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Database-as-a-Service (DaaS) providers need to provide
performance and availability guarantees to their customers,
typically in the form of Service Level Objectives (SLOs).
Replication is a key mechanism that is used to meet avail-
ability targets. A critical challenge is to meet a target avail-
ability goal while minimizing the total operating cost. In
multi-tenant environments where each tenant needs only a
fraction of the resources of a single node (e.g., in [1]), the
degree of multi-tenant concurrency per node is high, which
makes guaranteeing the performance SLOs challenging.

Another challenge is that the DaaS providers typically
have an estimate of the workloads that they expect to serve,
but the actual workload characteristics may deviate from this
estimate. An online data placement algorithm (as opposed to
offline techniques, such as [2])) tackles exactly this situation
– it finds a placement for the replicas of a given tenant as
soon as the tenant arrives into the system, without assum-
ing a priori knowledge of the actual workloads of the entire
set of tenants. Thus, the online placement techniques grace-
fully adjust to unexpected workload changes when the actual
workload is different from the expected workloads.

We examine the online replica placement problem in the
DaaS setting. We assume that the tenant’s database is repli-
cated a few times so that the availability SLOs are met. In
the model that we consider, there is a master/primary replica
that drives the load on the slave/secondary replicas (e.g., as
in [1]), by forwarding certain operations to them.

Designing a replica placement algorithm for multi-tenant
DaaS environments is a challenging task, since the algorithm
must: a) consider the different performance requirements
of all the tenants, b) consider the differences in the load
between the replicas of the same tenant, c) not violate the
replication constraints, d) aim to balance the load across
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all machines, e) minimize the total operating cost, and f)
gracefully adjust to unexpected workload changes.

We examine a number of replica placement algorithms
that can be used in such a multi-tenant setting. More specif-
ically, we study adaptations of the traditional bin-packing
algorithms (such as First Fit), as well as extensions to the
well known Round Robin algorithm. We also present a new
algorithm, called RkC, which is based on the notion of the
power of two random choices [3].

We evaluate the algorithms using a set of four criteria
that cover a wide spectrum of the needs of cloud service
providers. More specifically, we examine the impact of the
algorithm on the number of machines needed in order to
accommodate a set of tenants with various performance re-
quirements, the load distribution across these machines un-
der normal conditions and in case of a node failure, as well as
the adaptivity of the algorithms in case of unexpected work-
load fluctuations.

Our results show that the RkC algorithm has many ap-
pealing aspects, including: a) it has low cost since the num-
ber of machines it uses is very close to the theoretical lower
bound, b) it is able to evenly spread the primary and the sec-
ondary replicas across the cluster, c) it is able to place the
secondary replicas in such a way that the load can be bal-
anced in case of machine failures, d) it can accommodate
rack constraints, e) it is flexible enough to accommodate
workload changes, f) the above properties hold for a vari-
ety of replication factors, number of tenants and machine
capacities.
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