
Online Replica Placement in Cloud Environments

Avrilia Floratou
IBM Almaden Research Center

aflorat@us.ibm.com

Navneet Potti
University of Wisconsin-Madison

nav@cs.wisc.edu

Jignesh M. Patel
University of Wisconsin-Madison

jignesh@cs.wisc.edu

Database-as-a-Service (DaaS) providers need to provide
performance and availability guarantees to their customers,
typically in the form of Service Level Objectives (SLOs).
Replication is a key mechanism that is used to meet avail-
ability targets. A critical challenge is to meet a target avail-
ability goal while minimizing the total operating cost. In
multi-tenant environments where each tenant needs only a
fraction of the resources of a single node (e.g., in [1]), the
degree of multi-tenant concurrency per node is high, which
makes guaranteeing the performance SLOs challenging.

Another challenge is that the DaaS providers typically
have an estimate of the workloads that they expect to serve,
but the actual workload characteristics may deviate from this
estimate. An online data placement algorithm (as opposed to
offline techniques, such as [2])) tackles exactly this situation
– it finds a placement for the replicas of a given tenant as
soon as the tenant arrives into the system, without assum-
ing a priori knowledge of the actual workloads of the entire
set of tenants. Thus, the online placement techniques grace-
fully adjust to unexpected workload changes when the actual
workload is different from the expected workloads.

We examine the online replica placement problem in the
DaaS setting. We assume that the tenant’s database is repli-
cated a few times so that the availability SLOs are met. In
the model that we consider, there is a master/primary replica
that drives the load on the slave/secondary replicas (e.g., as
in [1]), by forwarding certain operations to them.

Designing a replica placement algorithm for multi-tenant
DaaS environments is a challenging task, since the algorithm
must: a) consider the different performance requirements
of all the tenants, b) consider the differences in the load
between the replicas of the same tenant, c) not violate the
replication constraints, d) aim to balance the load across

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Submission to SoCC ’14, October, 2014, Seattle, WA, USA.

all machines, e) minimize the total operating cost, and f)
gracefully adjust to unexpected workload changes.

We examine a number of replica placement algorithms
that can be used in such a multi-tenant setting. More specif-
ically, we study adaptations of the traditional bin-packing
algorithms (such as First Fit), as well as extensions to the
well known Round Robin algorithm. We also present a new
algorithm, called RkC, which is based on the notion of the
power of two random choices [3].

We evaluate the algorithms using a set of four criteria
that cover a wide spectrum of the needs of cloud service
providers. More specifically, we examine the impact of the
algorithm on the number of machines needed in order to
accommodate a set of tenants with various performance re-
quirements, the load distribution across these machines un-
der normal conditions and in case of a node failure, as well as
the adaptivity of the algorithms in case of unexpected work-
load fluctuations.

Our results show that the RkC algorithm has many ap-
pealing aspects, including: a) it has low cost since the num-
ber of machines it uses is very close to the theoretical lower
bound, b) it is able to evenly spread the primary and the sec-
ondary replicas across the cluster, c) it is able to place the
secondary replicas in such a way that the load can be bal-
anced in case of machine failures, d) it can accommodate
rack constraints, e) it is flexible enough to accommodate
workload changes, f) the above properties hold for a vari-
ety of replication factors, number of tenants and machine
capacities.

Acknowledgments
This research was supported in part by the National Science
Foundation under grant III-0963993.

References
[1] Philip A. Bernstein et al., “Adapting microsoft sql server for

cloud computing,” in ICDE, 2011, pp. 1255–1263.

[2] Carlo Curino et al., “Workload-aware database monitoring and
consolidation,” in SIGMOD Conference, 2011, pp. 313–324.

[3] M. Mitzenmacher, “The power of two choices in randomized
load balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 10, pp. 1094–1104, 2001.

1

Online Replica Placement in Cloud EnvironmentsOnline Replica Placement in Cloud Environments
Avrilia Floratou1, Navneet Potti2, Jignesh M. Patel2

1IBM Almaden Research Center, 2 University of Wisconsin-Madison1IBM Almaden Research Center, 2 University of Wisconsin-Madison

Database-as-a-Service (DaaS) providers need to provide A critical challenge is to meet a target availability
performance and availability guarantees to their

customers, typically in the form of
Service Level Objectives (SLOs).

goal while minimizing the total operating cost. In
multi-tenant environments where each tenant needs
only a fraction of the resources of a single node, the Service Level Objectives (SLOs).

Replication is a key mechanism that is used to meet
availability targets.

only a fraction of the resources of a single node, the
degree of multi-tenant concurrency per node is high,
which makes guaranteeing the performance SLOs

challenging.availability targets. challenging.

How to place each tenant’s replicas in a Database-as-a-Service setting so that the
tenant performance SLOs are satisfied?tenant performance SLOs are satisfied?

a) We assume that the tenant’s database is replicated a Challenges
1) The cloud service providers are not aware of the actual

workload characteristics that they expect to serve.

a) We assume that the tenant’s database is replicated a
few times so that the availability SLOs are met.

b) There is a master/primary replica that drives the load on workload characteristics that they expect to serve.
2) The service providers’ workload estimates may

significantly deviate from the actual workload.

the slave/secondary replicas, by forwarding certain
operations to them.

c) The tenants are split into tenant classes, and each class
We focus on online replica placement algorithms

that do not assume a priori knowledge of the
actual workload of the entire set of tenants.

c) The tenants are split into tenant classes, and each class
has its own performance SLO. For example, if there are
two classes, then one class may have a 100tps
(transactions per second) SLO, whereas the other class actual workload of the entire set of tenants. (transactions per second) SLO, whereas the other class
may have a 10tps SLO.

Online Replica Placement Challenges Online Replica Placement algorithms

The online replica placement algorithm must:
a) consider the different performance requirements of all

the tenants,

We designed various online replica placement algorithms:

a) FF: First Fit adjusted for replication constraints and the tenants,
b) consider the differences in the load between the

replicas of the same tenant,

a) FF: First Fit adjusted for replication constraints and
performance SLOs

b) SRR, SRR-S: Round Robin algorithms adjusted for c) not violate the replication constraints,
d) aim to balance the load across all machines,
e) minimize the total operating cost, and

b) SRR, SRR-S: Round Robin algorithms adjusted for
replication constraints and performance SLOs

e) minimize the total operating cost, and
f) gracefully adjust to unexpected workload changes. c) Rk, RkC: Novel algorithms based on the power of two

random choices.

RkC is the winner in all the metrics:RkC is the winner in all the metrics:
Number of machines used, adaptivity in workload changes, load balancing and

load balancing after a node failure

Load Balancing Load Balancing After a Node Failure

