1 ascending, f1 descending)  
2. Sort S on (a1 ascending, f2 descending) 
 
 Do sort-merge style iteration 
3. open iterators on R and S 
4. while neither R nor S iterators are exhausted 
5.  while r.a1 < s.a1 and R iterator is not exhausted 
6. r = get next tuple from R iterator; 
 end while 
7.  while r.a1 > s.a1 and S iterator is not exhausted 
8. s = get next tuple from S iterator; 
 end while 
9. while r.a1 = s.a1 
10. add <r,s> tuple to M 
11. r = get next tuple from R iterator; 
12. s = get next tuple from S iterator; 
 end while 
 end while 
End 

Figure 2. W_MJSM pseudocode. 
 
-tition the relations into disjoint buckets. If the join 
predicate consists of equalities and other predicates 
(e.g., R.a1 = S.a1 and R.a2 < S.a2), one can still apply 
this basic idea with a minor extension. In particular, 
now within each bucket, there may be tuples that do 
not match each other – even if they agree on the 
equality attributes (R.a1, S.a1), they may not satisfy the 
additional predicates (R.a2 < S.a2) and hence fail to 
satisfy the overall join predicate. In general, matching 
tuples can be scattered anywhere within the bucket. 
Assuming for now that the weight function is 
decomposable monotone (we will relax this 
assumption later), the main observation is that within a 
bucket, we can effectively apply a technique like 
W_MJNL, that is, first sort R and S within a bucket in 
descending order of f1 and f2 respectively, then iterate 
through both sorted lists in nested loops fashion 
finding r and s tuples that satisfy the join predicate and 
marking them as “matched” so that they are not 
matched again. 

Note that this extension combines ideas from both 
W_MJSM and W_MJNL. By sorting on the equality 
attributes, it partitions the relation into disjoint buckets, 
like the basic W_MJSM discussed earlier in the 
section; however, unlike W_MJSM, it uses a nested 
loops style evaluation to find matching tuples within 
each bucket. 



Theorem 3 Consider a weighted match join of R and S 
with decomposable monotonic weight function F(f1(R), 
f2(S)) and predicate θ consisting of a conjunction of k 
equality predicates (k > 0) and other arbitrary 
predicates of the form  (R.a1 = S.a1 AND R.a2 = S.a2 
AND, …, AND R.ak = S.ak.) AND (other predicates). 
Then W_MJSM on this weighted match join problem 
takes time O(n2) and produces a maximal matching 
that is at least ½-optimal. 

In the discussion following Theorem 2, we 
described how W_MJSM can be extended to work on 
arbitrary weight functions when the join predicate 
consists of only equalities, using the GREEDY 
technique to find matching tuples within each bucket. 
This extension can be applied unmodified when the 
join predicate consists of equalities and other 
predicates. The worst case running time and quality of 
resulting matching for this extension is the same as that 
of GREEDY, i.e., O(m log m) and a maximal matching 
that is at least ½-optimal, respectively. 
 
3.4. A Network Optimization Based Technique 
 

Our previous algorithms exploit properties of 
match join predicates and weight functions. In this 
section, we present an approach that exploits data 
uniformity to efficiently compute weighted match joins 
on arbitrary join predicates and weight functions.  

The motivation and basic ideas for this algorithm, 
henceforth referred to as W_MJMC (Weighted Match 
Join Min-Cost), come from the observation that in 
many problem instances it is possible to partition the 
input relations into groups such that tuples within a 
group are identical with respect to the match (that is, 
either all tuples of a given group will join with a given 
tuple from the other table, or none will). For example, 
when scheduling jobs on grids, most clusters have 
relatively few unique machine configurations and 
similarly many users submit large number of jobs with 
almost identical resource requirements. In such 
situations, it is possible to aggregate the input relations 
to the match join, as was done for MJMF [7], using 
standard relational grouping techniques.  

The basic idea of our approach is to perform a 
relational group-by operation on the attributes in the 
join predicate and the weight function. Using one 
representative of each group along with its weight and 
the total size of the group, we transform the weighted 
matching problem into a minimum cost circulation 
problem, or simply min-cost circulation [1].  
 
Definition 4 (Minimum Cost Circulation) Consider a 
directed network G = (N, E) with a cost cij and 
nonnegative flow capacity uij associated with each 

edge (i,j) ∈ E. There are two special nodes in the 
network G: a start node u and an end node v. The 
minimum cost circulation problem can be stated 
formally as:  
Minimize z(x) = 
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Here, we refer to the vector x = {xij} satisfying the 
constraints as a flow. 

 
Figures 3 and 4 illustrate the construction of network G 
= (N1 U N2, E) with start node u and end node v (line 1) 
that is input to the min-cost circulation algorithm.  
 
The following main steps describe how to build network 
G (parenthesized line numbers refer to Figure 3): 

1. (Build node set) add a node n1∈N1 for every group of 
tuples in R which have the same value on the attributes 
used in the match join predicate and weight function 
(line 5); similarly for N2 (line 10). 

2. (Build edge set) add an edge between n1 and n2 if the 
groups of tuples that they represent satisfy the match 
predicate (line 14).  

3. (Connect nodes to start and end) add an edge between 
u and n1, and between n2 and v (lines 6 and 11). 

4. (Assign edge capacities) For edges of the form (u, n1) 
the capacity is set to the size of the group represented by 
n1 (line 7). Similarly, the capacity on (n2,v) is set to the 
size of the group represented by n2 (line 12). Finally, the 
capacity on edges of the form (n1, n2) is set to the 
minimum of the two group sizes (line 15).  

5. (Assign edge weights) Here, recall that what we 
eventually want is a maximum weighted matching when 
in fact this is a min-cost problem. This duality is 
achieved by setting weights on edges of the form (n1, n2) 
to the additive inverse (negative) of the weight of the 
underlying join tuple (line 16). For edges of the form (u, 
n1) and (n2,v), the weights are to set -1 (lines 8 and 13).  

6. Finally, we add a “reverse” edge (v,u) with infinitely 
high capacity and infinitely low weight (lines 17-19). 



 

 

  

Procedure W_MJMC  
Input relations R and S,  

match predicate θ(R.a, R.b, S.a, S.b), and weight 
function F(R.score,S.score)  

Output weighted match join M ⊆ R θ S 
Begin 

Build the reduced directed network G 
1. First, add start node u and end node v to G 
 The rest of the nodes and edges can be obtained using 

following SQL 
2. SELECT * FROM  
  (SELECT count(*) as r_count,  

a as r_a, b as r_b, score as r_score  
  FROM R 
  GROUP BY a, b, score) as R_grouped, 
  (SELECT count(*) as s_count,  

a as s_a, b as s_b, score as s_score 
  FROM S 
  GROUP BY a, b, score) as S_grouped 
 WHERE θ(R.a, R.b, S.a, S.b) is true 
 Iterate over result tuples t of the form  

<r_count, r_a, r_b, r_score, s_count, s_a, s_b, 
s_score> 

3. for each tuple t { 
4. if we are seeing this r node for the first time 

5. add this r node to G 
6. add an edge connecting r to u 
7. set the edge flow capacity to t.count_r 
8.      set the edge weight to -1 
  end if 
9. if we are seeing this s node for the first time 
10. add this s node to G 
11. add an edge connecting s to v 
12. set the edge flow capacity to t.count_s 
13.  set the edge weight to -1 
  end if 
14.  add an edge connecting r and s  
15.  set the flow capacity to min(t.count_r, t.count_s) 
16.  set the edge weight to (-1 * F(R.score,S.score)) 
 end for 
17. add the reverse edge connecting v to u 
18. set the edge flow capacity to infinity 
19. set the edge weight to negative infinity 
20. invoke the GOBLIN min-cost flow algorithm on G 
  . 
  . 
 reconstruct matching from obtained flow 
  . 
  . 
End 
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Figure 3. W_MJMC pseudocode. For illustrative purposes, the weighted match join query on relations R and 
S has a match predicate θ on attributes (a, b) and weight function F on attribute score from both relations. 

(a) (b) 

Figure 4. A 3-step transformation from (a) Base tables to (b) A directed weighted network to (c) A reduced 
network that is input to the min-cost algorithm. θ = R.a1 < S.a1, and F = 0.5 * R.score + 0.5 * S.score. 
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After converting the matching problem to a min-cost 
problem, we can use any standard min-cost solver (e.g., 
GOBLIN [3]) on the transformed problem (line 20), and 
then translate the solution to that problem back to a 
solution to the original weighted matching problem. 
While omitted from Figure 3, this phase is exactly the 
same as that in the MJMF algorithm [7] – by solving the 
min-cost problem subject to the capacity constraints, we 
obtain a flow value on every edge in the network. 
Consider an edge of the form (n1, n2). Let the flow value 
on this edge be f. We can then match f members of n1 to f 
members of n2. Due to the capacity constraint on edge 
(n1, n2), we know that f ≤ the minimum of the sizes of the 
two groups represented by n1 and n2. Similarly, we can 
take the flows on every edge and transform them to a 
matching in the original graph. It can be shown that this 
matching is an optimal solution to the original weighted 
matching problem; due to space constraints, we omit the 
proof, which is elaborate and follows a similar argument 
as that given in [7] for MJMF. 

W_MJMC yields a maximum weighted matching 
on arbitrary match join predicates and weight 
functions. For efficiency, it relies heavily on the 
premise that the initial grouping before transforming 
the matching problem to a min-cost problem results in 
a small number of groups, as the min-cost algorithm is 
ultimately O(n3), where n is proportional to the number 
of groups. Our next and last algorithm combines the 
benefits of grouping without relying on an O(n3) 
algorithm at the cost of obtaining the maximum 
weighted matching. 
 
3.5. Combining Grouping and Nested Loops 
 

Our previous algorithm W_MJMC was based on 
two distinct ideas: compressing the two input relations 
using grouping, and then transforming the matching 
problem to a min-cost circulation problem. In this 
section, we explore the idea of compressing by 
grouping but then using a variant of W_MJNL to work 
on such compressed relations. Since this approach does 
not invoke the O(n3)  min-cost algorithm we expect it 
to be more robust in the face of less compressible 
inputs. We call this algorithm W_MJGNL (Weighted 
Match Join Grouped Nested Loops) and just like 
W_MJNL, it yields an approximate weighted match 
join over decomposable monotonic weight functions 
and arbitrary match join predicates. 

This hybrid algorithm begins by grouping the two 
input relations R and S and writing this to temporary 
relations Grouped_R and Grouped_S respectively. 
Like W_MJMC, each tuple in this compressed relation 
represents a group in the original relation; it consists of 
the attributes that were grouped over, i.e., the match 
join and weight function attributes, and a count that 
represents the size of the group. After materializing the 

temporary relations, it sorts them in descending order 
of f1 and f2 respectively. Finally, it iterates over them in 
nested loops fashion finding r and s tuples that satisfy 
the join predicate. However, when it finds tuples r and 
s that satisfy the match join predicate, instead of just 
marking the s tuple as “matched” as was done in 
W_MJNL, it outputs as many matching r and s tuples 
as is the smaller of the two counts and decrements the 
counts accordingly. As in the case of W_MJNL, 
certain guarantees can be made about the quality of the 
matching computed by W_MJGNL.  

Theorem 5 Consider a weighted match join of R and S 
with predicate θ and a decomposable monotonic 
weight function F(f1(R), f2(S)). Then W_MJGNL on this 
weighted match join problem takes time O(n2) and 
produces a maximal matching that is at least ½-
optimal. 

 
4. Experiments 
 

In this section, we describe the implementation of 
our weighted match join algorithms and report 
experimental results exploring their performance.  
 
4.1. Implementation  
 
Our algorithms are implemented as user defined 
functions (UDFs) in PostgreSQL version 8.1. Most of 
the implementation was done in PL/pgSQL, 
PostgreSQL’s procedural interface; only part of 
W_MJMC was written as a C UDF since it required 
integration with the GOBLIN C++ network 
optimization library. At a little under 1000 lines, the 
code-base is fairly small. This includes not only the 
algorithms themselves but scripts used to run the 
experiments. We credit this simplicity to two factors: 
first, the algorithms were built on top of the database 
system using already supported primitives such as 
grouping, sorting, among others. Second, the high level 
interface offered by PL/pgSQL either encapsulates or 
simplifies common tasks such as creating cursors and 
looping over query results, thereby allowing the 
application programmer to focus on the algorithm 
itself.  

There is, however, an inherent performance 
tradeoff by choosing a UDF-based implementation 
versus implementing these algorithms natively inside 
the database. To get a rough estimate of this overhead, 
we implemented the regular sort-merge algorithm as a 
PL/pgSQL UDF and compared its running time to that 
of the natively implemented sort-merge join algorithm; 
we observed that the UDF based implementation 
consistently performed 20-25% slower than the native 
implementation over a range of equijoin queries. As 



such, we expect that our algorithms could be sped up 
by a similar percentage if they were implemented 
natively. 
 
4.2. Experimental Setup 
 

All experiments were run on an Intel Pentium 4 
dual-processor machine with 1 GB physical memory 
running CentOS 4. The database buffer pool size was 
set to 256 MB. Each experiment was run 4-5 times, 
flushing the buffer pool and system memory between 
runs. The numbers were fairly consistent across runs, 
and hence we report their average across all the runs. 

In order to control various data characteristics 
such as selectivity and group size, the experiments 
were conducted on synthetic data; the two tables being 
matched, R and S, each had the same schema: (id: 
integer, a: integer, b: integer, score: float), where a and 
b were used as match join attributes, and score was 
used as an input to a weight function. Unless explicitly 
mentioned, R and S each contained 10000 tuples. All 
times reported include the time to output the weighted 
match join result, which was written to a temporary 
table.  
 
Experiment 1 

The first experiment measures the performance of 
GREEDY, W_MJNL, W_MJSM, W_MJMC, and 
W_MJGNL on a weighted match join query whose 
predicate consists of two equalities: (R.a = S.a AND 
R.b = S.b) and whose weight function F is the 
decomposable monotonic function (0.5 * R.score + 0.5 
* S.score).   

On the x-axis, we vary a parameter called group 
size, which controls the number of tuples in each group 
as determined by the combination of the match join 
and weight function attributes; in this case, those 
attributes are (a, b, score).  Thus this experiment 
explores how well the grouping algorithms are able to 
exploit the compression provided by their grouping. 

Recall that W_MJMC works by performing a 
group-by on the combined match join and weight 
function attributes, followed by a full join, thus 
building a graph which is then fed to the min-cost 
algorithm. The size of the graph |G| plays a major role 
in the overall performance of the O(n3) min-cost 
algorithm, and |G| is a function of two variables: the 
average group size g and the full join selectivity µ. 
More precisely, |G| ~ µ *((|R| * |S|) / g). For a fixed 
selectivity then, the larger the group size, the smaller 
the graph. As such, for the dataset in this experiment, 
we vary the group size from small (g = 5) to large (g = 
500) and keep the join selectivity constant (µ = 0.1). 
Accordingly, |G| ranges from approximately 400000 to 
40. 
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Figure 5. Experiment 1 

 
To see how g is varied while keeping µ fixed, 

recall that grouping is done on the composite (match-
join-attributes, weight-function-attributes), in this case, 
(a, b, score), whereas the join selectivity is solely 
dependent on the match join attributes (a, b). As such, 
by changing the value of only the weight function 
attribute, while at the same time, keeping the match 
join attribute value fixed, we can control the two 
parameters g and µ accordingly. Putting some numbers 
in, if g = 5 and µ = 0.1, then values for attributes (a, b) 
of both relations R and S are fixed for batches of 0.1 * 
10000 = 1000 tuples, and no two tuples from two 
different batches are assigned the same value on (a, b); 
since the join predicate in this experiment consists of 
only equalities, this ensures that µ = 0.1. Now the 
desired g value of 5 is obtained by ensuring that within 
the batch of 1000 tuples, attribute score is assigned 200 
distinct values, each appearing 5 times. Similarly, if g 
were 500, then score would be assigned 2 distinct 
values, each appearing 500 times. 

Figure 5 shows the execution times for the five 
algorithms. Due to the wide range of values taken by 
the various algorithms (from 60 ms to 45 minutes), the 
y-axis is displayed on a log-scale. The figure highlights 
a number of features of the algorithms. First, we 
comment on the behavior of each of the algorithms 
individually and then comment on their relative 
performance. Here, as expected, the performance of 
W_MJMC and W_MJGNL are directly dependent on 
the degree of compression achieved by grouping. On 
the other hand, W_MJNL and W_MJSM are 
unaffected by grouping; their performance is only 
dependent on the sizes of the input relations. This 
observation was validated by another experiment 
where we varied the selectivity and kept group size 
constant, but since the trends are similar, we omit those 
figures. 

Finally, GREEDY is also unaffected by varying 
group sizes; since it materializes the full relational join, 
its performance is dependent only on the sizes of the 
input relations and the selectivity, both of which are 
fixed. 



Of the algorithms, W_MJMC has the most varied 
performance, ranging from being the slowest to the 
fastest depending on input graph size. The figure also 
shows that W_MJGNL consistently outperforms 
W_MJNL by over two orders of magnitude for even 
the smallest group sizes. W_MJSM stays around the 
one second mark for all cases and dominates the other 
algorithms when there are many groups. Finally, 
GREEDY is outperformed by at least one and usually 
all the other algorithms by a wide margin. 

Experiment 1 also highlights an interesting 
property of the quality of the matchings obtained by 
our approximate algorithms. Recall that W_MJMC is 
always optimal, i.e., it returns the maximum weighted 
matching, as is W_MJSM on equality predicates. On 
the other hand, GREEDY, W_MJNL, and W_MJGNL 
return, in general, approximate weighted matchings. It 
turns out that when the match predicate consists of 
only equalities and the weight function is 
decomposable monotone - as is the case in this 
experiment - all the algorithms are optimal. This is 
because, as mentioned in the discussion immediately 
following Theorem 2 in Section 3.3, when the match 
predicate consists of only equalities, one can divide the 
relations into buckets of R and S tuples such that each 
bucket represents a complete bipartite sub-graph. It can 
indeed be shown that on complete graphs, GREEDY is 
optimal regardless of the weight function, whereas 
W_MJNL and W_MJGNL are optimal when the 
weight function is decomposable monotone; the basic 
idea behind this is that on complete bipartite graphs, 
one can build a maximum weighted matching by 
incrementally adding to the result set the highest 
weighted (r,s) tuple such that neither r nor s are 
previously matched. GREEDY achieves this by 
computing and sorting the complete edge set in 
descending order of weight, whereas W_MJNL and 
W_MJGNL exploit the property of decomposable 
monotone weight functions to sort both relations by 
their weight function components before iterating over 
them in nested loops fashion.  

 
Experiment 2 

Our second experiment measures the performance 
of all five algorithms on a weighted match join query 
with predicate (R.a = S.a AND R.b < S.b) and whose 
weight function F is again (0.5 * R.score + 0.5 * 
S.score).  

Recall from Section 3.3 that W_MJSM can be 
extended to work on match predicates consisting of 
equalities and other predicates. Since, in such cases, it 
relies on the equality predicate to limit the range of 
tuples over which it performs nested loops, the 
selectivity of the equality predicate plays a major role 
in its performance. On the other hand, as was shown in 
the previous experiment, the performance of 

W_MJMC and W_MJGNL depends on the degree of 
compression due to grouping on the combination of the 
match join and weight function attributes (a, b, score). 
Accordingly, we report the performance of the five 
algorithms on three different group sizes: small, 
medium and large (g = 1, 50, and 500 respectively). 
Within each group size, we vary the selectivity of only 
the equality predicate from 0.05 to 1.  

The results are shown in Figures 6 a, b, and c 
respectively. W_MJNL is, as expected, unaffected by 
either the group size or selectivity and consistently 
takes around a minute. The sensitivity of GREEDY to 
the selectivity, which in turn controls the size of the 
full relational join is also evident from the rise in each 
of the curves; for large selectivities (µ ≥ 0.8), 
GREEDY took longer than an hour, at which point we 
aborted it.  The take-away message of this experiment 
is that it shows instances where the grouping-based 
algorithms outperform the sorting-based W_MJSM, 
and vice versa. In particular, when there is ample 
compression due to grouping (Figures 6b and 6c), both 
W_MJMC and W_MJGNL clearly outperform 
W_MJSM. On the other hand, when grouping does not 
help at all (g = 1), W_MJMC took longer than 12 hours 
for the smallest of these graphs and we aborted it at 
that point; as such, the times for W_MJMC are not 
included in Figure 6a. In such cases one can still use 
W_MJSM when the selectivity of the equality 
predicate is low (the left half of Figure 6a). Finally, 
when neither grouping nor the selectivity of the 
equality predicate help (the right half of Figure 6a), 
W_MJNL becomes the algorithm of choice. 

Now we comment on the quality of the matchings 
found by the various algorithms. First recall that 
W_MJMC always obtains the maximum weighted 
matching whereas the other four can yield approximate 
results. While they are each guaranteed to produce a ½-
optimal maximal matching, their actual results were, 
on average, 0.7-optimal and in about 25% of the cases, 
greater than 0.8-optimal. 
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Experiment 2 - Group Size = 50
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Experiment 2 - Group Size = 500
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Figures 6 a, b, and c. Experiment 2 

 
5. Conclusion 
 

It is clear from our results in both Experiment 1 
and Experiment 2 that of the algorithms we consider, 
no single algorithm is applicable and superior in all 
cases. The choice of algorithm for a particular problem  
instance rests on two factors: 1) finding algorithms that  
are applicable to this problem instance, and 2) of all 
applicable algorithms, picking one that promises to 
work best. The first question can be answered by just 
inspecting the match predicate and weight function 
(that is, W_MJNL and W_MJGNL work only on 
decomposable monotone functions, the basic 
W_MJSM works only on equality predicates, and so 
forth.) However, the second question is more involved, 
since the “best” choice depends on query and data 
characteristics. For the various algorithms we propose, 
this decision frequently boils down to choosing 
between the grouping-based and the sorting-based 
algorithms, and ultimately rests on data characteristics 
such as the amount of compression achieved by 

grouping and selectivity of the underlying match 
predicates. Since commercial query optimizers already 
make such decisions when optimizing joins with 
aggregates, we think this is a natural fit for an 
RDBMS. 
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