Query Optimization for Object-Relational
Database Systems

By

Navin Kabra

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DocTOR OF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN — MADISON

1999

U Copyright by Navin Kabra 1999

All Rights Reserved

Abstract

Modern database systems are placing an increasingly heavy burden upon their query
optimizers. Commercial vendors are all scrambling to add object-relational features
to their database systems, but unfortunately, optimizer technology has not kept pace
with these advances for a number of reasons. Writing an optimizer, debugging it,
and evaluating different optimization strategies remains a time-consuming and diffi-
cult task. Another problem is that attempts to design optimizers that can easily be
extended to incorporate new operators, algorithms, or search strategies have enjoyed
limited success. Finally, even the best of optimizers very often produce sub-optimal
query evaluation plans. This problem is further aggravated by the presence of novel
data domains and user-definable data-types and functions which make it very difficult
to maintain statistics and estimate query execution costs.

In this thesis, we present some solutions to the problems that are currently facing
query optimizers. We describe OPT++ an architecture that significantly improves
the extensibility and maintainability of a query optimizer. We use this as a tool to
implement a number of relational and object-relational optimization techniques and
search strategies and perform a study to compare their relative performance. We
also describe Dynamic Re-Optimization, a technique that can be used to tackle sub-
optimality of plans produced by a query optimizer.

OPT++ is an architecture for implementing extensible query optimizers. It uses an
object-oriented design to simplify the task of implementing, extending, and modifying
an optimizer. Building an optimizer using OPT++ makes it easy to extend the query

algebra (to add new query algebra operators and physical implementation algorithms

ii
to the system), easy to change the search space, and also to change the search strat-
egy. Furthermore, OPT++ comes equipped with a number of search strategies that
are available for use by an Optimizer-Implementor. OPT++ considerably simplifies
both, the task of implementing an optimizer for a new database system, and the task
of evaluating alternative optimization techniques and strategies to decide what tech-
niques are best suited for that database system. We present the results of a series of
performance studies. These results validate our design and show that, in spite of its
flexibility, OPT++ can be used to build efficient optimizers.

Another problem facing query optimizers is that, even the best query optimizers
can very often produce sub-optimal query execution plans, leading to a significant
degradation of performance. This is especially true in databases used for complex
decision support queries and/or object-relational databases. We describe Dynamic
Re-Optimization, an algorithm that detects sub-optimality of a query execution plan
during query execution and attempts to correct the problem. The basic idea is to collect
statistics at key points during the execution of a complex query. These statistics are
then used to optimize the execution of the query, either by improving the resource
allocation for that query, or by changing the execution plan for the remainder of the
query. To ensure that this does not significantly slow down the normal execution of a
query, the Query Optimizer carefully chooses what statistics to collect, when to collect
them, and the circumstances under which to re-optimize the query. We describe an
implementation of this algorithm in the Paradise Database System, and we report on
performance studies, which indicate that this can result in significant improvements in

performance of complex queries.

il

Acknowledgements

I am deeply indebted to my advisor, Professor David J. DeWitt for all the advice,
support and guidance he has provided me with. He was always there, providing mo-
tivation, enthusiasm, and direction to this research. I am also very thankful for the
extraordinary amount of patience he has shown all these years as I procrastinated my
way through my thesis. It has been a privilege to have worked with him.

Studying databases at the University of Wisconsin - Madison has allowed me to work
with some of the best database researchers in the world. I would like to think Professors
Yannis loannidis, Mike Carey and Jeff Naughton for the insights and guidance they
provided during the course of this research, and the helpful comments and suggestions
on various drafts of my papers and my thesis. I would also like to thank Professors
Raghu Ramakrishnan and Rick Jenison for being on my committee and helping to
improve the quality of this thesis.

A lot of this research was done in the context of the Paradise project. I have had
a great time working on this project, and I would like to thank all the members of
the Paradise team, especially Jignesh Patel, Jie-Bing Yu, Kristin Tufte, Biswadeep
Nag, and Karthik Ramasamy, for their help and support. A lot of the achievements of
the Paradise project would have been impossible without the SHORE project. I am
grateful to the people who worked on the SHORE project, especially Nancy Hall, Jim
Kupsch and Josef Burger (Bolo).

I would also like to thank Vishy Poosala, Joey Hellerstein, and Praveen Seshadri
for the numerous discussions we’ve had. Speaking to them always helped clarify my

thoughts.

v

Contents
Abstract i
Acknowledgements iii
1 Introduction 1
1.1 Motivation for This Research 1
1.2 Contributions of This Research 3
1.3 Outline of This Thesis 5
2 The OPT++ Extensible Optimizer Architecture 6
2.1 The Need for Extensible Optimizers 6
2.2 Basic Concepts e 9
2.3 Representing Operator Trees and Access Plans 10
2.3.1 The OPERATOR Class« o o v v v ittt i it 11
2.3.2 The ALGORITHM Class o v i vt oo 14
2.4 Generating Operator Trees and Access Plans 18
2.4.1 The TREETOTREEGENERATOR Class 18
2.4.2 The TREETOPLANGENERATOR Class 22
2.4.3 The PLANTOPLANGENERATOR Class 23
2.5 The Search Strategies 25
2.5.1 The Bottom-up Search Strategy 26
2.5.2 The Transformative Search Strategy 27
2.5.3 Randomized Search Strategies 31

2.6 Extensibility in OPT++ 32

2.6.1 Implementing a new Optimizer

2.6.2 Modifying the Optimizer

3 Relational and Object-Relational Optimization Using OPT++
3.1 Relational Optimization
3.1.1 Join Enumeration00
3.1.2 A Transformative Optimizer
3.1.3 Randomized Strategies L L.
3.1.4 Comparison of Search Strategies
3.2 Optimizing Object-Relational Operators
3.2.1 Optimizing Queries Containing References
3.2.2 Nesting and Unnesting Set-Valued Attributes
3.2.3 Optimizing Expensive Predicates
3.2.4 Optimizing Aggregates
3.2.5 Effect upon Search Strategies

3.3 Summary

4 Debugging or Over-riding Faulty Optimizers
4.1 Optimizer Aided Debugging
4.1.1 The Cost-Estimation Anomaly
4.1.2 The Plan Generation Anomaly
4.1.3 A Tree Generation Anomaly
4.2 Detecting Anomalies oL Lo
4.3 Debugging based on Incomplete Specifications
4.3.1 Partial Plan Specifications

4.3.2 Optimizer Aided Debugging Using Partial Plan Specifications

32

34

37
38
38
40
42
43
45
45
o8
o8
61
66

66

67
68
71
71
73
74
75
76

79

4.4 Over-riding an Optimizer L L. 80

4.5 Debugging other Search Strategies 81

5 Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execu-

tion Plans 84
5.1 The Need for Dynamic Re-Optimization 84
5.2 The Dynamic Re-Optimization Algorithm 85
5.2.1 Query Execution Plans 87

5.2.2 Run-time Collection of Statistics 88

5.2.3 Dpynamic Resource Re-allocation. 91

5.2.4 Query Plan Modification 94

5.2.5 Keeping overheads lowo, 100

5.2.6 Summary 107

5.3 Implementation and Performance 108
5.3.1 Implementation in Paradise 108

5.3.2 Experimental Results using TPC-D queries 111

5.3.3 Experimental Results Using Randomly Generated Queries . . . 115

6 Related Work 117
6.1 Extensible Query Optimization 117
6.2 Dynamic Re-Optimization 122

7 Conclusions 125

Bibliography 128

vii

List of Figures

10
11
12
13
14
15
16
17
18
19
20
21

22

Query Representations 9
Basic System Designo Lo 10
Operator Class Hierarchy for a Relational Optimizer 11
An Example Operator Tree 12
An Example Operator Tree with its Tree Descriptors 13
Algorithm Class Hierarchy for a Relational Optimizer 15
An Example Access Plan 15
An Example Access Plan with its Plan Descriptors 16
Example TREETOTREEGENERATOR Class Hierarchy 19
Application of JOINEXPAND: :APPLY 20
Example TREETOPLANGENERATOR Class Hierarchy 22
Examples of TREETOPLANGENERATOR: :APPLY 23
PLANTOPLANGENERATOR Class Hierarchy 24
Use of SORTENFORCER: : APPLY to enforce a sort-order 24
A Rule-based Transformation 28
Implementing an Optimizer in OPT++ 33
Comparison of Search Spaces: Optimization Times (Log-scale) 40
Comparison of Search Spaces: Estimated Costs (scaled) 40
OPT++ wvs. Volcano: Optimization Times (Log-scale) 42
OPT++ ws. Volcano: Memory Requirements 42
Comparing Search Strategies: Optimization Times (Log-scale) 44

Comparing Search Strategies: Estimated Costs (Scaled) 44

23
24
25
26
27
28
29

30

31

32
33
34

35

36

37
38
39
40
41

42

Comparing Search Strategies: Memory Requirements 44
Converting Materializes to Joins 47
Converting Materializes to Joins: Optimization Times (Log-scale) . . . 48

Converting Materializes to Joins: Improvement in Estimated Costs (Scaled) 48

Use of Inverse Links 49
Use of Inverse Links: Optimization Times (Log-scale) 49
Use of Inverse Links: Improvement in Estimated Costs (Scaled) 49

Use of Inverse Links when all references have inverses: Optimization
Times (Log-scale) 49

Use of Inverse Links when all references have inverses: Improvement in

Estimated Costs (Scaled) 49
Collapsing Materializes 50
Collapsing Materializes: Optimization Times (Log-scale) 50
Collapsing Materializes: Improvement in Estimated Costs (Scaled) . . . 50

Collapsing Materializes in absence of Pointer Joins: Optimization Times
(Log-scale) o e 51

Collapsing Materializes in absence of Pointer Joins: Improvement in

Estimated Costs (Scaled) 51
Use of Path Indices 53
Use of Path Indices: Optimization Times (Log-scale) 53
Use of Path Indices: Improvement in Estimated Costs (Scaled) 53
Path Indices: Effect of Selectivity on Estimated Costs (Scaled) 54
Path Indices (effect of availability): Increase in Optimization Times . . 54

Path Indices (effect of availability): Improvement in Estimated Costs

(Scaled) L 54

43

44

45

46

47

48

49

a0

ol

92

93
o4
95
26
o7
28
99
60
61
62
63
64
65

66

X

Unnest and Select Operators 56
Unnest and Materialize Operators 57
Unnest and Join Operators 57
Expensive Predicates: Optimization Times 60
Expensive Predicates: Improvement in Estimated Costs (Scaled) 60
Splitting Aggregateso Lo 61
Pushing Aggregates below Joins 00000 L. 62
Optimizing Aggregates: Optimization Times (Log-scale) 62
Optimizing Aggregates: Improvement in Estimated Costs (Scaled) . . . 62

Comparing Search Strategies (Object-Relational): Optimization Times
(Log-scale) o o 65
Comparing Search Strategies (Object-Relational): Estimated Costs (Scaled) 65

Comparing Search Strategies (Object-Relational): Memory Requirements 65

A Sub-Optimal Query Execution Plan 69
A bug in cost estimationo 70
An access plan does not get producedo oL 72
An operator tree does not get produced 73
A Partial Plan Specification 0. 76
Examples of Partial Plan Specifications 78
A query and its query execution plan 87
Collection of Statistics at run-time 88
Use of improved statistics to improve memory allocation 93
A potentially sub-optimal query plan 94
Re-optimization of a plan without discarding any work 96

Re-optimization of a plan by materializing intermediate results 97

67
68
69
70

71

72

73

Fraction of a query affected by statistics 106
Query Execution in Paradise 108
Query Execution with Dynamic Re-Optimization. 110
Performance of Dynamic Re-Optimization 113

Isolating the effect of improvements due to memory management and
plan modification oo oo 113
Effect of skew o 114

Dynamic Re-Optimization: Random Queries 115

Chapter 1

Introduction

1.1 Motivation for This Research

One of the key reasons for the success of relational database technology is the use of
declarative languages and query optimization. The user can just specify what data
needs to be retrieved and the database takes over the task of finding the most effi-
cient method of retrieving that data. It is the job of the query optimizer to evaluate
alternative methods of executing a query, and selecting the cheapest alternative.
Notwithstanding the tremendous success of this approach, query optimization still
remains a problem for database systems. Modern database systems are placing an in-
creasingly heavy burden upon their query optimizers. Relational database systems are
increasingly being used to execute complex decision support queries. In addition, com-
mercial vendors are all scrambling to add object-relational features to their database
systems. Unfortunately optimizer technology has not kept pace with these advances,
and a number of the inadequacies of traditional query optimizers have become obvious.
Although constructing a high-performance database engine has become almost
straightforward, building query optimizers remains a “black art”. Writing an opti-
mizer, debugging it, and evaluating different optimization strategies remains a difficult
and time-consuming task. Consequently, the state of commercial optimizers is fre-
quently not very good, in spite of the fact that query optimization has been a subject

of research for more than 15 years. Furthermore, existing commercial optimizers are

often so brittle from years of patching that further improvement ranges from difficult to
impossible. While quite a bit has been published about extensible query optimizers in
the research literature, the actual success of this work is limited. Thus, good tools are
still needed to streamline the process of implementing and evolving query optimizers.

The architecture of the query optimizer should be such that it is easy to write,
modify, extend and maintain the optimizer. It should be easy to implement and exper-
iment with various different optimization techniques and strategies and evaluate their
comparative performance. It should be easy to change the optimizer in case of changes
in requirements, and easy to debug it in case of problems.

Another major problem facing query optimizers is that they often don’t work.
Even the best optimizers often produce sub-optimal query execution plans due to their
inability to accurately estimate the cost of executing complex query evaluation plans.

There are a number of reasons why estimating the cost of query execution is dif-
ficult. Query optimizers use statistics stored in the system catalogs to estimate sizes
and cardinalities of tables that participate in the query. This introduces an error in the
estimates either due to the approximations involved, or because statistics are not kept
up-to-date. As the number of joins in the query increases, these errors multiply and
grow exponentially [IC91]. Another source of errors is the lack of sufficient informa-
tion about the run-time system at query optimization time. The amount of available
resources (especially memory), the load on the system, and the values of host language
variables are things that differ for every execution of the query, and in some cases,
change in the middle of query execution.

The problem is further aggravated in the case of object-relational database systems
that allow users to define data-types, methods, and operators. Collection and storage

of statistics (for example, histograms) for user-defined data-types (for example, spatial

data-types like polygon, point) is an area that has not yet been addressed in database
research literature. There are some primitive methods that have been proposed to
deal with the estimation of the cost of execution for user defined functions/methods
written in an external language (like C++) [SAHS87], but these are far from adequate.
Selectivity estimation for predicates involving user-defined methods/functions is an
issue not yet considered in database research. All of this makes it really difficult to
properly estimate the cost of execution of queries on object-relational databases.
Hence there is a pressing need for a query optimization framework that provides

some solution to this problem.

1.2 Contributions of This Research

The goal of this research is to provide a new framework for query optimization which is
better geared to tackle the problems posed by modern database systems. We present a
novel architecture that provides extensibility, maintainability, and ease of experimen-
tation. In addition, we also present an algorithm for dealing with sub-optimalities of
query execution plans generated by optimizers. Specifically, the contributions of this
research are in the following four areas:

Extensible Query Optimization
We describe OPT++ a architecture for extensible query optimization. OPT++ is
an easy-to-use, flexible and extensible toolkit for building database query optimizers.
OPT++ comes equipped with many of the most common optimization techniques and
search strategies, and can thus relieve the Optimizer-Implementor of the job of imple-
menting them. Using OPT++, the Optimizer-Implementor can thus concentrate on
tailoring it to the needs of the specific database system. Alternatively, the OPT++

architecture can be viewed as guidance to optimizer builders on how to structure their

optimizer for extensibility. The modularity and clean program decomposition of the
OPT++ architecture not only makes the whole optimizer easy to implement and un-
derstand, but also promotes sharing of code among different optimization schemes and
implementations; leading, in turn, to improved maintainability.

Experimenting with Various Optimization Techniques
One very important facility that any optimizer should provide is the ability to easily
try out new optimization techniques, experiment with various optimization alternatives
and try to determine what are the best strategies to incorporate into an optimizer for
a given database system. We show how OPT++ can be used for such experimenta-
tion. We have also conducted a detailed performance study of various optimization
techniques that are currently available to optimizer implementors. We include our
recommendations that can be of help to an Optimizer-Implementor in designing an
optimizer for a specific database system.

Debugging Support for Optimizers
Debugging an optimizer can be a frustrating task. A large percentage of the time re-
quired to implement an new optimizer and maintain an existing optimizer is consumed
by debugging. We present a novel technique in which the optimizer itself aids the
Optimizer-Implementor in the debugging process. This greatly reduces the develop-
ment time for optimizer implementation and results in a tremendous increase in the
productivity.

Dealing with Sub-Optimal Query Execution Plans
We describe Dynamic Re-Optimization, an algorithm that tackles the problem of sub-

optimal query execution plans by detecting sub-optimality of a query plan at execution

time and dynamically re-optimizing the query in mid-execution to improve perfor-
mance. We ensure that this is achieved without significantly compromising the perfor-
mance of the system for queries that were not sub-optimal. We report the results of a
performance study which indicates that this algorithm is quite effective and can result

in significant improvements in performance of complex queries.

1.3 Outline of This Thesis

The remainder of this thesis is organized as follows.

Chapter 2 describes OPT++, the extensible, modifiable, maintainable architecture
for building query optimizers.

Chapter 3 describes our experiences building optimizers using OPT++. This also
includes a detailed performance study of various optimization techniques and search
strategies that can be used for relational and object-relational optimization. This
study would be valuable to an Optimizer-Implementor in determining what features to
implement in an optimizer for a specific database system. It also shows that OPT++
is flexible, extensible and efficient.

Chapter 4 describes the debugging support built into OPT++ that can be used by
an Optimizer-Implementor to track down bugs in the optimizer. It also describes a very
general and powerful mechanism of giving hints to an optimizer to make it produce
the right plan when it is producing sub-optimal query execution plans.

Chapter 5 describes the Dynamic Re-Optimization algorithm which detects sub-
optimal query execution plans at query execution time and re-optimizes them to im-
prove performance.

Chapter 6 compares this research with related work and in Chapter 7 we present

our conclusions.

Chapter 2

The OPT++ Extensible Optimizer

Architecture

2.1 The Need for Extensible Optimizers

In this chapter we describe the OPT++ architecture for extensible and maintainable
query optimization. OPT++ exploits the object-oriented features of C++ to achieve
this. It defines a few key abstract classes with virtual methods. These class definitions
do not assume any knowledge about the query algebra or the database execution engine.
The search strategy is implemented entirely in terms of these abstract classes. The
search strategy invokes the virtual methods of these abstract classes to perform the
search and the cost-based pruning of the search space.

An optimizer for a specific database system can be written by deriving new classes
from these abstract classes. Information about the specific query algebra and execution
engine for which the optimizer is built, and the search space of execution plans to
be explored, are encoded in the virtual methods of these derived classes. The C++
inheritance mechanism ensures that the search strategy of the optimizer does not have
to be changed when this is done.

Furthermore, the search strategy itself is a class with virtual methods that can
be over-ridden. Thus, new classes can be derived from this class to implement dif-

ferent search strategies. OPT+4 comes equipped with a number of search strategies

7

that can be directly used by the Optimizer-Implementor. In addition, the Optimizer-
Implementor can implement new search strategies by deriving new classes from the
provided search strategy classes.

An optimizer built using OPT++ consists of three components: the “Search Strat-
egy” component determines what strategy is used to explore the search space (e.g.,
dynamic-programming, randomized, etc.), the “Search Space” component determines
what that search space is (e.g., space of left-deep join trees, space of bushy join trees,
etc.), and the “Algebra” component determines the actual logical and physical algebra
for which the optimizer is written. OPT++ strives for separation of these components
and, to a large extent, provides an architecture in which each of these components can
be changed with minimal impact on the other components.

OPT++ can also provide a smooth transition path for systems that already have
a System-R style or rule-based optimizer, but which need to be upgraded. Initially,
OPT++ could be used to implement exactly the same optimization scheme as the
existing optimizer. In some cases, it might also be possible to re-use code from the old
optimizer to implement the derived classes in the OPT++ based optimizer. Once this
OPT++ based optimizer is working and stable, the Optimizer-Implementor can slowly
start taking advantage of the other features of OPT++. This could be a more accept-
able solution for an Optimizer-Implementor afraid of replacing a working optimizer
with a completely new optimizer.

Although a number of the ideas incorporated in OPT++ are not new (see Chap-
ter 6), OPT++ puts them all together into a clean architecture. It is easy to come up
with a design for extensibility, but the difficulty lies in the details. Deciding upon how
much abstraction is good is a difficult problem. There is a trade-off between making

the abstract classes very general or very specific. Making the abstractions very general

is great for extensibility. Since the abstract classes are very general, they can be ex-
tended to handle almost any kind of optimization algorithm. On the other hand, the
abstractions have to be restrictive to allow for efficiency, and code re-use. Specifically,
if the abstract classes are restrictive, the search strategy (which has to be written en-
tirely in terms of these abstract classes) has more information available to it. Hence, it
can use this information to implement algorithms and data structures that are more ef-
ficient than would have been possible without that information. Further, if an abstract
class is too general, most of the code has to be written in the derived classes. Hence,
the Optimizer-Implementor ends up doing a lot of unnecessary work to implement an
optimizer. On the other hand, having restrictive abstract classes makes the system less
extensible and might end up defeating the whole purpose of the “extensible” architec-
ture. This chapter makes a contribution by describing a detailed architecture that is
extensible enough to be able to incorporate most of the major optimization techniques,
and at the same time not sacrificing efficiency.

As described in the previous paragraph, the OPT++ architecture represents a com-
promise between extensibility and efficiency. The abstractions in OPT++ were made
restrictive for the purposes of efficiency. Consequently, there are some special-purpose
non-standard optimization algorithms that cannot be modelled using the OPT++
abstractions. Thus, the join order enumeration algorithms described in [GLPK94],
[VM96] and [KBZ86] cannot be easily incorporated into OPT++. While some of the
ideas and data-structures of these algorithms can be incorporated into search strate-
gies implemented in OPT++, the algorithms in their entirety cannot be incorporated
in a reasonably extensible way. Hence, the use of OPT++ would preclude the use of
such special-purpose algorithms. While it might be possible to build fast and efficient

query optimizers for very specific database systems using some of these algorithms, it

Join LoopsJoin
Emp.dno = Dept.dno Emp.dno = Dept.dno

P
Select -~

Select * from Emp, Dept Emp.name = "Lee" Erfﬁ'r%%ﬁgcﬁrﬂee--

where Emp.dno = Dept.dno /

and Emp.name = "Lee" /

Emp Dept Emp Dept
(a) SQL Query (b) Operator Tree (c) Access Plan

Figure 1: Query Representations

is unclear whether these algorithms can be extended to apply to domains other than
the one they were originally intended for. Hence, even though the optimizers built
using OPT++ might not be as efficient as these algorithms, from the point of view of

extensibility, we do not see this as a shortcoming of the OPT++ architecture.

2.2 Basic Concepts

We assume that a query can be logically represented as an operator tree. An operator
tree is a tree in which each node represents a logical query algebra operator being
applied to its inputs. For example, Fig. 1(a) shows an SQL query and Fig. 1(b)
shows that query represented as a tree of relational operators. A given query can be
represented by one or more operator trees that are equivalent.

One or more physical execution algorithms can be used in a database for implement-
ing a given query algebra operator. For instance, the join operator can be implemented
using nested-loops or sort-merge algorithms. Replacing the operators in an operator
tree by the algorithms used to implement them gives rise to a “tree of algorithms”
known as an access plan or an execution plan [SACT79]. Fig. 1(c) shows one possible
access plan corresponding to the operator tree in Fig. 1(b). Each operator tree will, in
general, have a number of corresponding access plans.

During the course of query optimization, a query optimizer must generate various

10

earch Strategy

OPT++ provides
R] Abstract

this code

Runtime Binding
(virtual methods)

Optimizer
Implementor
writes this

code Derived Classes

QUERY OPTIMIZER

Figure 2: Basic System Design

operator trees that represent the input query (or parts of it), generate various access
plans corresponding to each operator tree, and compute/estimate various properties
of the operator trees and access plans (for example, cardinality of the output relation,
estimated execution cost, etc.). In the rest of this section, we describe how this is
implemented in OPT++ in a query-algebra-independent manner.

As mentioned earlier, a key feature of OPT++ is that a few abstract classes and
their virtual methods are defined a priori and the search strategy is written entirely
in terms of these classes. Fig. 2 gives an overview of the OPT++ architecture.

We first describe the abstract classes that OPT++ uses to represent operator trees
and access plans and compute their properties. We then describe the abstract classes
that it uses to generate and manipulate different operator trees and their corresponding

access plans.

2.3 Representing Operator Trees and Access Plans

In this section, we describe the OPERATOR and ALGORITHM abstract classes. These
classes are used to represent operator trees and access plans, and for computing their

properties.

11

OPERATOR

DB-RELATION

Figure 3: Operator Class Hierarchy for a Relational Optimizer

For each abstract class, we describe what the abstract class represents, and the
virtual methods on it. We describe how the search strategy uses that abstract class.
To illustrate, we give examples of actual classes that an Optimizer-Implementor might

derive from these abstract classes to implement a simple relational query optimizer.

2.3.1 The OPERATOR Class

The abstract OPERATOR class represents operators in the query algebra. From the
OPERATOR class the Optimizer-Implementor is expected to derive one class for each
operator in the actual query algebra. An instance of one of these derived operator
classes represents the application of the corresponding query language operator. As an
example, the classes that an Optimizer-Implementor might derive from the OPERATOR
class to implement a simple SQL optimizer are shown in Fig. 3!. The SELECT and JOIN
classes represent the relational select and the relational join operators respectively. The
DB-RELATION operator is explained in the next paragraph. In this SQL optimizer, an
instance of the SELECT operator will represent an application of the relational select
operator to one input relation, and an instance of the JOIN operator will represent an
application of the relational join operator to two input relations.

The inputs of an operator can either be database entities (for example, relations

In all our figures, classes are represented by ovals and an arrow between classes indicates
inheritance.

12

JOIN
Emp.dno = Dept.dno
SELECT
Emp.name = "Lee"
DB-RELATION DB-RELATION
Emp Dept

Figure 4: An Example Operator Tree

for a relational database) that already exist in the database, or they can be the result
of the application of other operators. An operator tree can thus be represented as a
tree of instances of the operator class (more accurately, an instance of a class derived
from the abstract OPERATOR class).

Dummy operators serve as leaf nodes of the operator tree, representing database
entities that already exist in the database. For example, the relations in the from
clause of an SQL query are represented by the dummy DB-RELATION operator in all
our examples.

Fig. 4 shows an example of an operator tree? corresponding to the query shown in
Fig. 1. The two instances of the DB-RELATION class represent the two relations in the
from clause of the query — Emp and Dept. The instance of the SELECT class represents
a selection on the Emp relation, and the instance of the JOIN class represents the Dept
relation being joined to the result of the selection.

During the course of optimization, the optimizer needs to compute and keep track
of the properties of the resultant output of an operator tree. For example, a simple
relational optimizer needs to estimate properties such as the cardinality, or the size of

the relation resulting from the execution of an operator tree. Since such information

2To distinguish classes from class instances, we have used ovals to represent classes and boxes to
represent instances in our figures. Thus class hierarchies will be drawn using ovals, while operator
trees and access plans will be drawn using boxes.

13

JOIN

Emp.dno = Dept.dno
PREDS: Emp.name = "Lee" |

/ Emp.dno = Dept.dno |

SELECT | \ T~ T T T T ————7—
Emp.name = "Lee"

(——— N
| RELS: Emp
| PREDS: Emp.name = "Lee"
DB-RELATION

DB-RELATION Dept

Emp = N
| RELS: Dept |
| PREDS: —= |

| RELS: Emp |
| PREDS: —— |

[Operator Instance
—__ TreeDescriptor Instance

Figure 5: An Example Operator Tree with its Tree Descriptors

depends upon the query algebra, OPT++ has to rely on the Optimizer-Implementor
to provide these properties. To do this, the Optimizer-Implementor is expected to
define a TREEDESCRIPTOR class that stores information about an operator tree. The
information stored could be logical algebraic properties (e.g., set of relations already
joined in, predicates applied), estimated properties (e.g., number of tuples in output)
or any other information of interest to the Optimizer-Implementor.

Every operator instance contains a pointer to an instance of the TREEDESCRIPTOR
class, that stores information about the operator tree rooted at that operator instance.
Fig. 5 reproduces the operator tree of Fig. 4 showing the TREEDESCRIPTOR instances
associated with each operator instance. In this example, each TREEDESCRIPTOR instance
lists the names of the relations that have been joined in and the predicates applied.

With the TREEDESCRIPTOR class the Optimizer-Implementor must provide an ISE-
quivalent method that determines whether two TREEDESCRIPTOR instances are equiv-
alent. Two TREEDESCRIPTOR instances should be equivalent if the corresponding opera-
tor trees are algebraically equivalent. The TREEDESCRIPTOR must also have an IsComp-

leteQuery method that determines whether the corresponding operator tree represents

14

the whole query or just a sub-computation. Finally, the TREEDESCRIPTOR class must
also have a HASHVALUE method that returns a hash value for the TREEDESCRIPTOR.
This method can be used by OPT++ to build hash-tables of TREEDESCRIPTORs, and
to efficiently search for trees with equivalent TREEDESCRIPTORS.

The OPERATOR class includes a virtual method called DERIVETREEDESCRIPTOR. This
method is invoked on an operator instance to construct the TREEDESCRIPTOR object for
the operator tree rooted at that operator instance, given the TREEDESCRIPTOR instances
of its input operators.

The OPERATOR class has another virtual method called CANBEAPPLIED that deter-
mines whether that operator can be legally applied to given inputs according to the
rules of the query algebra.

Given an operator tree, the search strategy can compute the TREEDESCRIPTOR for
it by invoking the DERIVETREEDESCRIPTOR method on each of the operator instances
in the tree. Note that the search strategy just invokes the methods on the abstract
OPERATOR class and does not require any information about the actual class of each
instance. Through runtime binding, the proper DERIVETREEDESCRIPTOR method is
invoked and the correct TREEDESCRIPTOR computed. Thus the search strategy (which is
implemented in terms of the abstract OPERATOR class) can compute the correct TREEDE-
SCRIPTORs for an operator tree even though it has no knowledge of the actual operators
in the query algebra. The IsCompleteQuery, IsEquivalent and the CANBEAPPLIED

methods can be used to analyze the generated operator trees.

2.3.2 The ALGORITHM Class

Representation of access plans is very similar to that of operator trees. The ALGORITHM

abstract class is used to represent physical execution algorithms used to implement

15

Figure 6: Algorithm Class Hierarchy for a Relational Optimizer

NESTED-LOOPS-JOIN
Emp.dno = Dept.dno

e

INDEXSELECT
Emp.name = "Lee"

/ HEAP-FILE

INDEX
on Emp.name

Dept

Figure 7: An Example Access Plan

operators in the database system. The Optimizer-Implementor is expected to derive
one class from the ALGORITHM class for each of the actual algorithms in the system.

An access plan can thus be represented as a tree of instances of algorithm classes.
As a special case, we note that leaf nodes of access plans are represented by dummy
“algorithms” representing access paths that exist on the database entities. For example,
a relation may be accessed either as a sequential (heap) file or via an index. We use
the HEAPFILE and INDEX® dummy algorithm classes to represent these cases in our
examples. Note that these algorithm classes are associated with the dummy DB-REL-
ATION operator class defined in the previous section.

Fig. 6 shows the algorithm classes that were derived from the abstract ALGORI-

THM class for our simple SQL optimizer. The HEAPFILE and INDEX algorithms are

3 A system that has more than one type of index might use different classes to represent each index
type. For example BTREEINDEX and HASHINDEX.

16

NESTED-LOOPS-JOIN

Emp.dno = Dept.dno

\

I;_ ________ 1
INDEXSELECT COST: 60 '
=C | SORT-ORDER: ~ |
Emp.name="Lee" [=\ —m——————————
= _
| COST: 10
| SORT-ORDER: Emp.name |
INDEX HEAP-FILE
on Emp.name Dept
—— N 1 N .
| COST: 0 | | COST:0 |
| SORT-ORDER: Emp.name | | SORT-ORDER:— |

[Algorithm Instance
—__ PlanDescriptor Instance

Figure 8: An Example Access Plan with its Plan Descriptors

dummy algorithms for the DB-RELATION operator as explained earlier. The SELECT-
SCAN algorithm used to implement the SELECT operator represents a sequential scan of
a HEAPFILE that outputs tuples satisfying a select-predicate. The INDEXSELECT uses
a B-Tree INDEX to implement the same operation. NESTEDLOOPSJOIN and MERGEJOIN
are algorithms to implement the JOIN operator. The SORT algorithm is not associated
with any operator, but is used to enforce a sort-order among the tuples of a relation.

Fig. 7 shows an example access plan. This is an access plan corresponding to the
operator tree in Fig. 4*. An INDEX on Emp.name is used by the INDEXSELECT algorithm
to perform the selection on ‘Emp.name = "Lee"’. The NESTEDLOOPSJOIN algorithm
takes the result of the INDEXSELECT and joins it with the Dept relation using the
HEAPFILE access method (implying a sequential scan).

Similar to the TREEDESCRIPTOR class in the case of operator trees, OPT++ employs
a PLANDESCRIPTOR class to store the physical properties associated with an access
plan. For example, for a relational optimizer the PLANDESCRIPTOR class might store

the sort-order of the result. Fig. 8 reproduces the access plan of Fig. 7 showing the

In this section, we are only concerned with being able to represent an access plan. How OPT++
translates an operator tree into an access plan is described in Section 2.4.

17

PLANDESCRIPTOR instances associated with each algorithm instance.

The Optimizer-Implementor should provide an IsEquivalent method for the PLAN-
DESCRIPTOR class to determine whether the physical properties of two access plans are
the same. This class should also provide an IsInteresting method that specifies
whether the result of the corresponding access plan has any interesting physical prop-
erties’. Similar to the TREEDESCRIPTOR, the PLANDESCRIPTOR must also provide a
HASHVALUE method that can be used for efficient hashing.

The abstract ALGORITHM class has a DERIVEPLANDESCRIPTOR virtual method. This
method is invoked on an algorithm instance to construct the PLANDESCRIPTOR instance
for the access plan rooted at the algorithm instance, given the PLANDESCRIPTOR in-
stances of its inputs.

The ALGORITHM class also has a virtual method called Cost that computes the
estimated cost of executing the algorithm with the given inputs. This cost is used by
the search strategy for pruning sub-optimal plans.

In addition, the ALGORITHM class has an INPUTCONSTRAINT virtual method. This
method indicates what physical properties an input should have for it to be usable by
that algorithm. For example, the merge-join operator requires that its inputs be sorted
on the join attributes. As described in a later section, the search strategy will try to
use this information to automatically enforce those physical properties.

A database system might have special execution algorithms that do not correspond
to any operator in the logical algebra, for example sorting and decompression. The
purpose of these algorithms is not to perform any logical data manipulation but to

enforce physical properties in their outputs that are required for subsequent query

5 A physical property (such as sort-order) is interesting if it might help some later operation to be
carried out cheaply. For example, a sort-order is interesting if it will be useful in a sort-merge join
later on [SACT79].

18

processing algorithms. These are referred to as enforcers by the Volcano Optimizer
Generator [GM93], and are comparable to the glue operators in Starburst [LFL88].
Classes corresponding to such enforcers should also be derived from the ALGORITHM
class. For example, in a relational query optimizer, the SORT algorithm is an enforcer
that can be used to ensure that the inputs of the MERGEJOIN algorithm are sorted on
the join attribute.

Given an access plan, the search strategy can use the virtual methods of the abstract
ALGORITHM class to determine properties of the access plan, estimate its cost, and
determine equivalence of different access plans. All of this is achieved by invoking
these methods on the abstract ALGORITHM class without any knowledge of the actual

algorithms in the database system.

2.4 Generating Operator Trees and Access Plans

In the previous section we saw how operator trees and access plans are represented in
OPT++. If the search strategy is given an operator tree or an access plan, we saw how
it can compute its properties and compare it with other trees or plans by using the
virtual methods of the OPERATOR and ALGORITHM abstract classes. In this section, we
describe how the various operator trees and access plans are generated by the search

strategy during the course of optimization.

2.4.1 The TREETOTREEGENERATOR Class

Classes derived from the TREETOTREEGENERATOR abstract class are used to generate
various operator trees. These classes have a virtual method called APPLY that takes an

existing operator tree and creates one or more new operator trees.

19

TREETOTREE
GENERATOR
INITIALTREE JOIN
GENERATOR EXPAND

Figure 9: Example TREETOTREEGENERATOR Class Hierarchy

Let us consider the System-R style [SACT79] search strategy to illustrate the con-
cept behind the TREETOTREEGENERATOR class. Such an optimizer starts with single
relations and then builds bigger and bigger operator trees from them by first applying
selections and then applying joins to them. At each step, the search strategy picks an
existing operator tree and then ezpands it to produce a larger operator tree by applying
a new select operation or a join operation at the top of the tree.

The process of erpanding an existing operator tree by applying an operator to it
and generating a new tree is accomplished by using one of the TREETOTREEGENERATOR
classes.

Specifically, to implement a relational System-R style optimizer, the Optimizer-
Implementor can derive from the TREETOTREEGENERATOR abstract class a SELECTEXP-
AND class to generate applications of the SELECT operator and a JOINEXPAND class to
generate applications of the JOIN operator as shown in Fig. 9. The SELECTEXPAND: : -
APPLY method is expected to take an operator instance (representing an operator tree)
and create one or more new instances of the SELECT operator representing application
of some selection to the input operator tree. Similarly the JOINEXPAND: : APPLY method
should create various JOIN instances representing different ways of applying a join to
the given input.

Fig. 10(b) illustrates the JOINEXPAND: :APPLY method being invoked during the

optimization of the query in Fig. 10(a). The figure shows an instance of the SELECT

20

JOIN JOIN
Emp.dno = Dept.dno Emp.jno = Job.jno

SELECT){ \
Emp.name = "Lee"

DB-RELATION DB-RELATION

Select * from Emp, Dept, Job l Dept Job
where Emp.name = "lee"
and Emp.dno = Dept.dno DB-RELATION
and Emp.jno = Job.jno Emp .
[Operator Instances already existing
(a) [Operator Instances created by JoinExpand

(b)

Figure 10: Application of JOINEXPAND: : APPLY

operator that represents the predicate ‘Emp.name = "Lee"’ being applied to the Emp
relation. The JOINEXPAND: : APPLY method is invoked in order to expand the operator
tree rooted at that SELECT operator instance. Since the result of the select can be
joined with either the Dept relation or the Job relation, two instances of the JOIN
operator are created as shown in the figure.

The TREETOTREEGENERATOR class also has a virtual method called CANBEAPPLIED
that determines whether that TREETOTREEGENERATOR can be applied to a given operator
instance.

There is also a method called APPLYMULTIPLETIMES that can be used to determine
whether a particular TREETOTREEGENERATOR (such as SELECTEXPAND) can be applied a
second time to an operator tree that resulted from the application of the same TREE-
TOTREEGENERATOR class. This is useful for avoiding redundant work. For example,
consider an optimizer in which all the select predicates are pushed down as far as
possible and they are all applied by a single select operator. In this case, when the
SELECTEXPAND generator is invoked for a given relation, it produces a single select
operator to apply all the select predicates that apply to that relation. There is no need
to apply the SELECTEXPAND generator again to this new select operator as there will

not be any new select predicates to apply (until at least another relation is joined in).

21

Thus, the SELECTEXPAND should return FALSE when APPLYMULTIPLETIMES is invoked.
By contrast, the JOINEXPAND should return TRUE, because you can keep applying joins
until there are no more relations left.

The APPLYMULTIPLETIMES method simply indicates that a particular TREETOTREE-
GENERATOR should not be applied twice in a row. The same functionality can also be
achieved by appropriately coding the CANBEAPPLIED method. However, using APPLY-
MULTIPLETIMES is more efficient.

One class derived from the TREETOTREEGENERATOR class is designated by the Optimizer-
Implementor as the INTTTALTREEGENERATOR. The APPLY method of this class is used by
the search strategy to start the optimization process. For the relational optimizer the
INITIALTREEGENERATOR creates one DB-RELATION instance for each relation in the from
clause. After that, the search strategy picks some operator instance (representing an
operator tree) and generates new operator trees from it by invoking the APPLY method
of various TREETOTREEGENERATOR classes on it. The CANBEAPPLIED method is used to
determine whether the TREETOTREEGENERATOR should be applied to that operator in-
stance. This process can be repeated to generate various operator trees corresponding
to the input query.

Note that the search strategy does not need to know any details about the TREET0-
TREEGENERATOR classes in the system. All it needs is a list containing a pointer to one
instance of each of the TREETOTREEGENERATOR classes. By invoking the virtual methods
of the TREETOTREEGENERATOR abstract class on these instances, the search strategy can

generate all operator trees required for optimization.

22

TREETOPLAN
GENERATOR
HEAP-FILE INDEX SELECTSCANY /INDEXSELEC MERGEJOIN

GENERATOR GENERATOR /\GENERATOR /\GENERATOR GENERATOR

Figure 11: Example TREETOPLANGENERATOR Class Hierarchy

NESTED-
LOOPSJOIN
GENERATOR

2.4.2 The TREETOPLANGENERATOR Class

An access plan can be generated from an operator tree by replacing each operator
instance in the operator tree by an instance of an algorithm class that can be used
to implement that operator. Classes derived from the TREETOPLANGENERATOR abstract
class are used to generate algorithm instances corresponding to an operator instance.

The TREETOPLANGENERATOR abstract class has a virtual method called APPLY that
takes an operator instance as an input parameter and creates one or more new algorithm
instances representing different ways of using physical execution algorithms to execute
the operation represented by that operator instance.

For example, consider a relational optimizer. From the TREETOPLANGENERATOR class
the Optimizer-Implementor might derive one class corresponding to each algorithm
in the system. Each of these classes takes an operator instance and creates one or
more algorithm instances indicating how the corresponding algorithm can be used to
implement that operation. Fig. 11 shows the classes derived from the TREETOPLANGEN-
ERATOR class.

Fig. 12 shows some examples of TREETOPLANGENERATOR: : APPLY being applied to
a join operator instance. As can be seen, the NESTEDLOOPSJOINGENERATOR: : APPLY
results in an instance of the NESTEDLOOPSJOIN class being created while the MERGE-

JOINGENERATOR: : APPLY results in an instance of the MERGEJOIN class being created.

23

LoopsJoinGenerator::Apply
LOOPSJOIN

Emp.dno = Dept.dno

JOIN
Emp.dno = Dept.dno

\ MERGEJOIN
MergeJoinGenerator::Apply Emp.dno = Dept.dno

Operator Instance Algorithm Instances

Figure 12: Examples of TREETOPLANGENERATOR : : APPLY

Given an operator tree, the search strategy can invoke the APPLY method of various
TREETOPLANGENERATOR classes on each of the operator instances in the tree to generate
various access plans corresponding to the operator tree.

The TREETOPLANGENERATOR class has a CANBEAPPLIED virtual method that deter-
mines whether that TREETOPLANGENERATOR can be applied to the given operator in-
stance.

Note that the search strategy does not need to know any details about the actual
TREETOPLANGENERATOR classes in the system. All it needs is a list containing a pointer
to one instance of each of the actual TREETOPLANGENERATOR classes. By using this list
and invoking virtual methods on the instances in this list, the search strategy is able

to enumerate all the access plans for any operator tree.

2.4.3 The PLANTOPLANGENERATOR Class

The PLANTOPLANGENERATOR class is used to further modify an access plan after it has
been generated. The PLANTOPLANGENERATOR: :APPLY virtual method takes an algo-
rithm instance (representing an access plan) and creates one or more new algorithm
instances each representing some other access plan.

An important use of this class is to automatically insert instances of enforcers that

24

PLANTOPLAN

GENERATOR
SORT
ENFORCER

Figure 13: PLANTOPLANGENERATOR Class Hierarchy

SORT
Emp.dno

INDEXSELECT
Emp.name = "Lee"

¢

INDEX

Emp::name

[] Algorithm Instances already existing
[Algorithm Instance created by SortEnforcer

Figure 14: Use of SORTENFORCER: : APPLY to enforce a sort-order

can change the physical properties of the output of some access plan. This might be
required in order to satisfy input constraints of some algorithm. For instance, in a
relational optimizer, the SORTENFORCER class can be derived from the PLANTOPLANGEN-
ERATOR class to enforce various sort-orders on results of access plans.

Fig. 14 illustrates the use of the SORTENFORCER::APPLY virtual method. This
method is invoked with the INDEXSELECT instance as an input parameter; it creates a
new instance of the SORT algorithm (enforcer) as shown in the figure.

The PLANTOPLANGENERATOR class also has a CANBEAPPLIED virtual method that
determines whether the PLANTOPLANGENERATOR can be applied to the given input.

During the course of optimization, when the search strategy is building various
access plans using the TREETOPLANGENERATOR classes, it invokes the INPUTCONSTRAINT
method whenever a new algorithm instance is created. If it turns out that the inputs of
that algorithm instance do not satisfy its input constraints, it attempts to rectify the

situation by applying an appropriate PLANTOPLANGENERATOR. The search strategy uses

25

the CANBEAPPLIED virtual method of the PLANTOPLANGENERATOR classes to determine
which generators can be used to enforce the given properties, and invokes the APPLY
method to create new access plans that satisfy the corresponding input constraints.
Thus the enforcers automatically get applied without the Optimizer-Implementor hav-

ing to worry about them.

2.5 The Search Strategies

So far, we have seen the OPERATOR, ALGORITHM, and various tree and plan GENERATOR
classes. As described in the previous sections, any search strategy that is implemented
entirely in terms of these abstract classes and their virtual methods becomes inde-
pendent of the query algebra in the sense that the actual operators, algorithms and
generators in the system can be modified without modifying the search strategy code.

A number of search strategies have been implemented in OPT++ in this query-
algebra-independent manner. The implementation of the various search strategies is
loosely modeled on the object-oriented scheme described in [LV91]. OPT++ defines a
SEARCHSTRATEGY abstract class with virtual methods, and each of the search strategies
in OPT++ is actually implemented as a class derived from the SEARCHSTRATEGY-
abstract class. Any of these search strategies can be used for optimization by the
Optimizer-Implementor by declaring an object of the corresponding class and invoking
the OPTIMIZE virtual method on that object. Another consequence of this design
is that Optimizer-Implementor can modify the behavior of any search strategy by
deriving a new class from it and redefining some of the virtual methods. See [LV91]
to see how this is accomplished. In this section we concentrate on describing how the

various search strategies are implemented in terms of the OPERATOR, ALGORITHM, and

26

GENERATOR abstract classes, and in the next section we describe how the Optimizer-
Implementor can easily switch from one search strategy to another.

In the section below we describe the various search strategies that have been imple-
mented in OPT++ so far. The “Bottom-up” search strategy is similar to the one used
by the System-R optimizer [SAC*79]. The “Transformative” search strategy is based
upon the search engine of the Volcano Optimizer Generator [GM93]. Finally, three ran-
domized search strategies, Iterated Improvement, [SG88], Simulated Annealing [TW87],

and Two Phase Optimization [IK90], have been implemented.

2.5.1 The Bottom-up Search Strategy

This search strategy can be used to implement optimizers that use bottom-up dynamic-
programming similar to the System-R, optimizer [SACT79].

The INITIALTREEGENERATOR is invoked to initialize the collection of operator trees.
To generate bigger trees, the search strategy picks an existing operator tree and expands
it. To expand an operator tree, it determines what TREETOTREEGENERATORs can be
applied to the operator instance at its root by exhaustively invoking the CANBEAPPLI-
ED method of all the TREETOTREEGENERATORs. Then the APPLY method of each of the
applicable TREETOTREEGENERATORs is invoked to get new operator trees.

For each new operator tree, all the corresponding access plans are generated. This
is done by applying various TREETOPLANGENERATORs to the operator instances in the
tree to get the corresponding algorithm instances.

Cost-based pruning of access plans is done in a manner similar to the techniques
used by the System-R optimizer. Whenever a new access plan is created, the virtual
methods of the ALGORITHM class are used to determine the cost of that access plan, to

determine whether it has any interesting physical properties, and to locate all other

27

access plans that are equivalent to it. From this set of equivalent access plans, only the
cheapest plan and those plans that have interesting physical properties are retained.
All others are deleted®.

Generation of new operator trees stops when none of the operator trees can be
further expanded. At this point, optimization is complete after all the applicable TREE-
TOPLANGENERATORs and PLANTOPLANGENERATORs are applied to the existing operator
trees. The cheapest access plan that represents the complete input query can now
be returned as the optimal plan. The IsCompleteQuery method is used to determine
whether or not an access plan represents the complete input query. To be able to imple-
ment the IsCompleteQuery method, the Optimizer-Implementor must have access to
some internal representation of the original input query. This must then be compared
with the TREEDESCRIPTOR and PLANDESCRIPTOR associated with a given access plan
to determine whether it represents the complete query. The Optimizer-Implementor
is responsible for implementation of the IsCompleteQuery method, and providing it

with access to some efficient internal representation of the input query.

2.5.2 The Transformative Search Strategy

Section 2.4.1 only gave examples of TREETOTREEGENERATORs that ezpand a given tree
by applying a new operator to it. However, an optimizer constructed using OPT++
can also include TREETOTREEGENERATOR classes that transform one operator tree into
another, algebraically-equivalent operator tree. In other words, a class derived from

the TREETOTREEGENERATOR class can represent an algebraic transformation rule (such

6To “delete” an access plan, only the algorithm instance at the root of that access plan is actually
deleted. The other algorithm instances in the access plans are not deleted because they maybe shared
by other access plans.

28

e

s T N yd JOIN = >,
/ SELECT \ / Emp.dno = Dept.dno)
| Emp.name = "Lee" \ / y
|, I | ﬁ >// / .
\ JOIN ’l | SELECT 7
\ Emp.dno = Dept.dno / l Emp.name ="Lee" //
A — - \‘___+___//
DB-RELATION DB-RELATION DB-RELATION DB-RELATION
Emp Dept Emp Dept
Tree (a) Tree (b)

Figure 15: A Rule-based Transformation

as those used by the Volcano Optimizer generator). The CANBEAPPLIED method deter-
mines whether the transformation rule is applicable to a given operator tree, and the
APPLY method creates the new tree that results from the transformation.

Fig. 15 shows an example of a transformative TREETOTREEGENERATOR being applied.
Assume that a class called SELECTPUSHDOWN is derived from the the TREETOTREEGEN-
ERATOR class. This class represents the following transformation rule: “If a join is
immediately followed by a select, and if the select predicate only references attributes
from the left input of the join, then the select can be pushed below the join into its
left input tree.” Fig. 15 shows the result of SELECTPUSHDOWN: : APPLY being invoked
on an operator tree. It is applied to Tree (a) and the new operator tree resulting from
the transformation is shown in Tree (b). This new tree is generated by creating the
two new operator instances shown in the oval in Tree (b). The new SELECT operator
instance represents the selection predicate being applied to Emp relation. The new
JOIN operator instance represents the result of that select being joined with the Dept
relation. When these two new operator instances are created, we have a new operator
tree that is equivalent to the old one.

The search strategy invokes the INITIALTREEGENERATOR to get one operator tree

corresponding to the input query. It then repeatedly applies TREETOTREEGENERATORSs

29

(transformation rules) to the existing operator trees to generate equivalent operator
trees. As before, the CANBEAPPLIED method is used to determine whether a TREETO-
TREEGENERATOR can be applied to an operator tree, and the APPLY method is used to
generate the new tree.

The search strategy keeps track of which TREETOTREEGENERATORs were used to
generate each operator instance. This is useful in reducing the amount of redundant
work done by the algorithm. First, if the APPLYMULTIPLETIMES method for a TREETO-
TREEGENERATOR returns FALSE, then this generator is not applied to a given operator
instance if that operator instance was generated using the same generator. For example,
two applications of the JOINCOMMUTATIVITY generator would result in the same tree
as the original, and hence the APPLYMULTIPLETIMES method of this generator should
return FALSE. Also, whenever a new operator instance is generated by a TREETOTREE-
GENERATOR, the search strategy finds out whether another operator instance which is
exactly equivalent to it exists. If it does the new instance is pruned. This ensures that
applications of TREETOTREEGENERATORs do not lead to cycles.

Unfortunately, due to the generality of the OPT++ design, it cannot do as good a
job of identifying equivalence classes as the Volcano Optimizer Generator. For this it
has to rely upon the IsEquivalent method provided by the Optimizer-Implementor.
This is a shortcoming of OPT++ compared to the Volcano Approach. Implementing
the IsEquivalent method can be difficult for a general algebra. All database systems
that have a System-R style optimizer are faced with the problem of implementing such
an operation. In practice, this has not been a problem for most declarative query
languages.

In spite of the above limitation, the transformative search strategy of OPT++ can

still capture the equivalence classes of Volcano. After using the IsEquivalent method

30

to find equivalent operator instances, it puts them in the same equivalence class. Now,
if two operator instances are exactly the same, and they only differ in the fact that
their inputs point to different operators in the same equivalence class, then one of these
operator instances can be pruned. This can be done because all the combinations of
inputs can be easily generated by enumerating the various operators instances in an
equivalence class. This allows OPT++ to get the same space efficiency as Volcano. Of
course, to be able to use this trick successfully, the search strategy should be able gen-
erate the various fragments of operator trees necessary for applying transformations.
The search strategy does this “instantiation” of equivalence classes on demand. When-
ever the CANBEAPPLIED or the APPLY method of an operator tries to examine one of
its inputs by invoking the OPERATOR: : INPUT method, the search strategy instantiates
it with one of the operator instances in the corresponding equivalence class. On the
next invocation of CANBEAPPLIED or APPLY, the OPERATOR: : INPUT, method returns the
next operator instance from the same equivalence class. The search strategy continues
this process until all the operator instances in the equivalence classes of the inputs are
exhausted.

We note that the “instantiation” of equivalence classes is done on demand: .e.,
only those equivalence classes that are actually examined by the CANBEAPPLIED or the
APPLY method are instantiated by the search strategy. In spite of that, this results
in unnecessary instantiations. For example, a SELECTPUSHDOWN transformation that
pushes a select below a join operator only needs to be instantiated with the JOIN-
OPERATOR instances in its input. Since the search strategy does not know this, it
instantiates the input with all possible operator instances. If a the exact structure of
the subtree that is required by a TREETOTREEGENERATOR is known beforehand, we can

avoid this inefficiency. In such a case, the TREETOTREEGENERATOR can register itself with

31

the search strategy at system startup time by specifying a subtree expression consisting
of operator names. The search strategy then ensures that only subtrees matching
the specified expression are instantiated. The above discussion applies to TREETO-
PLANGENERATORs and PLANTOPLANGENERATORs as well. We note that in the Volcano
Optimizer Generator, such a tree expression is always specified (in the transformation
and implementation rules), whereas in OPT++ it is needed only for efficiency.

The procedure for generation of access plans corresponding to an operator tree,
and for their pruning is similar to that used in the bottom-up search strategy. Note
that our TREETOPLANGENERATOR classes are analogous to the implementation rules of

the Volcano Optimizer Generator [GM93].

2.5.3 Randomized Search Strategies

In this section, we briefly describe the implementation of the randomized search strate-
gies in OPT++. As with the Transformative strategy, these algorithms assume that
the classes derived from the TREETOTREEGENERATOR class represent algebraic transfor-
mation rules. Here we briefly describe the implementation of the Simulated Annealing
Algorithm. The implementation of the other algorithms is very similar. See [Kan91]
for details.

The Simulated Annealing algorithm has a variable called temperature that is ini-
tialized before optimization is begun. The INITIALTREEGENERATOR is then used to
generate one complete operator tree. The TREETOPLANGENERATOR classes are used to
create an access plan corresponding to that operator tree. After this, at each step a
random operator instance in the operator tree is picked for processing. Then a random

TREETOTREEGENERATOR is chosen and applied to give rise to a new operator instance.

32

Then a random TREETOPLANGENERATOR that can be applied to the new operator in-
stance, is chosen and used to generate a new algorithm instance. This gives rise to a
new access plan. The cost of the new plan is estimated. The search strategy accepts
or rejects the new plan with a probability that depends upon the difference between
the costs of the old plan and the new plan, and upon the temperature. If the new plan
is rejected, the new plan is deleted and the old plan remains the current plan. If the
new plan is accepted, the old plan is deleted, and the new plan becomes the current
plan.

After each step the temperature is decreased using some function which is an input
parameter for this algorithm. This process is then repeated. Optimization continues
until the temperature falls below a certain threshold or there is no improvement in the
cost for some number of steps. At this point, the current plan is output as the optimal

plan.

2.6 Extensibility in OPTH+

This section summarizes what is involved in implementing a new optimizer, or ex-
tending or modifying an existing optimizer built using OPT++. Chapter 3 has some

examples of such extensions as applied to a real optimizer.

2.6.1 Implementing a new Optimizer

Fig. 16 shows the overall system architecture of an optimizer implemented using OPT++.

The Search Strategy Component: This represents the code that is provided with
OPT++, and includes the implementations of the various search strategies. This part

of the code is completely independent of the actual query algebra and the database

33

Code provided
with OPT++

SEARCH
STRATEGY
COMPONENT

BottomUp SearchStratey
B

reeToPlan
Generator

TreeToTree
Generator

SEARCH SPACE COMPONENT

Code written by

/ Optimizer Implementor

LoopsJoin

ALGEBRA COMPONENT

Figure 16: Implementing an Optimizer in OPT++

system, and therefore does not have to be modified to implement a particular optimizer.
Thus a large fraction of the code required for an optimizer is already provided with

OPT++.

The Algebra Component: This contains the classes derived by the Optimizer-
Implementor from the OPERATOR and the ALGORITHM classes, and also the implemen-
tation of the TREEDESCRIPTOR and PLANDESCRIPTOR classes. This part of the code
depends only upon the query algebra and the physical implementation algorithms
available in the database system. Specifically, this code does not have to be changed
when the optimizer is modified to use a different search strategy (e.g., switching from
a transformative strategy to simulated annealing) or when the search space explored
is changed (e.g., switching from left-deep join tree enumeration to bushy join tree

enumeration).

34

The Search Space Component: This contains the classes derived by the Optimizer-
Implementor from the TREETOTREEGENERATOR, TREETOPLANGENERATOR, and the PLAN-
TOPLANGENERATOR classes. These classes are used to decide what operator trees and
access plans are generated, and hence play a large part in controlling the search space
that is explored by the search strategy. For example, implementing a JOINEXPAND
class that only generates joins in which the inner relation is a base relation restricts
the search space to the space of left-deep join trees. On the other hand, implementing
a BUSHYJOINEXPAND class that considers composite inners will generate all bushy trees.

We note that the implementation of some of the TREETOTREEGENERATOR classes
can be made more efficient if they make specific assumptions about the semantics
of a particular search strategy, or if they directly access the data-structures of the
search strategy class. In such a case, that TREETOTREEGENERATOR becomes specific to
that particular search strategy, and cannot be re-used with any other search strategy.
Hence, for example, we have two implementations of the BUSHYJOINEXPAND generator:
one that does not assume anything about the search strategy, and one that uses the
data structures of the bottom-up search strategy to efficiently organize and retrieve
operator trees with a specific number of join operators. Thus, although some efficiency
is lost due to the abstractions of OPT++4, a specific implementation may still over-ride
the abstractions and achieve efficiency (at the cost of extensibility). In fact, the various
join enumeration algorithms described in [OL90] can each be implemented in OPT++

as a class derived from the TREETOTREEGENERATOR class.

2.6.2 Modifying the Optimizer

Changing the logical or physical Algebra: To modify the optimizer to incor-

porate a new physical implementation algorithm, a new class corresponding to that

35

algorithm must be derived from the ALGORITHM class. A new class also must be de-
rived from the TREETOPLANGENERATOR class to indicate how this new algorithm can
be used to implement the corresponding operator. Thus, adding an algorithm only
involves adding some new classes to the optimizer. The existing code usually does not
need to be changed. For instance, a hash-join algorithm can be incorporated into our
simple relational optimizer by deriving a HASHJOIN class from the ALGORITHM class and
a HASHJOINGENERATOR class from the TREETOPLANGENERATOR class.

Similarly, adding an operator requires deriving a new class from the OPERATOR class
and deriving one or more new classes from the TREETOTREEGENERATOR class. Algorithms
used to implement the new operator also must be added as described above.

Sometimes, it is possible that adding a new operator or algorithm might require
that the TREEDESCRIPTORs or PLANDESCRIPTORs need to store additional information.
For example, when MERGEJOIN is added to the system, information about whether the
output of a particular algorithm is sorted or not needs to be added. In this case, the
DERIVETREEDESCRIPTOR, or the DERIVEPLANDESCRIPTOR methods of all the operators
or algorithms might have to be changed to reflect this new property. This admittedly
goes against the OPT++ philosophy, and is a shortcoming. However, we believe this
cannot be avoided without compromising the efficiency of OPT++4. Further, these
changes are localized to only the DERIVETREEDESCRIPTOR or DERIVEPLANDESCRIPTOR

methods.

Changing the Search Space: As mentioned earlier, the search space explored
by any search strategy is controlled by the GENERATOR classes. It can be changed by
adding a new GENERATOR class, or by removing or modifying an existing GENERATOR
class. For example, in our simple relational optimizer, the search space can be changed

from the space of left-deep join trees to the space of bushy join trees by adding a

36

BUSHYJOINEXPAND class.

Since all the search strategy code is in the Search Strategy Component of OPT++,
and all the code that depends only on the query algebra is in the Algebra Component,
the Search Space Component is only a small amount of code. Thus changing generator

code or adding a new generator is easy.

Changing the Search Strategy: OPT++ offers a choice of search strategies, and
makes it relatively easy to switch from one search strategy to another. Often, one
search strategy can be replaced by another without changing any of the code in the
“Algebra” or “Search Space” component. This is the case if the search strategy is
changed from the Transformative Strategy to one of the randomized strategies, or
vice versa. Unfortunately, this is not always true. Sometimes changing from one
search strategy to another might require writing new TREETOTREEGENERATOR classes.
For example, switching from a bottom-up System-R-like strategy to a transformative
strategy requires replacing all the TREETOTREEGENERATOR classes (that are based on
the concept of erpanding an operator tree) with new TREETOTREEGENERATOR classes
that represent the transformation rules. However, since there is very little code in
the classes derived from the TREETOTREEGENERATOR classes, this change is rather easy.
Further, note that only the TREETOTREEGENERATOR classes need to be rewritten. All
the code in the “Algebra” component, the TREETOPLANGENERATORs, and the PLANTO-
PLANGENERATORs remain unchanged. Hence, although this change in search strategy
does require some new code to be added, a lot of old code can be re-used. We describe

a specific example in Chapter 3.

37

Chapter 3

Relational and Object-Relational

Optimization Using OPT+4+

In this section, we describe our experiences building relational and object relational
optimizers using OPT++. We first built a traditional System-R style relational opti-
mizer and studied its performance. We then extended and modified it in various ways —
to study various techniques for object-relational optimization; and to study the effects
of different heuristics and search strategies on relational and object-relational optimiz-
ers. In each case, we describe how easy or difficult it was to extend the optimizer to
incorporate the new technique. We also study the effect of each upon the performance
of the optimizer.

The purpose of this section is twofold. First, it is a detailed study of the impact of
many optimization techniques upon an optimizer (in terms of ease of implementation,
effect upon the optimization time, and effect upon the quality of the plans produced).
These results of this section can be used by an Optimizer-Implementor to determine
what optimization features to include and what features to exclude from an optimizer
for a particular database system. Second, it gives an idea of the kind of optimizers
and optimization techniques that can be implemented using OPT-++4-. The diversity of
techniques that have been incorporated, and the ease with which most of them were
implemented, attests to the extensibility and flexibility of OPT++. The performance

figures indicate that this extensibility is achieved without sacrificing performance.

38

3.1 Relational Optimization

In this section we consider a simple relational optimizer that does System-R style join
enumeration, and describe how it was extended to consider the space of bushy join
trees, as well as cartesian products. The purpose of this section is to just show the
baseline case (a relational optimizer that can do different kinds of join enumerations).

In the later sections, we extend the base optimizer to handle more complex cases.

3.1.1 Join Enumeration

Since all the examples used in Chapter 2 describe this simple relational optimizer,
we will not repeat the details here. Briefly, the DB-RELATION, SELECT, and JOIN-
classes were derived from the OPERATOR class to represent the relational operators,
and the HEAPFILE, INDEX, SELECTSCAN, INDEXSELECT, NESTEDLOOPSJOIN, and MERGE-
JOIN classes were derived from the ALGORITHM class to represent the corresponding
physical implementation algorithms. SELECTEXPAND and JOINEXPAND were derived
from the TREETOTREEGENERATOR class. HEAPFILEGENERATOR, INDEXGENERATOR, SEL-
ECTSCANGENERATOR, INDEXSELECTGENERATOR, NESTEDLOOPSJOINGENERATOR, and MER-
GEJOINGENERATOR were derived from TREETOPLANGENERATOR to indicate how the cor-
responding algorithms could be used to implement the associated operators. SORTEN-
FORCER is derived from PLANTOPLANGENERATOR to enforce sort orders. We note that the
SELECTEXPAND: : APPLY method was written so as to apply all selection predicates as
soon as possible (the “select pushdown” heuristic) and the JOINEXPAND: : APPLY method
allowed only single relations as the inner (right-hand) input for the join operation (the
“left-deep join trees only” heuristic).

The “Algebra” component that includes the various operator and algorithm classes

as well as the TREEDESCRIPTOR and PLANDESCRIPTOR classes consists of about 900 lines

39

of code. The “Search Space” components that includes classes derived from the TREE-
TOTREEGENERATOR, TREETOPLANGENERATOR, and PLANTOPLANGENERATOR classes consists

?

of 150 lines of code. In contrast, the “Search Strategy” component, which consists
entirely of code that is provided with OPT++ (i.e., the Optimizer-Implementor does
not have to write this code) was about 2500 lines of code. The fact that the search
strategy code is already provided and does not have to be written or modified by
the Optimizer-Implementor considerably simplified the task of writing the optimizer.
Further, as will become clear later, the fact that the “Search Space” component is very
small (150 lines of code spread across 10 classes) makes it very easy to evaluate various
optimization techniques.

We decided to modify the search space explored to include both bushy join trees
and join trees that contain cartesian products. As described in Section 2.6.1 these
enumerators can be implemented in two ways. A naive implementation that makes no
assumptions about the underlying search strategy results in code that is more re-usable
but less efficient. To do this we derived the NAIVEBUSHYJOINENUMERATOR and NAIVE-
CARTESTIANJOINENUMERATOR classes from the TREETOTREEGENERATOR class to generate
instances of the JOIN operator that allowed composite inners (i.e., the inner operand is
allowed to be the result of a join), and those containing cartesian products. A smarter
implementation (built with access to the internal data structures of the System-R
dynamic programming style search strategy that was used) was also coded to give
better performance. This resulted in the SMARTBUSHYJOINENUMERATOR and SMARTCAR-
TESTANJOINENUMERATOR classes which are based on the schemes described in [OL90].

As an experimental evaluation of the optimizer, we studied its performance (op-
timization time and estimated execution cost) as a function of the number of joins

in the input query. For each query size (number of joins) 10 different queries were

40

] —O— Left-Deep
34 --0-- Bushy
] —-&-- Bushy+Cartesian

100

10

—O— Left-Deep
--0O-- Bushy (Naive)
—-/\- -- Bushy+Cartesian (Naive)
—<-— Bushy (Smart)
— X--- Bushy+Cartesian (Smart)

0.1

Optimization Time (seconds, logscale)
Estimated Execution Costs (Scaled)

0.01

o 5 T T 0 2 4 6 8 10

Number of Joins Number of Joins
Figure 17: Comparison of Search Spaces: Figure 18: Comparison of Search Spaces:
Optimization Times (Log-scale) Estimated Costs (scaled)

generated randomly and optimized. The experiments were run on a 200Mhz Pentium
Pro processor with 128 MB of memory. However, virtual memory was limited to 32MB
(using the limit command).

Fig. 17 illustrates the effect of different search spaces on the optimization time.
Fig. 18 shows the effect on the relative estimated execution costs of the optimal plans
produced'. (Note that optimization times are shown on a logarithmic scale.) Since
these algorithms are quite easy to implement, an Optimizer-Implementor should defi-
nitely consider implementing them in an optimizer if the database execution engine is

capable of executing bushy execution plans.

3.1.2 A Transformative Optimizer

In this section, we describe how the optimizer was changed from a bottom-up dynamic

programming optimizer to one that uses algebraic transformation rules. In other words,

!These numbers just confirm the results of [OL90]

41

a shift from the “Bottom-Up” strategy to the “Transformative” strategy. This change
required that new classes be derived from the TREETOTREEGENERATOR class to repre-
sent the transformation rules. One class was used for each transformation rule. For
instance, the JOINASSOCIATIVITY class was used to represent the associativity of the
join operator, while the SELECTPUSHDOWN class was used to capture the property that
selects can be pushed down under joins.

Modifying the whole optimizer to use the transformative paradigm required the
addition of about 250 lines of code in the form of TREETOTREEGENERATORs representing
the transformation rules®. We note that no code in the “Algebra” component had to
be changed, while in the “Search Space” component, only new TREETOTREEGENERATORS
had to be added. The old TREETOPLANGENERATOR and PLANTOPLANGENERATOR classes
were used unchanged.

The Transformative Search Strategy in OPT++ is based upon the search engine
of the Volcano Optimizer Generator. To validate our implementation of that strategy,
and to show that its performance does not suffer even though it has been implemented
in the more flexible OPT++ framework, we compared it to an optimizer generated
using Volcano. Using the Volcano Optimizer Generator we implemented an optimizer
equivalent to our Transformative Optimizer. The two optimizers were equivalent in
the sense that they used the same transformation rules and exactly the same code for
cost estimation, selectivity estimation, etc.

Figures 19 and 20 compare the two optimizers in terms of optimization times and
memory consumed for randomly generated queries of increasing sizes. As before, the
experiments were run on a 200Mhz Pentium Pro processor with memory limited to

32MB of memory. The figures show us that the performance of the Transformative

2In the next section we shall see that a switch from the Transformative strategy to one of the
Randomized strategies is much easier than this.

42

105

—O— Opt++

---0-- Volcano

Optimization Time (seconds, logscale)
Memory requirements (MB)

0.1
] —O— Opt++
--4O-- Volcano
(=) — O —
0 5 10 0 5 10
Number of Joins Number of Joins

Figure 19: OPT++ wvs. Volcano: Opti- Figure 20: OPT++ vs. Volcano: Mem-
mization Times (Log-scale) ory Requirements

Search Strategy of OPT++ is almost as good as that of the Volcano search engine. We
see approximately a degradation of about 5% in the optimization times, while space

utilization is roughly equivalent.

3.1.3 Randomized Strategies

Finally, we modified the transformative optimizer to use the randomized search strate-
gies available with OPT++. To do this, we replaced the Transformative Search Strat-
egy object by an object of the required Randomized search strategy. Thus, switching
from a Transformative search strategy to either Simulated Annealing, Iterated Im-
provement or Two Phase Optimization (or vice versa) can be trivially accomplished by
changing one line of code. The input parameters for the randomized strategies were
chosen to be the same as those used in [Kan91].

We compared the performance of these search strategies with each other and with
the dynamic-programming based search strategies. This is one illustration of the kind

of experiments that can be very easily conducted using OPT++. This section also

43

serves as a validation of our implementation of these search strategies in OPT++ as

we obtain results similar to those found in the literature.

3.1.4 Comparison of Search Strategies

We compared the performance of each of the different search strategies in terms of the
time taken to optimize randomly generated queries of increasing sizes, and the quality of
the plans produced. The stopping conditions and other parameters for the randomized
search strategies were as described in [IK90]. Figs. 21, 22 show the performance results
obtained. Since the Bottom-up and the Transformative strategies produce exactly
the same plans, Fig. 22 shows only one curve for the two strategies. Qualitatively,
they confirm the findings of [Kan91] that for smaller queries the exhaustive algorithms
consume much less time for optimization than the randomized algorithms and produce
equivalent or better plans, while for larger queries, the randomized algorithms take
much less time to find plans that are almost as good as those found by the exhaustive
algorithms. For queries with more than 16 joins, the exhaustive algorithms quickly run
out of memory, and don’t produce any results at all, whereas the randomized algorithms
continue functioning without any significant degradation in performance. The fact
that the exhaustive algorithms produce no plans at all for large queries explains the
sudden drop in the scaled costs of the randomized algorithms in Figure 22. They
also confirm the findings of [IK90] that Two Phase Optimization performs better than
either Simulated Annealing or Iterated Improvement.

In Figure 23, the memory requirements of the different strategies are presented.
The randomized strategies require a negligible amount of memory irrespective of the
size of the input query, while the exhaustive strategies require exponentially increasing

amounts of memory. Hence, for queries larger than those shown in Figure 21, the

100

10

—o— Bottom-Up

---0-- Transformative

— - -- Iterated Improvement
—O— Simulated Annealing

— X--- Two Phase Optimization

Optimization Time (seconds, logscale)

AL e B S S S B B S B B L

10 20 30
Number of Joins

Figure 21: Comparing Search Strategies:

Optimization Times (Log-scale)

—o— Bottom-Up

---0-- Transformative

— |- Iterated Improvement
—o— Simulated Annealing

— x--- Two Phase Optimization

Memory Requirements (MB)

Number of Joins

Figure 23: Comparing Search Strate-
gies: Memory Requirements

g /
?g] —-—- Iterated Improvement ,’,
5 o12] Bottom-Up (same as Transformative) /
w | —&— Simulated Annealing /
,3] —--- Two Phase Optimization /

5 /

E ¢
g1 2
g

£ /

i :

~ _—L

/ —
RS =T T TR ><

1-;

Number of Joins

Figure 22: Comparing Search Strate-
gies: Estimated Costs (Scaled)

44

45

randomized strategies will continue to give reasonable performance while the exhaus-
tive strategies will fail due to lack of enough memory. We also note that although
the Bottom-Up and Transformative search strategies have comparable performance in
terms of optimization time and quality of plans produced (because both are exhaustive
strategies and explore the same search space), the Bottom-Up strategy has a significant
advantage in terms of space consumption as it can perform more aggressive pruning of

operator trees.

3.2 Optimizing Object-Relational Operators

In this section, we describe a number of techniques that can be used for optimizing
queries containing object-relational operations. Specifically we consider techniques to
optimize queries containing path expressions, user defined methods (possibly expen-
sive), set valued attributes, and generalized aggregates.

The reason for describing the features and their performance in the section are, 1)
to give an example of the kind of optimizations OPT++ is capable of handling, and 2)
to study the effect each feature has upon the speed of the search engine. We have also
reported the estimated costs of the resulting access plans to provide an idea about the

trade-offs involved.

3.2.1 Optimizing Queries Containing References

This section deals with queries containing the use of inter-object references. A number
of techniques to optimize queries containing references are described in [BMG93]. We
implemented them in our OPT++-based optimizer and conducted a performance study

that is described in this section.

46

Specifically, we added a MATERIALIZE query algebra operator that represents ma-
terialization of a reference-valued attribute (in other words, dereferencing a pointer).
A corresponding ASSEMBLY algorithm class is used to represent the physical execution
algorithm used to implement MATERIALIZE [KGMO1].

The MATERIALIZEEXPAND class derived from the TREETOTREEGENERATOR class takes
an operator tree and expands it by adding a materialize operation that dereferences a
reference-valued attribute present in its input.

Materialization of a reference-valued attribute can also be achieved using a pointer-
based join [SC90]. We specialized the JOINEXPAND class by deriving a new POINTER-
JOINEXPAND class from it. This new class creates instances of the JOIN operator that
actually correspond to materialization of reference-valued attributes using a pointer-
based join.

The optimizer also had to be extended to handle path-indices. A select predicate
involving a path-expression (like city.mayor.name = "Lee") can be sometimes evalu-
ated using a path-index without really having to materialize the individual components
of the path-expression. For example, if a path-index exists on city.mayor.name, the
predicate city.mayor.name = "Lee" can be evaluated without having to materialize
the city or mayor objects (see [BMG93| for details).

A new PATHINDEXSELECT algorithm was derived from the ALGORITHM class to cap-
ture such path-index scans. A PATHINDEXSCANGENERATOR class was derived from the
TREETOPLANGENERATOR class to replace occurrences of a string of materialize opera-
tors followed by a select operator in an operator tree by a single PATHINDEXSELECT
algorithm, if possible.

This extension of the optimizer to handle the new query algebra constructs resulted

in an addition of about 350 lines of code to the “Algebra” component (most of it for

47

MATERIALIZE ASSEMBLY POINTER-JOIN
cl.capital cl.capital cl.capital = c2.self
GET FILESCAN FILESCAN FILESCAN
Countries: c1 Countries: ¢c1 Countries: ¢1 Capitals: c2
Query Plan A Plan B

Figure 24: Converting Materializes to Joins

cost and selectivity estimation) and about 100 lines of code to the “Search Strategy”
component, and was accomplished in about 3 weeks.

In the following sections, we describe specific optimizations involving references that
may be incorporated into an object-relational optimizer. We describe each optimization
in a little more detail and study its effect on the performance of the optimizer

Using randomly generated queries of varying sizes, we compared the performance
of the optimizer with the feature turned “on”, to that of the optimizer with the feature
turned “off”. To give an idea about the trade-offs involved, we have reported the
effect upon the time required for optimization and the estimated costs of the resulting
optimal query execution plans. Each feature was evaluated with all the remaining

features turned on.

Converting Materializes to Joins

Instead of the materialize operator, a pointer-based join [SC90] can be used to “follow”
inter-object references. Figure 24 illustrates the use of this feature. Plan A gives an
example of a plan that can be generated when this feature is turned “off”, and plan
B show an example of a plan that can be generated when this feature is turned “on”3.

(This convention will be used in the rest of the examples in this section.) Note that the

self method on any object returns the OID of that object. Hence the pointer-join on

3This does not mean that plan A will necessarily be rejected in favor of plan B. Plan B will be
considered and then accepted or rejected based on the cost estimates.

48

o —
8
- o §

é * = 1.0~
o]
- o
g 104)
g g
g £
3 %
2 i
[} c
£ -

F S 05—
5 7 5
g] 3
N —_
é o
= —o— Without Transformation E

8‘ --4O-- With Transformation
T T 1 — T T T 1
2 4 6 8 10 12
ol . . .
2 4 6 8 10 12 Number of Materialize+Join Operations

Number of Materialize+Join Operations . . Lo
Figure 26: Converting Materializes to

Figure 25: Converting Materializes to Joins: Improvement in Estimated Costs
Joins: Optimization Times (Log-scale) (Scaled)
cl.capital() = c2.self() isequivalent to materializing the c1.capital() method.

Figure 25 shows the effect on the optimization time, for various randomly generated
queries. The number of materialize operations in the query was varied while the number
of select predicates was kept constant at 4 (there were no explicit joins in these queries).
Figure 26 plots the ratios of the estimated costs of the generated optimal plans and
thus shows the improvement in the estimated cost when the feature is turned “on”.
Due to the increase in number of alternative plans to be considered the optimization
time increases significantly (about 50% when there are 8 materialize operators in the
query) when this transformation was turned “on”. On the other hand, the generated
optimal plans were much cheaper (in terms of estimated cost).

Overall, this experiment seems to indicate that although there is an increase in
optimization cost involved in considering “pointer-join” as a possible method for com-
putation of the materialize operator, there are large benefits in terms of reduction of
execution cost. Hence, this is a useful optimization technique to implement for a query

algebra that allows it.

49

MATERIALIZE POINTER-JOIN POINTER-JOIN
cl.capital cl.capital = c2.self c2.country = cl.self
GET FILESCAN FILESCAN FILESCAN FILESCAN
Countries: c1 Countries: cl1 Capitals: c2 Capitals: c2 Countries: c1
Query Plan A Plan B
Figure 27: Use of Inverse Links
(.}

—o— Without Use of Inverses -

--O-- With Use of Inverses -
@
2 B
| 5
o ~ 1.0
g 5
g B
g 2
2 -
= <
5 =
= 5 05
N 5
E 2
‘a Pl
o £

o : T T T T T T T T T T 1 T T T T T T T T T T 1
2 4 6 8 10 12 2 4 6 8 10 12

Number of Materialize+Join Operations Number of Materialize+Join Operations

Figure 28: Use of Inverse Links: Opti-
mization Times (Log-scale)

Figure 29: Use of Inverse Links: Im-
provement in Estimated Costs (Scaled)

5]

—o— Without Use of Inverses g

--0-- With Use of Inverses —_
) 5}
7 5
8 — 1.0<
= J0:]
e S
g B
8 5
2 5
- :
5 -
= 5 0.5
N 5
E 7 3
o y s
S 3

0 T T T T T T T T T 1 T T T T T T T T T T 1
2 4 6 8 10 12 2 4 6 8 10 12

Number of Materialize+Join Operations Number of Materialize+Join Operations

Figure 30: Use of Inverse Links when
all references have inverses: Optimiza-
tion Times (Log-scale)

Figure 31: Use of Inverse Links when all
references have inverses: Improvement in
Estimated Costs (Scaled)

MATERIALIZE ASSEMBLY
cl.mayor cl.mayor
MATERIALIZE ASSEMBLY
cl.country cl.country
GET FILESCAN
Cities: c1 Cities: c1
Query Plan A

a0

ASSEMBLY
cl.country
cl.mayor

FILESCAN
Cities: c1

Plan B

Figure 32: Collapsing Materializes

,Ll

?

10
8]
%)
°
o
;
o
€
)_
5§ 17
=] —o— Without Collapse
N --0-- With Collapse
£
a
©]

01 —

2 4 6 8

Number of Materialize Operations

12

Figure 33: Collapsing Materializes: Op-

timization Times (Log-scale)

Improvement in Estimated Cost (Scaled)

T T T T T T T T T T 1
2 4 6 8 10 12

Number of Materialize Operations

Figure 34: Collapsing Materializes: Im-
provement in Estimated Costs (Scaled)

o1

,”

o =
> g 3
i o 5
2 1 ~ 1.0
e 3
3 o
8 3
3 g
< E
E i
= 14 c
c 1 =
2] —o— Without Collapse 5 05
g ---0-- With Collapse &
g 3
‘5_ fuly
O £
l+—F77—T7— —TT———T—

2 4 6 8 10 12 2 4 6 8 10 12
Number of Materialize Operations Number of Materialize Operations

Figure 35: Collapsing Materializes in Figure 36: Collapsing Materializes in ab-
absence of Pointer Joins: Optimization sence of Pointer Joins: Improvement in
Times (Log-scale) Estimated Costs (Scaled)

Use of Inverse Links

A join that uses an inter-object reference method to join its inputs can be converted to
a join that uses the inverse of that method, if one exists. Figure 27 illustrates the use
of this optimization. (We assume that the Capital.country() method is the inverse
of the Country.capital () method. Figures 28 and 29 show the effect on performance.
In the random queries generated for this experiment, any method that was referred to
had a 10% chance of having an inverse. Use of inverse links causes a 10-20% increase
in the optimization time for queries that contain methods that have inverses. The
estimated execution cost of the optimal plans shows a 10-30% improvement.

In the previous experiment, for any reference in the input query there was only
a 10% chance of the existence of a corresponding inverse link. Obviously this figure
affects the performance that we see. We repeated this experiment with a setting in
which all the references in the input queries had inverse links. Figures 30 and 31 show
the new performance. We see that now the increase in optimization time is higher

(30-35%). The estimated execution cost of the optimal plans shows a much higher

52

(upto 50%) improvement. In conclusion, this is an optimization that is very easy to
implement, causes a modest increase in optimization time, and significant improvement

in quality of plans produced.

Collapsing Multiple Materializes

A string of materialize operator applications can be collapsed into a single materialize
operator application. Figures 32, 33 and 34 show the use and performance of this
feature. The number of materialize operations in the randomly generated queries was
varied while the number of select predicates was kept constant at 4 (there were no
explicit joins in these queries). An increase in optimization time, of about 20-30% was
observed. This increase can be directly attributed to the increase in the number of
alternative operator trees that have to be considered. We did not observe any any
significant improvement in the estimated execution costs for this setup.

For the previous experiment, the optimization of converting materialize operators
to joins was turned on. To see how that affected the results we repeated the same
experiment with this optimization turned off. (This involved commenting out one line
of code in the optimizer.) Figures 35 and 36 show the results of the new experiment. We
see that with this setup, the use of the complex assembly operator does give significant
(about 30%) improvements in the estimated execution cost of the query.

Thus, this experiment indicates that for the cost model we used, considering the
complex assembly operator is a considerable improvement over naive materialization,

but does not help very much if pointer-joins can be used.

Optimization Time (seconds, logscale)

10

SELECT FILTER

cl.mayor.name = "Yu"

cl.mayor.name = "Yu"

l l

MATERIALIZE ASSEMBLY
cl.mayor cl.mayor
GET FILESCAN
Cities: c1 Cities: c1
Query Plan A

23

PATH-INDEX-SCAN
Cities: c1, c1.mayor.name = "Yu"

Plan B

Figure 37: Use of Path Indices

—o— Without Collapse
--0-- With Collapse

4 6 8 10 12
Number of Materialize+Join Operations

Figure 38: Use of Path Indices: Opti-
mization Times (Log-scale)

Improvement in Estimated Cost (Scaled)

1.0

T T T T T T T T T T 1
2 4 6 8 10 12

Number of Materialize+Join Operations

Figure 39: Use of Path Indices: Improve-
ment in Estimated Costs (Scaled)

o4

1.0+

0.5

Improvement in Estimated Cost (Scaled)

'mmmmm
10 20 30 40 50
Selectivity of predicate (per cent)

Figure 40: Path Indices: Effect of Selectivity on Estimated Costs (Scaled)

B
g 8
8 3 1o
B
3 <
P o
E B
p ©
S g
g i
E 14 =
8 £ 05
S -
£ >
o
3 5
- 1S
5 £
<
T T T T T T T T 1
20 40 60 80 100
. , I)
20 0 60 80 100 Availability of path index (percent)

Availability of path index (percent)

Figure 42: Path Indices (effect of avail-
Figure 41: Path Indices (effect of avail- ability): Improvement in Estimated
ability): Increase in Optimization Times Costs (Scaled)

95

Using Path Indices

A select-materialize-filescan sequence might be collapsed into a single index scan with
a predicate if a path-index exists on the path expression in the select predicate*. Fig-
ure 37 shows how this can be useful. Note that the path index scan shown in plan B
does not retrieve any mayor objects from the disk. Thus, if there were a select predicate
on the mayor object, then the mayor objects would actually have to be materialized
from disk. An assembly enforcer is required to make this work. See [BMG93] for a
detailed discussion of this issue. We have incorporated in our optimizer the assembly
enforcer as described in [BMG93]. We conducted experiments to study the effect of
path indexes upon optimization time and the estimated execution cost. In these ex-
periments, there was a 20% chance of a path index being available for evaluating any
given predicate. The selectivity of these predicates varied uniformly from 0 to 100%.
Figures 38 and 39 indicate that while the effect of this feature on the optimization time
is negligible (less that 5%), its use can significantly reduce the estimated cost of the
optimal plan.

If a suitable path index exists, then the improvement in execution cost is often
very large. On the other hand, if there is no such index, then the improvement is
zero. Also, the amount of improvement depends upon the selectivity of the selection
predicate involving the use of the path index. Due to this, there is a large variance in
the scaled execution costs. This accounts for the erratic behavior seen in Figure 39.
We repeated this experiment with controlled settings of selectivity of the predicate and
availability of path index to study their effect upon the performance.

In one experiment, we varied the selectivity of the predicate (used for the path

index) from 1% to 50% while keeping the availability of the path index constant at 50%.

4There can be more than one materialize operations between the select and the filescan.

26

SELECT FILTER UNNEST-ALGO
t.time = 100 t.time = 100 t.team_members: m
UNNEST UNNEST-ALGO FILTER
tteam_members: m| |t.team_members: m t.time = 100
GET FILESCAN FILESCAN
Tasks: t Tasks: t Tasks: t
Query Plan A Plan B

Figure 43: Unnest and Select Operators

Figure 40 shows that for lower selectivities there are significant gains in the estimated
execution cost of the query. These gains decrease as the selectivity is increased. We
have not reported the optimization times, since they are not affected by the selectivity
of the predicate.

In the next experiment, we kept the selectivity of the predicate constant at 10%
and varied the availability of the path index. Figure 42 shows the improvement in
execution cost of the query as the availability is increased. Figure 41 shows that the
increase in optimization time depends upon the availability of path indexes. Every
path index is an extra option to consider during optimization and hence it increases
the size of the search space. However, the increase in optimization time is never worse
than 10%.

These experiments indicate that considering path indexes only marginally increases
the optimization time of a query while providing a dramatic reduction in query exe-
cution time if the predicate is suitably selective. Hence this can be a very effective

optimization technique.

MAT
t.team_manager

ASSEMBLY
t.team_manager

UNNEST

t.team_members: m

UNNEST-ALGO

t.team_members: m

GET FILESCAN
Tasks: t Tasks: t
Query Plan A

UNNEST-ALGO

t.team_members: m

ASSEMBLY
t.team_manager

FILESCAN
Tasks: t

Plan B

Figure 44: Unnest and Materialize Operators

JOIN

p.address = e.address

/

N\

HASH-JOIN
p.address = e.address

J

\

UNNEST-ALGO
e.sales

GET
Persons: p

Query

UNNEST-ALGO

e.sales

UNNEST FILESCAN
e.sales Persons: p
GET
Employees: e
Plan A

\

HASH-JOIN
p.address = e.address

s

FILESCAN
Employees: e

FILESCAN
Persons: p

\

Figure 45: Unnest and Join Operators

FILESCAN
Employees: e

o7

o8

3.2.2 Nesting and Unnesting Set-Valued Attributes

Methods of objects (attributes or links) can be set-valued. In that case, the unnest
operator can be used to flatten such set-valued methods. Figures 43, 44, and 45 show
the various kinds of query processing alternatives that need to be considered by the
optimizer.

We derive an UNNEST operator class and a corresponding UNNESTALGORITHM class
to represent unnesting of set-valued attributes.

The UNNESTEXPAND class derived from TREETOTREEGENERATOR takes an operator tree
and expands it by adding to it an unnest operation that unnests a set-valued attribute
present in its input.

Since unnest is a necessary “feature” and cannot be turned “off”, we do not present
a performance comparison here. All the previous experiments in this section included
the unnest operator. Any method (attribute or link) referred to in the randomly
generated queries, had a 10% chance of being a set-valued method to which an unnest
operator was applied.

The nest operator is the exact inverse of the unnest operator. However, we note
that the nest operator can be considered to be a special case of an aggregate. Due to
this, we do not describe the nest operator and the corresponding optimizations. All

the optimizations described in Section 3.2.4 are applicable to the nest operator.

3.2.3 Optimizing Expensive Predicates

One of the consequences of allowing user-defined types and methods into a database
system is that predicates in a query might invoke user-defined methods/functions that
can be arbitrarily expensive. Due to this, the traditional optimization technique of

pushing all selection predicates below joins isn’t always the best possible plan.

29

The optimization of queries containing expensive predicates is another problem that
must be tackled by object-relational database systems. Unfortunately, modifying the
optimizer so that it considers all possible positionings of the expensive select predi-
cates can be prohibitively expensive because that makes the optimization algorithm
exponential in the number of selects®. [Hel94] describes some heuristics that can be
used to optimize queries containing expensive predicates. Some of these heuristics are
based on ideas and techniques first presented in [MS79, IK84, S192, KBZ86].

These algorithms are based on the following observations.

e The more selective a predicate is, the greater are the benefits of pushing it down.
This is because the applying the predicate causes the number of tuples to be

reduced, reducing the future processing costs.

e The more expensive a predicate is, the greater are the benefits of pulling it up.
This is because, pulling the predicate up causes it to be applied after other
predicates and joins. Consequently, the expensive predicate is evaluated fewer
times (since the other predicates and join filter out many tuples), reducing the

cost of the query.

Based on these observations, the rank of a predicate is defined as

rank — selectivity — 1 (1)
cost_per_tuple

The rank of a predicate is used to determine whether to pull up a predicate or to
push it down. The higher the rank of a predicate, the earlier it should be applied.
In the PushDown algorithm, all selection predicates are pushed below all the joins,
and then they are ordered according to rank. In the PullUp algorithm, all expensive

selection predicates are pulled to the top of the query execution tree and are then

5 Actually, exponential in the number of selects+join

60

30 T
] *
i
! %
3 .'/'I g 14
& i D
] / Z
g 20] ! 7
2] /)
S ! 5
F =
5 £ :
‘a i N
£ 10] / § 05 “pe-QL
£ 10 _.»- without Predicate Placement g .
§ | — PulRank , £ PushDown
--0-- PullRank 4 I | —o—Pulup
4 — x--- PullRank
ﬂ,xg” | --o-- PullRank
-~
f-—‘?—_q T T T T T T] T T T T T T T T T T]
2 4 6 8 10 12 2 4 6 8 10 12

Number of Materialize+Join Operations Number of Joins

Figure 46: Expensive Predicates: Opti- Figure 47: Expensive Predicates: Im-
mization Times provement in Estimated Costs (Scaled)

ordered according to rank. In the PullRank algorithm, an expensive selection predicate
is pulled above a join only if the rank of the selection predicate is lower than the rank
of the join predicate. This is a local decision based only on the ranks of that join
predicate and that selection predicate. Finally, in the Predicate Migration algorithm
an expensive selection predicate is pulled above a group of joins if (and only if) the
combined rank of the group of joins is higher than the rank of the selection predicate.
See [Hel94] for details of these algorithms.

Incorporating the PushDown and the PullUp heuristics into the optimizer required
about a week of effort. The PullRank heuristic required about two weeks of work
and the Predicate Migration algorithm required about a month (mainly debugging).
Figures 46 and 47 show the results of our experiments with these techniques. These
results basically confirm the results of [Hel94].

PullUp and PushDown are very easy to implement, but their performance is rather
erratic and they often produce plans that are much worse than the plans produced

by the other algorithms. PullRank is reasonably easy to implement and in most cases

61

AGGREGATE

WeightedAvg (A,S)
Grouy By Emp.age

v

HASH-JOIN
Emp.dno = Dept.dno

AGGREGATE
Avg(Emp.salary)

Grouy By Emp.age / \

* AGGREGATE HEAPFILE
HASH-JOIN Sum(Emp.salary) as S, Dept
Emp.dno = Dept.dno Count(Emp.salary) as C,
Grouy By Emp.age,

/ Emp.dno
v

HEAPFILE ||HEAPFILE
Emp Dept

HEAPFILE
Emp

Figure 48: Splitting Aggregates

produces reasonable plans. For an Optimizer-Implementor who is willing to expend an
moderate amount of effort, this is the best choice. However, if the database system
makes heavy use of expensive predicates, and performance of queries containing expen-
sive predicates critical, then the extra effort spent in implementing Predicate Migration

is worth the trouble.

3.2.4 Optimizing Aggregates

Optimization of relational queries containing aggregates has received a lot of interest in
recent times due to their extensive use in decision support systems. [YL95] and [CS96]
represent the state-of-the-art in optimization of such queries. These systems describe
how aggregates can be moved around in a query, or even split into two or more parts,
leading to significant improvements in performance.

Figure 48 illustrates how an aggregate that follows a join split into two parts. This

can only be done if the aggregate function happens to be decomposable.

AGGREGATE

Avg(Emp.salary)
Grouy By Emp.dno

v

62

HASH-JOIN
Emp.dno = Dept.dno

/

\

HASH-JOIN
Emp.dno = Dept.dno

L\

HEAPFILE | | HEAPFILE

Emp Dept

AGGREGATE

Avg(Emp.salary)
Grouy By Emp.dno

v

HEAPFILE

Emp

HEAPFILE
Dept

Figure 49: Pushing Aggregates below Joins

10

Optimization Time (seconds, logscale)

—o— Without Aggregate Optimizations
---0-- With Aggregate Optimizations

T T T T T T T T T
2 4 6 8 10

Number of Materialize+Join Operations

Figure 50: Optimizing Aggregates: Op-

timization Times (Log-scale)

12

1.0

0.5+

Improvement in Estimated Cost (Scaled)

T T T T T T T T T T 1
2 4 6 8 10 12

Number of Materialize+Join Operations

Figure 51: Optimizing Aggregates: Im-
provement in Estimated Costs (Scaled)

63

For the definition of a decomposable aggregate, consider the multiset S. Let F' be
an aggregate that operates on all the members of S and returns a single aggregate
value A. This is denoted by A = F(S). Suppose S can be represented as a union of
a number of smaller multisets S = S; U S, U...US,. Here U is duplicate-preserving
multi-set union.

Then, F'is said to be decomposable if there exist a functions F} and F5 such that
A=F(S)=F(S51US;y...US,) = F5,(SA)

where SA is the set {Fy(S1), F1(S2),- .., Fi(Sn)}-

In other words, F' is decomposable if it can be broken up into two computations:
first a partial grouping (using Fi) and then a final merging of groups (using F3).
Note: for full generality, we allow Fi to actually return a composite tuple instead of a
single value. Thus, in the example shown in Figure 48, the function F'is “Avg”, and
the function Fj(z) is actually a composite function that returns the composite value
“[Sum(x), Count(x)]”. The function F; takes the sums and counts produced by F; and
produces their weighted average.

As an added optimization, we note that if the grouping attribute happens to be
the same as the join attribute, and the join is a foreign key equi-join, then the second
aggregate can be avoided. Figure 49 shows how an aggregate that follows a join can
be moved below the join, assuming Dept.dno is a primary key of the Dept relation.

[YL95] describes the necessary and sufficient conditions under which splitting and
moving aggregates is legal.

The situation gets complicated in object-relational systems that allow users to de-
fine arbitrary aggregate functions. [SAH87| describes how a user can define an arbitrary
aggregate function in terms of three user-defined functions. These user-defined aggre-

gates can then be used in queries wherever the traditional SQL aggregates can appear.

64

Some more information is needed to be able to use the aggregate move-around tech-
niques described above. Specifically, it is necessary to know whether a given aggregate
function F' is decomposable or not. And if it is decomposable, the optimizer needs
to know what aggregate function can be used as the function F} and F, for merging
partial groups. Once this information is registered in the system catalogs for every
user-defined aggregate function in the system, the techniques of [YL95] and [CS96] can
be applied directly to user-defined aggregates in object-relational algebras.

To incorporate aggregate move-around techniques into an transformative optimizer,
the transformations shown in the figure can be directly encoded as transformative
TREETOTREEGENERATORs. For the bottom-up System-R search strategy, we have to im-
plement a AGGREGATEEXPAND class derived from the TREETOTREEGENERATOR class. The
APPLY method for this class essentially duplicates the algorithm described in [CS96].
Due to the very subtle semantics of the transformations involving the aggregates, de-
bugging this was a difficult task, and incorporating this optimization into the optimizer
required about two months of effort.

Figures 50 and 51 show the effect of these optimization on the optimizer. The
increase in optimization time is modest while the improvement in estimated cost is
as high as 50% in some cases. It requires a significant effort to incorporate this op-
timization into an optimizer, but the benefits can be significant if the query involves
multiple joins and expensive aggregates. Incorporating this optimization into an opti-
mizer is recommended to an Optimizer-Implementor if the system is likely to have a

lot of complex decision support queries involving aggregates.

1000 =t

100

10

—o— Bottom-Up

---0-- Transformative

— - - Iterated Improvement
— o — Simulated Annealing

— X--- Two Phase Optimization

Optimization Time (seconds, logscal€)

Number of Joins

Figure 52: Comparing Search Strate-
gies (Object-Relational): Optimization
Times (Log-scale)

30 ®

& —o— Bottom-Up
s] ---0-- Transformative
:‘,,5 20 — - Iterated Improvement
5 —o-— Simulated Annealing
g — X--- Two Phase Optimization
5
g
n: B
2 10
g 4
s i
08

LR L L L L

10 20 30
Number of Joins

Figure 54: Comparing Search Strate-
gies (Object-Relational): Memory Re-
quirements

!
;
|
) i
|
§ —-~—- |terated Improvement .
5 o124 —— Bottom-Up (same as Transformative) Il
% 7 —o— Simulated Annedling /
8] —--- Two Phase Optimization !
5 !
g I
2 I
g ;
I] i
114 |
3 i !
! i
E I
17 ;
A / -
5

10 20 30
Number of Joins

Figure 53: Comparing Search Strate-
gies (Object-Relational): Estimated
Costs (Scaled)

65

66

3.2.5 Effect upon Search Strategies

In Section 3.1.4 we performed a comparative study of the various search strategies for
optimization of relational queriesl. We repeated the same experiment for the object-
relational queries, with all the features described in the preceeding sections turned
“on”. Figures 52, 53 and 54 represent the results of that study. We notice a few
changes in the results. For queries with less than 15 join/materialize operations, the
System-R/Volcano search strategies continue to be the best choices. After that, the
randomized strategies give better results. However, we notice that for queries con-
taining more than 25 joins, Iterated Improvement gives better plans results than either
Simulated Annealing or 2PO. This result is different from that of Section 3.1.4, indicat-

ing that a change in the query algebra affects the relative performace of the randomized

algorithms.

3.3 Summary

In this section we have described our experiences building optimizers using OPT++.
We have seen how different operators and algorithms can be added to the optimizer.
We have also seen how different optimization policies (for example, left-deep vs. bushy,
select pushdown ws. exhaustive positioning) can be implemented in OPT++. In addi-
tion to the System-R style bottom-up construction of operator trees, we have also been
able to incorporate algebraic transformation rules in our optimizer. This flexibility has

been achieved without sacrificing optimizer efficiency.

67

Chapter 4

Debugging or Over-riding Faulty

Optimizers

One of the most frustrating experiences for an Optimizer-Implementor is debugging
an optimizer that produces sub-optimal query execution plans. Since the optimizer
examines thousands, or even millions of plan alternatives during the optimization of
a single query, it becomes very difficult to track down the cause of the error. Trying
to make sense of the mass of information that is available is very difficult and time-
consuming for small queries, and almost impossible for larger ones.

Based on our experiences, we believe that debugging the optimizer represents a
very large percentage of the time spent by an Optimizer-Implementor in implementing
a query optimizer. However, we are not aware of any work that addresses this issue.
In this section, we describe how the optimizer itself can be used to greatly simplify the
task of debugging the optimizer.

First we consider the simple problem of an optimizer that produces a sub-optimal
query execution plan (plan A), whereas another plan (plan B) is known to be optimal.
The job of the Optimizer-Implementor is to determine, with the aid of the optimizer,
why Plan B was not produced. In the simplest case, Plan B is supplied to the optimizer
as an input. During the course of optimization, the query optimizer compares Plan B
with the various plans that it produces while exploring the search space. We describe

in Section 4.1 how the optimizer can then indicate to the Optimizer-Implementor the

68

most likely sources of bugs.

In reality, the situation is more complicated. Although an Optimizer-Implementor
might suspect that the optimizer is producing sub-optimal plans, it is not always easy
to find an alternative plan (i.e.Plan B) that is better than the plan produced by the
optimizer. In Section 4.3 we describe how this problem is tackled. The Optimizer-
Implementor provides the optimizer hints about the possible characteristics of the
optimal plan, and lets the optimizer find a better plan. We describe Partial Plan
Specifications, a flexible way to specify some characteristics of a query execution plan.
We then describe how the optimizer can be debugged using Partial Plan Specifications.

All the debugging techniques described in Sections 4.1 and 4.3 apply to optimiz-
ers that use the System-R style dynamic programming search strategy. Since these
techniques are not general enough to be directly applicable to different search strate-
gies, we have chosen to exclude them from the general OPT++ framework. However,
the algorithms described here are incorporated into the bottom-up search strategy
available with OPT++. Hence, an Optimizer-Implementor can very easily modify a
System-R style optimizer (built using OPT++) to incorporate the debugging tech-
niques described in this chapter. In Section 4.5 we discuss how these techniques can
be of some use for debugging optimizers that use other search strategies.

Partial Plan Specifications can also be used to over-ride an optimizer and force it
to produce specific query execution plans that satisfy given constraints. In Section 4.4

we discuss why this would be a useful feature for database users and developers.

4.1 Optimizer Aided Debugging

In this section we will describe the basic ideas behind the optimizer-aided debugging

technique through the use of an example. We describe how a System-R style dynamic

69

HashJoin

LoopsJoin Emp.jno = Job.jno

Emp.dno = Dept.dno

IndexLoopsJoin HeapFile L:oszoin d HeapfFile
o= : Emp.dno = Dept.dno

Emp.jno = Job.jno Job
g Dept /7

Select * f £ Dept. Job IndexSelect IndexSeIe(_:t

elect * from m_p, ept, Jo Emp.name = Lee Emp.name = Lee

where Emp.dno = Dept.dno / HeapFile

and Emp.jno = Job.jno I;:d:_x Index Dept

and Emp.name = Lee Index ob.jno

P Emp.name Emp.name
@) (b) (c)

Figure 55: A Sub-Optimal Query Execution Plan

programming search strategy can be easily modified to give an Optimizer-Implementor
useful We will describe how the Optimizer-Implementor uses hints from the optimizer
to track down the bug that causes the optimizer to produce sub-optimal plans. In the
rest of this section, will use the query shown in Figure 55(a) and an example. Suppose
Figure 55(b) is the plan produced by the optimizer for this query. The Optimizer-
Implementor believes that this plan is sub-optimal, and the plan shown in Figure 55(c)
is the real optimal plan.

The Optimizer-Implementor specifies this “expected” plan as an input to the opti-
mizer and tries to determine why this plan was not produced. We now describe how
the System-R style dynamic programming search strategy is modified to use informa-
tion about the “expected” plan and guide the Optimizer-Implementor in tracking down
the source of the bug. While the query is being optimized, the optimizer constantly
compares the various plans (sub-plans) being generated with the “expected plan” that

is specified to it. The main possible outcomes of this analysis are:

e A sub-tree of the “expected” plan got produced, but got pruned out. This could

have two causes:

— A bug in the cost estimations for these plans causes the “expected” plan to

LoopsJoin
Emp.dno = Dept.dno

e
IndexSelect
Emp.name = Lee

/ HeapFile
Index Dept
Emp.name

(@)

HashJoin
Emp.dno = Dept.dno

IndexSelect
Emp.name = Lee
/ HeapFile
Index Dept
Emp.name
(b)

Figure 56: A bug in cost estimation

seem more expensive (cost-estimation anomaly), or

70

— There is no bug in the optimizer, and the plan produced by the optimizer

is indeed cheaper than the “expected” plan (no anomaly).

e Due to a bug in the enumeration logic, the “expected” plan never got produced.

This could happen if

— An operator tree corresponding to a sub-tree of the “expected” plan did not

get produced. This indicates a bug in some TREETOTREEGENERATOR class

(tree generation anomaly).

— An access plan corresponding to a sub-tree of the “expected” plan did not

get produced, even though the corresponding operator tree got produced.

This indicates a bug in some TREETOPLANGENERATOR class (plan generation

anomaly).

In the rest of this section, we consider these anomalies in greater detail.

71

4.1.1 The Cost-Estimation Anomaly

Consider the sub-plan shown in Figure 56(a). If this sub-plan is pruned out by the
optimizer during the optimization process in favor of another plan (for example, Fig-
ure 56(b)), then the “expected” plan cannot be produced by the optimizer. In this
case, there is some bug in the cost estimation of these plans which causes the opti-
mal one to seem more expensive and get pruned out. The optimizer can now output
this information to the Optimizer-Implementor. The Optimizer-Implementor can use
a debugger to step through the cost estimation functions while they are being used to
estimate the cost of these two sub-plans and can then quickly determine what part of
the code caused the error in cost estimation. The error could either be a mistake in
the code for some cost function, or it could be the result of some statistics from the
system catalogs being incorrect or out-of-date.

Another possibility that we have frequently encountered in such cases is that there
is no bug, and the optimizer was right after all! Sometimes, “intuitively” the plan pro-
duced by the optimizer seems “obviously” sub-optimal and the “expected” execution
plan “seems” to be a better plan. However, after stepping through the cost functions
for the two sub-plans indicated by the optimizer, and looking at the estimates in de-
tails, it turns out that due to the consequences of some details that were missed by the
Optimizer-Implementor, the plan produced by the optimizer is indeed better than the

“obvious” choice.

4.1.2 The Plan Generation Anomaly

Consider the sub-plan shown in Figure 57(a). If the “expected” plan needs to be
produced by the optimizer as the optimal plan, then it is necessary that the sub-

plan shown here should be produced by the optimizer while it explores the search

72

LoopsJoin Join

Egp.dno = Dept.dno E9p.dno = Dept.dno

IndexSelect IndexSelect Select
Emp.name = Lee Emp.name = Lee Emp.name = Lee
HeapFile DBRetI
Index Dept Index EBReI ep
Emp.name Emp.name mp.name
@) (b) (©)

Figure 57: An access plan does not get produced

space. If, during the course of optimization, the optimizer discovers that the sub-plan
shown never gets produced, this clearly indicates a bug in the enumeration logic of the
optimizer.

Let Figure 57(b) be a sub-plan and Figure 57(c) be an operator tree that was
produced by the optimizer during optimization. It should be clear that if both of
these were produced by the optimizer, then the sub-plan in Figure 57(a) should have
been produced by the application of some TREETOPLANGENERATOR.: : APPLY method. If
sub-plan 57(a) was never produced by the optimizer, the bug is clearly in the TREETO-
PLANGENERATOR: : APPLY method.

Now it would be very useful if, at the end of optimization, the optimizer can output
a diagnostic indicating that sub-plan 57(a) was never produced during optimization
even though 57(b) and (c¢) were produced. The Optimizer-Implementor knows that the
access plan should have been produced by the HASHJOINGENERATOR: : APPLY method.
From this the Optimizer-Implementor can easily determine that the bug is either in
the HASHJOINGENERATOR : : CANBEAPPLIED method or the HASHJOINGENERATOR : : APPLY
method.

This information can significantly simplifies the job of debugging the optimizer.

73

Join
Emp.dno = Dept.dno
7

Select
Select Emp.name = Lee
;mp.name = Lee
DBRel DBRel
DBRel Dept Emp.name
Emp.name
(a) (b)

Figure 58: An operator tree does not get produced

The Optimizer-Implementor can now re-run the optimizer with the same input query
and use a standard source code debugger to set a breakpoint at the CANBEAPPLIED
and the APPLY methods of the HASHJOINGENERATOR class and suspend execution when
either of them is being applied to the operator tree of Figure 57(c). Then he can step
through the execution of these functions and find out why the sub-plan of Figure 57(a)
was not produced.

Detection of plan generation anomalies in the general case is described in Sec-

tion 4.2.

4.1.3 A Tree Generation Anomaly

There is another problem that could occur during the optimization of the query con-
sidered in the previous sub-section. It is possible that the operator tree shown in
Figure 57(c) never gets produced. Obviously, if the operator tree does not get pro-
duced, the access plan 57(a) cannot be produced.

Consider the operator trees shown in Figure 58. Note that Figure 58(a) is just
a reproduction of Figure 57(c). If during the course of optimization, the optimizer

discovers that the operator tree shown in Figure 58(b) gets produced, but 58(a) never

74

gets produced, it is clear that when the TREETOTREEGENERATOR : : APPLY method was in-
voked on operator tree 58(b), it never produced operator tree 58(a). Once the optimizer
determines this, it can indicate this to the Optimizer-Implementor. The Optimizer-
Implementor knows that the operator tree should have been produced by the JOINEXP-
AND: : APPLY method. From this the Optimizer-Implementor can easily determine that
the bug is either in the JOINEXPAND: : CANBEAPPLIED method or the JOINEXPAND: : -
APPLY method.

Armed with this information, the Optimizer-Implementor can re-run the optimizer
with the same input query and use a standard source code debugger to set a breakpoint
at the CANBEAPPLIED and the APPLY methods of the JOINEXPAND class and suspend
execution when either of them is being applied to the operator tree of Figure 58(b).
He can then step through the execution of these functions and find out why the operator

tree of Figure 58(a) was not produced.

4.2 Detecting Anomalies

In this section, we describe an algorithm that can be used to efficiently detect cost-
estimation, and tree and plan generation anomalies.

In the beginning, the optimizer is provided with an “expected” plan that it is
expected to produce. While optimization is in progress, the following three types of

events are monitored.

e Every time some algorithm instance (that represents an access plan) is produced,
it is compared against the given “expected” access plan. If it matches some node

of the “expected” access plan, then that node is marked as “plan-produced”.

e Every time some operator instance (representing an operator tree) is produced,

75

it is compared against the “expected” access plan. If it matches some node of

the “expected” access plan, then that node is marked as “tree-produced”.

e Every time an algorithm instance is pruned, it is compared against the “expected”
access plan. If it matches some node of the “expected” access plan, that node is

marked “pruned”.

If at the end of optimization, there is a node of the “expected” access plan that
is marked “pruned”, it represents a sub-plan that was produced by the optimizer but
deleted as sub-optimal. The lowest such node in the tree' indicates the location of a
cost-estimation anomaly. If there is no cost-estimation anomaly, then the lowest node
in the tree that is marked “tree-produced” but is not marked “plan-produced” is the
location of a plan generation anomaly. This is because it represents a node for which
an operator tree was produced, but an access plan wasn’t. Finally, in the absense of
plan generation anomalies, the lowest node in the tree that is neither marked “tree-
produced” nor marked ‘plan-produced” is the location of a tree generation anomaly.
If the “expected” plan is not produced by the optimizer as the optimal plan, then at

least one of the above anomalies will necessarily have occured.

4.3 Debugging based on Incomplete Specifications

In the previous section, we assumed that when an optimizer produced a sub-optimal
query execution plan, the Optimizer-Implementor was aware of a better plan. This is
not always desirable. First, fully specifying an “expected” plan to the optimizer is a
cumbersome and time-consuming task. More importantly, the Optimizer-Implementor

often does not know any better plan. Most of the time, the Optimizer-Implementor

1Specifically, the first such node that is encountered while doing a pre-order traversal of the tree.

76

Algorithm HashJoin

N\

TreeDescriptor:
Relations = Dept

Figure 59: A Partial Plan Specification

only has an instinctive feeling that the plan produced by the optimizer is sub-optimal.

Under these circumstances, we can simplify the job of the Optimizer-Implementor
by allowing him to specify only certain “expected” characteristics of the “expected”
plan, instead of specifying the complete plan. Using a similar procedure as described
in the previous section, it can be determined why a plan with the “expected” charac-
teristics was not produced by the optimizer.

Next, we describe Partial Plan Specifications, a flexible facility for partially spec-
ifying “expected” characteristics of a plan. We then describe how a Partial Plan
Specification can be used instead of the “expected” plan described in the previous

section.

4.3.1 Partial Plan Specifications

A Partial Plan Specification is something that can be used to partially describe a query
execution plan. A Partial Plan Specification can be thought of as a regular expression
pattern such that any given query execution plan will either “match” the pattern, or
not match it. Specifically, a Partial Plan Specification is a tree that represents a part
of a query execution plan. Consider Figure 59. This represents a partial specification
of a query execution plan and specifies “any plan that contains a hash-join with the
relation Dept as its right input”.

In general, a Partial Plan Specification is a tree of Plan Specification Nodes. Each

7

Plan Specification Node consists of a constraint like relations = Dept or operator
= hash-join. A query execution plan “matches” a Partial Plan Specification if the
Partial Plan Specification can be mapped on to a sub-tree if the query execution plan
in such a way that the constraint in each Plan Specification Node of the Partial Plan
Specification is satisfied by the corresponding node in the query execution plan?.

The constraint in a Plan Specification Node can either be of the form operator =
NAME, or algorithm = NAME, or they can refer to properties of the TREEDESCRIPTOR,
or the PLANDESCRIPTOR of that node. relations = Emp, Dept is an example of a
constraint based on properties of a TREEDESCRIPTOR. This constraint is matched by
any node that contains exactly the relations Emp and Dept. Such a constraint may
also use the < or > operators instead of the ‘=’ operator. For example, it could be
relations > Emp, Dept, in which case it is satisfied by any node that contains both
the Emp and Dept relations, and possibly more. Conversely the constraint relations
< Emp, Dept is satisfied by any node that might or might not contain the Emp and
Dept relations, but contains no other relations. An example of a constraint based on
the PLANDESCRIPTOR is sortorder = Emp.name.

A complex constraint can also be arbitrarily composed from simple constraints by
using boolean connectives like and, or and not. Thus, algorithm = indexscan and
relations = Emp matches any plan that uses an indexed scan on the Emp relation.

Figure 60 shows some examples of Partial Plan Specifications. Figure 60(a) shows
a constraint that is matched by any plan that scans the Dept relation using an index.

Figure 60(b) specifies a join order for a query. Finally, Figure 60(c) shows a more

2We note that it is possible to conceive of more general Partial Plan Specifications. One general-
ization is to allow specification of some condition that involves to remote parts of a query execution
plan (that are not necessarily part of the same sub-tree). Another generalization is to allow the spec-
ification of tree patterns based on some sort of regular expression grammer. These generalizations
significantly increase the complexity of the code, as well as the space requirement of the optimizer.
Due to this, we felt that generalizing the Partial Plan Specification was not worth the increase in
complexity.

78

Operator Join

l/) TreeDescriptor:
Operator Join Relations = Supp
Algorithm HashJoin

Operator Join treepescriptor:
/ \ Relations = Job

Operator Index AND Operator Index AND

TreeDescriptor: i TreeDescriptor: TreeDescriptor: TreeDescriptor:
ions = TreeDescriptor: scriptor: S >CTIPEo
Relations = Dept - Relations = Dept, Emp, Job Relations = St
P Relations =Emp Relations = Dept p p
C
@) (b) (©)

Figure 60: Examples of Partial Plan Specifications

general constraint that indicates that the Supp relation must be joined to the composite
of the Dept, Emp and Job relations using a hash-join.

We note that this scheme is easily extensible as far as the Logical and Physical
Query Algebra are concerned. The PLANDESCRIPTOR class and all its member func-
tions and methods are implemented by the Optimizer-Implementor. If the Optimizer-
Implementor wishes to use constraints based on the PLANDESCRIPTOR of some node in
an access plan, he is required to implement a MATCH method on the PLANDESCRIPTOR
class. This method takes a constraint and returns TRUE if the PLANDESCRIPTOR satisfies
that constraint, and false otherwise. A constraint based on the PLANDESCRIPTOR are
not interpreted by OPT++ at all. It is directly passed on to the MATCH method, and
the return value is used to determine whether the plan matches that constraint. In a
similar way, constraints based on the TREEDESCRIPTOR are handled by the TREEDES-

CRIPTOR: :MATCH method.

79

4.3.2 Optimizer Aided Debugging Using Partial Plan Speci-
fications

It is quite easy to extend the optimizer-aided debugging technique of Section 4.1 to
use Partial Plan Specifications instead of a complete plan. Whenever a new operator
or algorithm instance is created during the optimization it is compared with the given
Partial Plan Specification. Whenever there is a match, the corresponding nodes are
marked as “tree-produced” or “plan-produced”. Whenever an algorithm instance that
matches the Partial Plan Specification is pruned out in favor of a plan that does not
match, the corresponding node is marked “pruned”. Detection of anomalies based on
these markings is done exactly as before.

Thus the Optimizer-Implementor can use any Partial Plan Specification to narrow
down the search for the source of bugs in the optimizer. Consider the case where the
Optimizer-Implementor does not know what the correct optimal plan for a particular
query is, but only has a vague idea of what characteristics the optimal plan might have,
(for example, “it probably uses an index for Dept.name and a hash-join for joining
Emp and Dept”). He can then construct a Partial Plan Specification based on those
characteristics and use that to debug the optimizer. It might turn out that the best plan
that satisfies the given characteristics is worse than the plan produced by the optimizer.
In that case, the Optimizer-Implementor will detect this while comparing the costs
of the plans produced, and can repeat this process after modifying the Partial Plan
Specification. This process can be repeated until the bug is found, or the Optimizer-

Implementor is convinced that the optimizer is producing the optimal plan.

30

4.4 Over-riding an Optimizer

Even if an optimizer is “bug-free”, there are a number of situations in which there is
still a need to disregard the plan produced by the optimizer and force it to generate a
plan having some specified characteristics.

The circumstances under which this might be desirable are

e Sometimes, due to incomplete information, the optimizer will produce a bad plan
for some query. If the user (i.e., the end user, not the Optimizer-Implementor)
happens to have more information about the data in the database then a hint
could be given to the optimizer, helping it to produce the right plan. A number
of commercial systems have extended their query languages to allow the user to
specify such hints. This indicates that there is a demand in the real world for

optimizers that take hints.

e For validation of the cost-model during the development of the optimizer, it is
desirable to be able to execute different plans for a given query and compare
costs. In other words, if the optimizer estimates that plan B is more expensive
than plan A, then we would like to actually run both plan A and plan B and

compare their execution times.

e Hints are also helpful for debugging and tuning the execution engine. Often,
during the development of the database, it is desirable to be able to execute
specific plans so as to check certain functionality in the back-end, to debug parts
of the execution engine code, and to profile and tune the performance of the

database.

All these can be easily achieved using the Partial Plan Specifications described in

the previous section. All a user needs to do is supply the optimizer with a Partial Plan

81

Specification indicating to it the characteristics of the “expected” plan. For example,
the user might specify that a certain relation be scanned using a particular index; or
that a certain join be implemented using nested-loops join. Or he could specify the
join order to be used for a subset of the relations in the query.

The search strategy of the optimizer has to be modified to incorporate this func-
tionality into it. Specifically the pruning mechanism would have to be modified so that
it tries to produce plans that match the given Partial Plan Specification. Every plan
that is produced by the optimizer during the course of optimization is marked with a
boolean flag indicating whether or not it matches the given Partial Plan Specification.
When comparing two equivalent plans, the pruning mechanism considers this flag as

follows:

e if one of the plans matches the Partial Plan Specification and the other does not,
then the latter is considered more expensive and is pruned out in favor of the

former.

e if both plans match or do not match the Partial Plan Specification, then they are

compared in the usual fashion, based on their estimated costs.

This ensures that if there exists one or more plans in the search space that match
the given Partial Plan Specification, the cheapest of these plans will be produced as
the result of optimization. If no such plan exists, then the optimizer just functions like

a regular optimizer.

4.5 Debugging other Search Strategies

Unfortunately, the task of debugging an optimizer is intimately tied to the search strat-

egy used by the optimizer. Due to this, the techniques used as a debugging aid have to

82

be tailored to a specific search strategy. Since the System-R style Dynamic Program-
ming search strategy is the most widely used search strategy, we have concentrated
mainly on this strategy. The techniques described in this chapter do not work with
any other search strategy. It is unclear whether these or any other techniques can be
extended for debugging optimizers built using any other other search strategies. We
believe that the simplicity of the bottom-up dynamic programming strategy made it
easy for us to come up with this algorithm for debugging it.

Debugging an optimizer built using other search strategies remains a problem. How-
ever, the problem is slightly alleviated due to the following observation. When OPT++
is used to implement two different optimizers, one based on the bottom-up dynamic
programming strategy, and one based on another strategy, a lot of the code is shared
between them. All code other than the search strategy code and the TREETOTREE-
GENERATORs is shared (the entire the Algebra component, the TREETOPLANGENERATORS
and the PLANTOPLANGENERATORs). In case the search strategy is not a transformative
strategy like the Volcano style strategy, then most of the TREETOTREEGENERATORs are
also shared.

In this case, a lot of the debugging burden can be reduced by first debugging
the optimizer using the bottom-up dynamic programming strategy. This allows the
Optimizer-Implementor to find all the bugs in the code using the optimizer-aided tech-
nique described in this chapter. Then, the Optimizer-Implementor switches over to the
other search strategy. At this point the only code that is different is the TREETOTREE-
GENERATORs and the search strategy code. Further, the search strategy is written only
once and after it has been tested and debugged, it is not changed when an optimizer
for a specific system is implemented. Hence, the Optimizer-Implementor can be fairly

confident that if the optimizer does not behave as expected, the bug lies somewhere

83

in the TREETOTREEGENERATORs code. This considerably reduces the time required for

debugging the optimizer.

84

Chapter 5

Efficient Mid-Query
Re-Optimization of Sub-Optimal

Query Execution Plans

5.1 The Need for Dynamic Re-Optimization

In this chapter, we describe the Dynamic Re-Optimization algorithm that can detect
the sub-optimality of a query plan while executing the query in order to re-optimize
the query and improve its performance. We describe the Dynamic Re-Optimization
algorithm that deals with sub-optimal plans produced by a query optimizer. Our
approach essentially consists of detecting sub-optimality of a query execution plan
during query execution in order to find ways in which the execution of such a query can
be speeded up. During query optimization, the plan produced by the query optimizer
is annotated with the various estimates and statistics used by the optimizer. Actual
statistics are collected at query execution time. These observed statistics are compared
against the estimated statistics and the difference is taken as an indicator of whether
the query-execution plan is sub-optimal. The new statistics (much more accurate
than the initial optimizer estimates) can now be used to optimize the execution of the

remainder of the query.

85

Collection of statistics at run-time can significantly slow down the execution of a
query. Further, re-optimizing part of the query and modifying the query execution plan
at run-time also incurs overheads. This can actually cause the performance of a query
to deteriorate instead of improving. To prevent such problems, we use hints from the
optimizer to determine the most strategic places in the query where statistics should
be collected, and to determine the conditions under which to re-optimize a query.

Our approach is quite different from the competition model proposed by An-
toshenkov [Ant93, Ant96], the dynamic query plans of [GW89] and [GC94], or the
parametric query optimization algorithms proposed in [INSS92]. The differences be-
tween these algorithms and our approach are further described in Section 6 when we
discuss related work.

We first describe the details of this algorithm in Section 5.2. Then, in Section 5.3,
we describe an implementation of the algorithm in the Paradise database system, and

report, the results of a performance study that validates our algorithm.

5.2 The Dynamic Re-Optimization Algorithm

The Dynamic Re-Optimization algorithm tries to detect sub-optimality of a query
execution plan while the query is being executed. If a query execution plan is believed
to be sub-optimal, it dynamically changes the execution plan of the remainder of
the query (the part that hasn’t been executed yet) leading to an improvement in
performance.

These are the salient features of the algorithm:

1. (Annotated) Query Execution Plans: We assume that a conventional query

optimizer is used to produce a query execution plan for a given query. The

36

only requirement on the plan generated by the query optimizer is that the plan
produced by the optimizer should include information about the optimizer’s es-
timates of the sizes of all the intermediate results in the query, and the execution
cost/time for each operator in the query. We refer to such a plan as an annotated

query ezecution plan in the remainder of this chapter.

2. Runtime Collection of Statistics: At specific intermediate points in the query,
various statistics are collected during query execution. These statistics are used to
obtain improved estimates of the sizes of intermediate results and execution costs.
These improved estimates can be compared against the optimizer’s estimates to

detect sub-optimality of the query execution plan.

3. Dynamic Resource Re-allocation: The improved estimates are used to im-
prove the allocation of shared resources (like memory) to the various operators

of the query, leading to improved performance.

4. Query Plan Modification: The improved estimates are also used to deter-
mine whether the remainder of the query execution plan would benefit from

re-optimization. If so, then the remainder of the query is re-optimized.

5. Keeping Overheads Low: Collection of statistics at query execution time
can result in a significant overhead if used indiscriminately. To prevent this
from happening, at query optimization time, the most effective points to collect
statistics are determined, and statistic collection operators are inserted into the

query execution plan at only those points.

In the remainder of this section, we describe each of the above items in detail. We
end the section with an overview of the whole dynamic re-optimization process, and

how it all fits together.

87

Select avg (Rell.selectattrl)
avg (Rell.selectattr2)
Rell.groupattr

Aggregate
| Group by Rell.groupattr

from Rell, Rel2, Rel3 Indexed-Join
where Rell.selectattrl < :valuel Rell.joinattr3 = Rel3.joinattr3
and Rell.selectattr2 < :value2 .
and Rell.joinattr2 = Rel2.joinattr2 Hash_—Jom o Rel3
and Rell.joinattr3 = Rel3.joinattr3 / Rell.jom\attrz = Rel2 joinattr2
group by Rell.groupattr Rel2

Filter

Rell.selectattrl < :valuel
/ Rell.selectattr2 < :value2

Rel1
(a) (b)

Figure 61: A query and its query execution plan
5.2.1 Query Execution Plans

The job of a query optimizer in a database system is to take as input a query (which
is declarative) and produce an execution plan for that query. Figure 61(a) shows an
example SQL query. We will use this query as a running example throughout this
section for illustrative purposes. Figure 61(b) shows a possible execution plan for this
query that might be produced by a query optimizer. An execution plan is essentially a
tree in which each node represents some database operator (like hash-join, indez-scan)
being applied to its inputs.

During the course of optimization, the query optimizer estimates the sizes of various
intermediate results that might be produced, and the cost/time taken by each operator.
As part of the Dynamic Re-Optimization algorithm, we modify the query optimizer so
that these estimates are included in the query evaluation plan that it produces, and
are sent to the database execution engine. In the remainder of this chapter, we refer
to such a plan as an annotated query execution plan. The kind of estimates we expect

the plan to be annotated with are selectivities of selection and join predicates, sizes of

38

Aggregate
Group by Rell.groupattr

ndexed-Join
Rell.joinattr3 = Rel3.joinattr3

Hash-Join \

Rell.joinattr2 = Rel2.joinattr2 Rel3

Statistics Collector
Histogram: Rell.joinattr3 Rel2
/ Unique values: Rell.groupattr

Filter

Rell.selectattrl < :valuel
/ Rell.selectattr2 < :value2

Rel1

Figure 62: Collection of Statistics at run-time

the intermediate results, and estimates of the number of groups in case of aggregate

operators.

5.2.2 Run-time Collection of Statistics

In this sub-section, we describe how statistics can be collected at specific points during
the execution of a query plan. We describe the kinds of statistics that we can collect,
and how this can be done without any I/O overhead. These statistics can then be used
to get improved estimates for intermediate result sizes and operator execution costs. In
this section, we deal only with the method of collecting the statistics. The question of
determining what statistics to collect and at what points in the query execution plan
is deferred to a later section.

We now describe how statistics can be collected for an intermediate result of a query
without any I/O overhead. Consider Figure 62. There is a filter operation that applies
selection predicates to the Rell relation. Just after the filter operation, a statistics

collector operator is inserted into the query execution plan. As the tuples are being

89

produced by the filter operator, they can be examined by a statistics collection routine,
and the required statistics can be gathered without interrupting the normal execution
of the query. Thus, for example, the cardinality of the result of the filter operation can
be computed by keeping a running count of the number of tuples that stream past the
statistics collection routine, and the average tuple size can be computed by keeping a
running average.

There are two limitations of this approach. First, this approach cannot be used
to collect any statistics that cannot be gathered in just one pass of the input. This
is not a severe limitation because, the statistics that we need to gather for Dynamic
Re-Optimization can be computed with reasonable accuracy using this approach. To
compute cardinality and average tuple-size of a relation, a single pass is obviously
enough. Using reservoir sampling [Vit85], histograms can also be computed with rea-
sonable accuracy [PI95]. The number of unique values of a particular attribute (or a
set of attributes) can be computed using the bitmap approach of [FM85] or reservoir
sampling ([Vit85] as described in [PTHS96)).

The second limitation of this approach has to do with the pipelining of operators
in a query execution. If statistics collection is being done in the middle of a pipelined
execution of a row of operators, then none of the operators in the pipeline can benefit
from those statistics. This is because all the operators in the pipeline are executing
concurrently with the statistics collection routine. Hence, the statistics will not be
ready until all the operators in the pipeline have completed a significant portion of
their execution!. This problem is inherent in our approach, but we will see that, in

spite of this limitation, Dynamic Re-Optimization performs well in practice.

1Tt should be noted that a blocking operator, like hash-join, acts as a natural break in a pipeline,
because it consumes all of its first input before producing any tuples of output.

90

An alternative to this would be to actually break the pipeline, and force materi-
alization of intermediate results at points where statistics need to be collected. This,
however, can significantly slow down the execution of a query, and we consider this to
be too high a price to pay.

It should be noted that there is a significant difference between conventional statis-
tics that are computed and stored in system catalogs, and the statistics gathered for
the Dynamic Re-Optimization algorithm. Conventional statistics need to be rather
general in the sense that they are computed once and then used for estimations in
various different types of queries. Consider a histogram built on an attribute a of re-
lation R. This same histogram might be used to estimate the selectivity of an equality
predicate of the form ‘R.a = 10’, a range predicate of the form ‘R.a between 10 and
100’, a join operation such as ‘R.a = S.b’” and to estimate the number of unique values
of R.a (for aggregation). By contrast, histograms constructed for the Dynamic Re-
Optimization algorithm can be very specific because the exact purpose for which the
statistics are being computed is known. This can be exploited to increase the accu-
racy of the estimates. [P195] indicates that different histograms are suited for different
purposes. Hence, the type of histogram and method of computation can be adapted
to the problem at hand.

After statistics are gathered in this fashion during query execution, they can be
used to obtain new estimates for intermediate result sizes and operator execution costs
for the remainder of the query. We note that the statistics collected at run-time
are actually observed statistics, as opposed to estimates (which the optimizer uses).
Further, as described in the previous paragraph, these statistics can be “specific” to the
query being executed. Due to this, the new estimates can be a significant improvement

over the optimizer’s estimates that are included in the annotated query execution plan.

91

We refer to these estimates as the improved estimates in the remainder of this chapter.
In the next two sub-sections, we describe exactly how these improved estimates can be

used to improve the execution of the query.

5.2.3 Dynamic Resource Re-allocation

In this sub-section, we describe how improved estimates can be used to improve the
allocation of shared resources to a query, leading to an improvement in performance.
We first briefly comment upon resource allocation algorithms, and then discuss how
they can benefit from improved estimates.

Most of the state-of-the-art algorithms for basic relational operators like sort, join
and aggregate require a large amount of main memory to perform well with large
datasets. The performance of these algorithms depends critically upon the actual
amount of memory allocated. Assuming a workload of complex queries consisting of a
number of memory-consuming operations, it is unrealistic to expect that the memory
requirements of all the queries can be satisfied. This gives rise to the problem of
deciding how to divide available memory among different queries in the system, and
different operators in the query.

Memory allocation strategies for complex queries can be classified into two cate-
gories. The memory allocation is either decided at query optimization time by the
optimizer [SACT79, C*92], or it is determined at execution time based upon estimated
memory characteristics of the query [MD93, YC93] (or individual operators of the
query [Nag99]). In either case, these algorithms estimate the memory requirements
using statistics, and decide upon an allocation of memory based on the trade-offs in-
volved. Allocating too little memory to a particular query or operation implies that it

has to do more I/0 to make up for the lack of memory, and its performance suffers. On

92

the other hand, allocating too much memory results in under-utilization of memory
(which could have been better used by another operator), again leading to sub-optimal
performance. We do discuss the actual algorithms for memory management and alloca-
tion, but we note that any memory management algorithm that intelligently allocates
memory based on estimated memory requirements runs into the same problems that
face a conventional query optimizer: ¢.e. inaccurate estimates.

As discussed in the previous sub-section, during the course of query execution,
statistics about intermediate query results can be gathered and used to improve upon
the estimates of the query optimizer. These improved estimates can be used to improve
the allocation of memory to the various operators of the query. Specifically, when
improved estimates are available, the memory management module can be re-invoked
and supplied with the new estimates. The memory management module uses these
new estimates to produce a new memory allocation for the remainder of the query.
Overall performance is expected to improve since the new memory allocation is based
on improved estimates.

Consider for example the query execution plan in Figure 63. We now describe how
this actually works in a specific database system (such as Paradise [P797]). In this
plan the filter operator produces 15000 tuples that require 3MB of memory. Based
on this estimate, the maximum memory requirement for each join is estimated at 4.2
MB (size of left input plus overhead), and the minimum requirement is 250KB. Let us
assume that at run-time only 8MB of memory is available for this query. In this case
the Memory Manager believes that the maximum memory requirement for both joins
cannot be satisfied. Hence, it allocates 4.2 MB to the first hash-join (its maximum
memory requirement), allocates only 250KB to the second hash-join (its minimum

memory requirement), and allocates the left over memory to the aggregate operator.

93

15K tuples Aggregate

BMB e, "y Froup by Rell.groupattr
15K tuples
1 V] J— Hash-Join

.'A/Rell.joinattr3=Rel3.joinattr3

- \(........... 40K tuples
Hash-Join oM

/ Rell.joinattr2 = Rel2.joinattr2 Rel3

N,

15000 tuples
3MB e A

Filter 5000 tuples
40K tuples Rell.selectattrl < :valuel Rel2 imMB
8MB erererees =\ / Rell.selectattr2 < :value?2
Rel1

Figure 63: Use of improved statistics to improve memory allocation

This causes the second hash-join to execute in two passes.

If a statistics collector operator is now inserted into the query execution plan just
after the filter operator, (as shown in Figure 62), the exact number of tuples result-
ing from the filter operation can be observed. Let us assume that the actual number
of tuples satisfying the selection predicate is 7500, and not 15000. Now, the maxi-
mum memory requirement for the second hash-join is re-computed and is found to be
2.05MB. The Memory Manager can satisfy this requirement. Using the new memory
allocation, the hash- join of Rel3 can be completed in one pass, resulting in a significant
improvement of performance.

In this chapter, we assume that once an operator starts executing, its memory
allocation cannot be changed. In other words, improved statistics can only be used
to improve the memory allocation for operators that have not begun executing. If,
however, the operators in the database system have been implemented in such a manner

that they can respond to changes in memory allocation in mid-execution, our algorithm

94

Aggregate
Group by Rell.groupattr

ndexed-Join
Rell.joinattr3 = Rel3.joinattr3

Hash-Join \

Rell.joinattr2 = Rel2.joinattr2 Rel3

Statistics Collector
Histogram: Rell.joinattr3 Rel2
/ Unique values: Rell.groupattr

Filter

Rell.selectattrl < :valuel
/ Rell.selectattr2 < :value2

Rel1
Figure 64: A potentially sub-optimal query plan

can be extended to take advantage of this.
Throughout this chapter, we have concentrated only on dynamically improving the
memory allocation for a query. However, similar techniques can be applied to handle

the allocation of any shared resources (e.g. processors in an SMP).

5.2.4 Query Plan Modification

In the previous sub-section, we described a relatively simple change to improve the
execution of a query. The allocation of memory to the various operators in the query
was modified without actually modifying the query execution plan. While that can
result in significant savings in some cases, a much more serious problem with query
execution is that the query execution plan itself might be sub-optimal. For example,
the join order might be sub-optimal, or the choice of algorithms (e.g. hash-join wvs.
indexed nested-loops join) could be improved. In this case, tremendous savings can be
achieved by modifying the query execution plan.

Consider the query execution plan shown in Figure 64. Let us assume that the

95

query optimizer’s estimate for the number of tuples resulting from the filter operation
has a significant error? . Since the remainder of the query plan is based on this estimate,
it is quite possible that the plan might be sub-optimal. At this point it is possible to
use the new statistics to re-invoke the query optimizer and generate a better execution
plan for the query.

We note that at the time the new statistics for the result of the filter become
available, the filter operation has already completed execution, and the build phase of
the hash-join algorithm is also complete. However, the probe phase of the hash-join has
not yet started, and none of the other operators have even started execution. Under
the circumstances, there are three options that the re-optimization algorithm might
consider.

The simplest course of action is to completely discard the current execution, gen-
erate a completely fresh new execution plan for the query, and execute it from the
beginning. This approach has the major disadvantage that it completely discards a
significant amount of work that has been already performed and starts out afresh.
For this approach to succeed, the combined amount of work done by the new query
execution plan and the work that was discarded should be less than the work that
would have been done by the previous plan. It is conceivable that this could be the
case for some query plans, especially if the sub-optimality is detected early. However,
we believe that this approach is too risky, and we do not consider it further in the
remainder of this chapter.

The second option is to suspend execution of the query, and only re-optimize those

parts of the query that have not started executing. In the example above, the filter

2There are a number of reasons why this can happen even if there are state-of-the-art histograms
on the base relation. The histograms might be out-of-date. The filter might involve two different

correlated attributes of the relation (e.g. ‘Rl.a = 10 and R1.b = 20’) and the histograms do not
capture the correlation. Or, the selection predicate might have a user-defined function in a external
language, in which case there is no way for the database system to estimate the selectivity of the filter.

96

Aggregate

Group by Rell.groupattr Aggregate

Group by Rell.groupattr
Indexed-Join

/ Rell.joinattr3 = Rel3.joinattr3 Hash-Join
\ Rell.joinattr3 = Rel3.joinattr3
Hash-Join Rel3 \
Rell.joinattr2 = Rel2.joinattr2 HashZJoin Rel3
/ \ Rell.joinattr2 = Rel2.joinattr2
Statistics Collector / N

Histogram: Rell.joinattr3 Rel2

. Statistics Collector
/ Unique values: Rell.groupattr

Histogram: Rell.joinattr3 Rel2
/ Unique values: Rell.groupattr

Filter

Rell.selectattrl < :valuel Filter

Rell.selectattr2 < :value2 Rell.selectattrl < :valuel

Rell.selectattr2 < :value2
Rel1

Rel1

Figure 65: Re-optimization of a plan without discarding any work

operation is already complete and hash-join is also partially done. However, the indezed
nested-loops join and aggregate have not yet begun execution. Hence, a plan involving
these two operators can be modified without having to discard any work. Specifically,
the query optimizer is re-invoked with new statistics. It is also given the information
that the filter and the build phase of the hash-join is done. The query optimizer then
produces a new plan in which the filter and the hash-join are left as they are, but the
remainder of the plan is re-optimized. This situation is pictured in Figure 65.

While we believe that this approach is the best under the circumstances, it does
require significant modifications to the query scheduler of the database system to make
it work. Specifically it requires the ability to suspend a query in mid-execution, and
to modify the query execution plan of the remainder of the query (without the knowl-
edge of the operators that are already halfway through their execution) and to resume
execution using the new plan. While this concept is easy to grasp, actually implement-
ing it in a real system can be a problem, especially if the scheduler was not initially
designed to handle situations like this.

To tackle this problem, we modified the algorithm slightly to get a new algorithm

97

select avg (Templ.selectattrl), Aggregate
avg (Templ.selectattr2), Group by Templ.groupattr
Templ.groupattr

from Templ, Rel3 |

where Templ.joinattr3 = Rel3.joinattr3

group by Templ.groupattr Hash-Join

Templ.joinattr3 = Rel3.joinattr3

t /N

Output to Temp1®-.... . Rel3
/ Temp1

Hash-Join
Rell.joinattr2 = Rel2.joinattr2

\
Statistics Collector Rel2
Histogram: Rell.joinattr3
/ Unique values: Rell.groupattr

Filter
Rell.selectattrl < :valuel

/ Rell.selectattr2 < :value2
1

Figure 66: Re-optimization of a plan by materializing intermediate results

that is less efficient, but is much easier to implement. Figure 66 shows how this works.
In this approach, we do not suspend the execution of the query, but let the currently
executing operators (i.e. the hash-join involving Rel2) run to completion. However,
instead of piping output to the next operator in the query execution plan, it is re-
directed to a temporary file on disk. Now, SQL corresponding to the remainder of
the query is generated in terms of this temporary file. This modified query is then
re-submitted to the parser/optimizer like a regular query?.

When to re-optimize: Re-optimizing a query has a significant overhead asso-
ciated with it. First, there is a non-trivial cost associated with re-parsing and re-
optimizing a query. Second, if the re-optimization forces an extra materialization of
an intermediate result, the cost of writing and reading that result is incurred. For this
reason, re-optimization of a query is not triggered every time the statistics of an in-

termediate result are observed to be different from the optimizer’s estimates. Instead,

30f course, care has to be taken to ensure that the new query executes in the same transaction
context as the previous one.

98

this decision is made using some heuristics based on the (estimated) costs involved.

Let Teur—plan,optimizer b€ the optimizer estimate for the time required to execute
the current plan. Let Ty pian,improvea b€ the improved estimate for the same. Let
Tinaterialize,estimatea D€ the estimated overhead for materializing (writing and reading)
the intermediate relation. Let us assume that the optimizer is actually re-invoked
and it produces a new plan for the remainder of the query. In this case, let Ty sctual
be the time that would be required to re-parse and re-optimize (the remainder of)
the query. Let Tyey—pian,tota be the total estimated time for executing the new plan
(including the time for work already completed, the time for optimization, the time
for materialization, and the time to execute the remainder of the query using the new
plan).

Obviously, re-optimization should be considered only if Tur—pian,improved > Tnew—plan, total -
Unfortunately, is not known until the optimizer is actually re-invoked. Let us, for the
moment, assume that T,y cma 15 always negligibly small. In that case, the solution is
easy. When observed statistics are found to be different from the estimated statistics,
the optimizer is invoked to produce a new plan (since this step is considered negligibly
cheap) and an estimated Tyew—plan,totat- NOW, if Tnew—piantotat < Teur—plan,improved, the
new plan is accepted and we take the steps required for dynamic modification of the
plan (i.e. materializing the intermediate result, and then executing the new plan using
the materialized result). If, however, this is not the case, then we reject the new plan,
and continue execution as before. In this case, no materialization of the intermediate
result needs to be done, and the only overhead incurred is the Top; 4etuar Tequired to
getting an estimate for They— pian, totai -

Unfortunately, Tops actuar is not always negligibly small and the overhead can be

significant. We note that it is not too difficult to get a conservative estimate for

99

Topt,actua- Let us call this estimate Top; estimated- The time taken to optimize a query
does not depend upon the sizes of the datasets involved. Rather, it depends upon
the number of operators in the query. Mainly, the cost is dominated by the cost
of enumerating the various join orders for the query. Assuming the worst case, a
query containing n joins requires the most time for optimization if it is a star-join
query [OL90]. The time taken to optimize a star-join query containing n joins is
usually rather stable for a given optimizer and database system. Hence, an optimizer
for a particular database system can be calibrated to obtain these estimates.

Now, we use a couple of heuristics to determine whether it is worth spending
Topt,estimatea time to re-invoke the optimizer. First, we note that re-optimizing is prob-
ably not worth the trouble unless the query execution time is much higher than the

optimization time. Specifically, we use the heuristic,

Topt,estimated > 01 (2)

Tcur—plan,improved

In this equation #, is a parameter for the Dynamic Re-Optimization algorithm, and
should be a small quantity like 0.05. The optimizer is not re-invoked if equation 2
holds.

Another point to be noted is that re-optimization is probably not worthwhile unless
there is reason to believe that the current plan might be sub-optimal. To model this,
we use the difference between Tiyr—pian,optimizer a0d Teur—pian,improved @ an indicator of

whether the current plan is likely to be sub-optimal. Specifically we re-optimize only

if

Tcur—plan,impmved - Tcur—plan,optimizer
> 6 (3)

Tcur—plan,optimizer

100

In this equation 6, is another parameter for the algorithm, and is set at approxi-

mately 0.2.

5.2.5 Keeping overheads low

So far in this section, we have described the Dynamic Re-Optimization algorithm, based
on the assumption that “statistics” are collected at “key” points during the execution
of a query. In this sub-section, we describe exactly what “statistics” are collected, and
what are the “key” points in the query.

Obviously, the decision about what statistics to collect needs to be made at query
optimization time. After a conventional optimizer has produced a query execution
plan, we process this plan and insert statistics-collection operators at various points
in the query execution plan. We will refer to this algorithm as the statistics-collectors
insertion algorithm. This algorithm determines what are the “most effective” statistics
to collect, and produces a plan containing the appropriate statistics collection opera-
tors. A simple solution would be to measure cardinalities, sizes, and histograms at all
intermediate points during the execution of the query. As described in Section 5.2.2,
collection of statistics at query execution time is relatively cheap since there is no
I/O overhead. Nevertheless, the CPU overhead itself can be significant in some cases.
For the queries that benefit from Dynamic Re-Optimization, the savings achieved by
re-optimization out-weigh the overheads associated with statistics collection, but for
queries that do not get re-optimized, the overhead actually results in an increase in the
query execution time.

The Dynamic Re-Optimization algorithm is useful for detecting certain kinds of

sub-optimalities in complex queries. However, there are a number of queries for which

101

Dynamic Re-Optimization does not help. Obviously, if the plan produced for a par-
ticular query is already optimal, or close to optimal, re-optimization does not help.
Another possibility is that the query might be too simple (for example, consisting
of just one join). In this case, even if the query plan produced by the optimizer is
sub-optimal, Dynamic Re-Optimization is not useful, because by the time collection of
statistics is complete, most of the query is also done executing. Thus, even though the
new statistics may indicate that the query plan was sub-optimal, it is too late to do
anything about it.

The Dynamic Re-Optimization algorithm is not targeted towards these queries.
However, it is important that their performance does not suffer if the Dynamic Re-
Optimization algorithm is used. If possible, statistics collection should be entirely
avoided for such queries. If not, steps should be taken to ensure that the overhead
introduced is kept acceptably low.

Due to these considerations, it becomes important to carefully choose what statistics
are collected at query execution time. There is an important trade-off to be considered
here. Collecting statistics at too many points in the query can lead to an unacceptably
high overhead. On the other hand, if statistics are collected at too few points in the
query, some of the sub-optimalities in the query execution plan might not get detected,
leading to the loss of some optimization opportunities.

We now describe the statistics-collectors insertion algorithm that is used to de-
termine what statistics to collect during query execution. For the remainder of this
chapter, we assume that the time required for measurement of cardinality and size
(in pages) of a table, and the minimum and maximum values for its attributes, is
negligible. Hence, we assume that these statistics are measured for all intermediate

results in a query. The statistics-collectors insertion algorithm will be restricted only to

102

computations of histograms and estimations of number of unique values of a particular
attribute (or set of attributes). If, however, in a particular database system, measuring
cardinality/size has a significant overhead associated with it, the same techniques can
be applied to them as well.

The statistics-collectors insertion algorithm starts by making a list of all the po-
tentially useful statistics that can be computed. For a given intermediate table, a
histogram on a particular attribute is potentially useful if that attribute is part of a
join predicate or a selection predicate later on in the query execution plan. Similarly,
computing the number of unique values of an attribute (or set of attributes) is po-
tentially useful if that attribute (or set) is part of a group-by clause of an aggregate
operation later in the query execution plan. Given this list of potentially useful statis-
tics, we need to determine which ones should be discarded, and which ones computed.

The mazimum acceptable overhead, p (specified as a fraction of the total execu-
tion time of the query), is an external parameter supplied to the algorithm. Thus,
if Teur—pian,optimizer 15 the optimizer’s estimate of the query execution time, then p X
T eur—plan,optimizer 15 the maximum time that can be allocated to the collection of statis-
tics. Now, we need to determine a subset of the potentially useful statistics that take
less than p1 X Teyr—pian,optimizer time to compute, and which are “most effective” in de-
tecting the sub-optimality of a plan. To be able to do this, we need to estimate two
things. First, we need to estimate the cost of computing each of the statistics. This
can be easily estimated using the optimizer’s estimates of the sizes of intermediate
results. Second, we need some measure of the “effectiveness” of a particular statistic
in detecting sub-optimality of a plan.

Two key factors are considered while deciding the effectiveness of statistics in de-

tecting sub-optimality of a query execution plan. The first factor is the probability

103

that the corresponding optimizer estimates are inaccurate. If there is a high proba-
bility that the optimizer’s estimates are accurate, then there is not much reason to
actually observe the statistics at run-time. The second factor is the fraction of the
query execution plan that is affected by that particular statistic. The larger the frac-
tion of the query that might be affected by a statistic, the more effective is the statistic
at detecting sub-optimality of a plan.

The first question that we ask is what are the chances that the optimizer’s estimates
corresponding to that attribute are inaccurate? For example, if there is an equality
selection on a particular attribute of a base table, and there exists a serial histogram
on that attribute, then chances are very high that the optimizer’s estimates for the
result of the selection operator are very accurate [PI95]. On the other hand, if there
is neither a histogram nor an index on that attribute, chances are very high that the
optimizer’s estimates are rather inaccurate. In that case, computing a histogram on
the result at run-time is likely to be very useful.

We chose to use a heuristic value called an inaccuracy potential to capture the
likelyhood of an optimizer estimate being inaccurate. The statistics-collectors insertion
algorithm assigns an inaccuracy potential level of low, medium or high to the various
optimizer estimates in a query execution plan using the following rules. An inaccuracy
potential of high for a particular statistic indicates that there is a high possibility of the
corresponding optimizer estimate being inaccurate. We first assign inaccuracy potential
levels to the statistics on base tables found in catalogs. Then the inaccuracy potential
levels are propagated upwards in the query execution plan.

It might have been possible to formulate an algorithm that uses numeric values
for inaccuracy potential (as opposed to the qualitative low, medium and high). This

could be based on various error formulae for the optimizer estimation functions and

104

histograms. However, given the number of variables and the number of approximations
in this algorithm, we felt that the extra effort would not necessarily result in any
significant improvements. Due to this, we chose to use a set of heuristic rules for

determining the inaccuracy potentials based on our experiences:

e The inaccuracy potential for a histogram on an attribute of a base table is low if
it has a serial histogram, medium for equi-width and equi-depth histograms, and

high if there is no histogram.

e If the system catalogs contain estimates for the number of unique values of a
particular attribute of a base table, the inaccuracy potential for this estimate is
low. The inaccuracy potential for the number of unique values of an attribute
(or set) at any intermediate point in a query execution plan is always high. (In
other words, the inaccuracy potential for number of unique values is low only for

attributes in a base table, and is high in all other cases.)

e Some database systems have information available about the update activity on
a table since the last time statistics were updated. In this case, the inaccuracy
potential level for all statistics is increased one level if there has been significant

update activity since the last time statistics were collected.

e The inaccuracy potential for the output of a selection operator involving a simple
predicate is the same as the inaccuracy potential of its input. In other words,
inaccuracy potential is low if there exists a serial histogram on the input, medium

for equi-width and equi-depth histograms and high when there are no histograms.

e If a selection predicate involves two or more attributes of the relation, then in-
accuracy potential of the output is one level higher than the inaccuracy potential

of the input. In other words, if the inaccuracy potential for input is low, then

105

wnaccuracy potential for output is medium, and if the input is medium or high,
wnaccuracy potential is high. This increase in inaccuracy potential is due to the

possibility of correlations that are not captured by the histograms.

e If a selection predicate involves user-defined methods, the inaccuracy potential of

output is always high.

e Consider an equi-join where the join attributes are keys for the corresponding
tables. In this case, the output can be estimated rather accurately if the input
is known. Due to this, the tnaccuracy potential for the output of an equi-join on
key attributes is the same as the maximum ¢naccuracy potential of its inputs. If
the equi-join is on a non-key attribute, then the inaccuracy potential is one level

higher than the inaccuracy potential of its inputs.

e The inaccuracy potential for non-equi-joins is always high.

e The inaccuracy potential for the output of an aggregate operator is the same as
the inaccuracy potential with which the number of unique values for the grouping

columns is known in the input.

The other factor in determining effectiveness of computing a particular statistic is
the fraction of a query execution plan that is affected by that statistic and has not yet
executed. Consider Figure 67. This figure shows two statistics being collected at query
execution time. One is a histogram on the attribute Rell.joinattr3 in the output of
the filter operation, and the other is the number of unique values of the Rel1.groupattr
attribute. Now the joinatird attribute is part of the join predicate in the indezred nested-
loops join pictured in the figure, and hence the corresponding histogram is useful in
estimating the cost of that join and the size of its output. Hence, the portion of the

query execution plan affected by the histogram on the joinatirs attribute consists of all

106

» Aggregate
Group by Rell.groupattr

............... » Indexed-Join
— / ndexed-Join

Hash-Join
/ Rell.joinattr2 = Rel2.joinattr2 Rel3

Statistics Collector Rel2

- Histogram: Rell.joinattr3
Frassnnnnnnnnn Unique Values: Rell.groupattr

Filter

Rell.selectattrl < :valuel
/ Rell.selectattr2 < :value2

Rel1
Figure 67: Fraction of a query affected by statistics

the operators after that join. On the other hand, the number of unique values for the
groupattr attribute is only useful for the aggregate operation. Hence the portion of the
query execution plan affected by this statistic consists only of the aggregate operation.

Now the relative effectiveness of two different statistics is compared as follows.
If one statistic has a higher inaccuracy potential, then that statistic is considered to
be more effective in detecting sub-optimality of a plan. If the inaccuracy potentials
for two statistics are the same, then the statistic that affects a larger portion of the
query execution plan is considered more effective. Using these rules, the list of all
potentially useful statistics is ordered according to increasing effectiveness. Now, we
begin deleting the least effective statistics from this list one by one until the total
estimated time for computing all the statistics drops below the maximum acceptable

overhead (Tcur—pian,optimizer)-

107

5.2.6 Summary

To summarize, this is how the entire Dynamic Re-Optimization algorithm works. First
a conventional optimizer is used to generate a conventional query execution plan for a
query. Then the statistics-collectors insertion algorithm is invoked to insert statistics-
collection operators into the query execution plan. The statistics-collectors insertion
algorithm ensures that the statistics-collection operators inserted into the query plan
do not slow down the query by more than a fraction . The output of the statistics-
collectors insertion algorithm is the final static plan for the query that can be stored
in the database system. We note that this plan contains all the optimizer’s estimates
for the sizes of various intermediate results and the execution times for the operators
in the query.

At query execution time, the statistics-collector operators that have been inserted
into the query gather statistics on the intermediate results of the query execution.
These statistics are then used to obtain improved estimates for the execution times
for the remaining operators of the query. These estimates are compared with the
optimizer estimates that are stored as a part of the query plan. If the estimates are
significantly different, and the query is expensive enough to warrant re-optimization,
then the query optimizer is re-invoked to obtain a new plan for the remainder of the
query. If the estimated total execution time for the new plan (including overhead of
re-optimization and materialization of intermediate results) is less than the estimated
execution time of the old plan, then the execution plan for the remainder of the query

is replaced with the new plan.

108

v

Query | Memory Scheduler & Data
Optimizer | Manager Dispatcher Server

Figure 68: Query Execution in Paradise

5.3 Implementation and Performance

As an experimental validation of the Dynamic Re-Optimization algorithm we imple-
mented it in the Paradise database system [P*97]. In this section, we report some of the
results of our experiments. First we describe the details of the actual implementation of
the Dynamic Re-Optimization algorithm in the context of Paradise, and its interactions
with the memory management module of Paradise. Then we study the performance
of the Dynamic Re-Optimization algorithm using datasets and queries based upon the
TPCD benchmark specification [Raa95]. We also performed some experiments using

skewed datasets to measure the effect of skew on performance.

5.3.1 Implementation in Paradise

Paradise is a database system designed to handle rich data-types through the use of
Abstract Data Types (ADTs) and provides scalability through the use of parallelism.
In our experiments, we concentrated mainly on the relational features of Paradise.
Figure 68 shows some of the components of the Paradise system that are involved
in optimizing and executing a query. The query optimizer is built using the OPT++
architecture [KD98], and uses a conventional dynamic programming algorithm based
on the System-R optimizer [SAC*79]. The cost estimates in the optimizer are based
on histograms stored in the system catalogs. The system uses MaxDiff histograms
as described in [PI95]. This produces a static plan that contains the query execution

strategy as well as the optimizer’s estimates of the sizes of intermediate query results.

109

This annotated plan is submitted to the database engine for query execution.

At query execution time, the Memory Manager of the database engine determines
the allocation of memory to the various operators of the query. It determines the
memory requirements (minimum and maximum memory demands) of each operator
using the estimates provided by the optimizer. Based on the memory requirements
of each operator, and by considering the trade-offs involved, it allocates some amount
of memory to each operator. The amount of memory thus allocated to an operator
represents the maximum memory that the operator is allowed to use during execution.
If all the data required by the operator does not fit into the allocated amount of
memory, it has to spill some of the data to disk. Details of the Memory Management
module of Paradise are described in [Nag99).

The Memory Manager annotates a query execution plan with memory allocation
values, and hands over the plan to the query scheduler and dispatcher for execution.
The query scheduler and dispatcher executes a complex query execution plan in phases
by partitioning it into a number of segments. Each segment is a subset of the operators
in the query execution plan that can be executed concurrently. Typically, a segment
consists of a set of consecutive operators that can be executed in a pipelined fashion.
The different segments of a query execution plan are executed one after another in
sequence. The dispatcher dispatches a segment of operators to the data-servers and
waits for them to complete execution. When all the operators of a segment complete
execution, a message is sent to the dispatcher, and it advances to the next segment in
the execution plan.

Figure 69 shows how we modified Paradise to incorporate Dynamic Re-Optimization.
First, the statistics-collectors insertion algorithm (SCIA) was added as a post-processing

phase after the query optimizer. This takes the query execution plan produced by the

110

..

3
3
5
3

£ £
Query Memory Dynamic Re-
Optimizer SCIA Manager Optimization
Scheduler & I Data
Dispatcher Server

Figure 69: Query Execution with Dynamic Re-Optimization

optimizer and inserts statistics collection operators in it as described in Section 5.2.5.
The scheduler-dispatcher is modified to take into account the Dynamic Re-Optimization
algorithm. As in the previous design, after the Memory Manager is done with memory
allocation, it hands over the plan to the scheduler and dispatcher. This partitions the
plan into segments and begins dispatching each segment in sequence.

In the new scheme, when a segment is dispatched to the data-servers to be exe-
cuted, it might contain statistics-collector operators. As far as the data-servers are
concerned, these are regular operators similar to hash-join or index-scan. The only
difference is that when a statistics-collector completes execution, it sends back to the
dispatcher a message containing the statistics collected. At this point, the Dynamic
Re-Optimization algorithm in the dispatcher is invoked. This can do one of three things
at this point. First, it uses Equation 2 and Equation 3 (discussed in Section 5.2.4) to
determine whether to consider re-optimizing the query. If the answer is yes, it invokes
the query optimizer and obtains a new plan for the remainder of the query, using the
new statistics. Then it uses the optimizer estimate of the cost of execution of the new
plan to determine whether the cost of the new plan is actually less than the estimate
for the old plan in spite of the re-optimization overhead. If this is true, the Dynamic
Re-Optimization algorithm instructs the data-server to finish execution of the last op-
erator and write the result to a temporary file. It deletes all the state information

for the old plan from the dispatcher data-structures and then submits the new query

111

plan for execution. If the new plan is not cheaper than the old plan, then the dynamic
re-optimizer continues working with the old plan. However, it uses the new estimates
to invoke the Memory Manager again to obtain an improved memory allocation for the
plan based on the improved statistics. This process continues until the query completes
execution.

In addition to implementing the Dynamic Re-Optimization and the statistics-collectors
insertion algorithms in the system, we had to add the statistics-collector operator to the
data-server. The statistics-collector operator was added as a regular streamed operator
(similar to the filter operator). It took a stream of tuples as its input and produced
exactly the same stream of tuples as its output. Since this operator just needs to ex-
amine the tuples without modifying or discarding any of them, it can be implemented
without requiring an extra copy. To compute the size of the relation, the number of
tuples, and the minimum and maximum value for an attribute, we maintain a single
value that is updated after each tuple is examined. For computing a histogram, one
database page is allocated to hold a reservoir sample [Vit85] for the histogram. As each
tuple is examined, the value of the corresponding attribute is copied into the reservoir
according to the sampling technique described in [P195]. When all the tuples from the

input are exhausted, the reservoir is examined to build the histogram.

5.3.2 Experimental Results using TPC-D queries

To study the effect of Dynamic Re-Optimization on real queries, we performed exper-
iments using some TPC-D queries. The TPC-D dataset generator was used with a

scale factor of 3 to generate a 3GB database. Using this database, we ran queries Q1,

112

Q3, Q5, Q6, Q7, Q8, Q10 described in the TPC-D specification [Raa95]*. All the ex-
periments were run on a cluster of 4 PCs each configured with dual 133 Mhz Pentium
processors, 128 MB of memory, dual fast and wide SCSI-2 adapters (Adaptec 7870P),
and one Seagate Barracuda 2.1 GB disk drive (ST32500WC). Solaris 2.5 was used as
the operating system. The processors were connected using 100Mbit/second ethernet
and a Cisco Catalyst 5000 switch that has an internal bandwidth of 1.2 GB/second.
The buffer pool was kept at 32MB at each node of the system. We purposely chose not
to have a larger buffer pool since we wanted to study the effect of memory management
techniques on query optimization. Refer to [Raa95] for the specifications of the queries.
We ran each query with and without the use of Dynamic Re-Optimization. Each query
was executed 5 times and the average execution time was reported.

In all these queries, we set the value of y (maximum allowable overhead) to 0.05
ensuring that none of the queries ever performed 5% worse than normal. The param-
eters #; and Ay were kept at 0.05 and 0.2 respectively. An analysis of the sensitivity
of the Dynamic Re-Optimization algorithm to the values of u, 6, and 65 is contained
in [Kab98|.

Based on the expected effects of Dynamic Re-Optimization on different types of
queries, we can classify all queries into three categories. Queries that contain zero or
one joins will never get re-optimized. We refer to such queries as simple queries. Queries
containing two or three joins will usually not benefit much from plan modification, but
might see some benefits from improved memory management. We refer to this category
of queries as medium queries. Finally, all queries containing four or more joins are the

primary targets for which Dynamic Re-Optimization is designed. We will refer to them

4The other queries in the TPC-D benchmark specification were not included in our experiments
because some of the necessary features were not supported by Paradise. For the same reason, minor
modifications were made to the queries that where included. In all cases where a query contained
aggregates over expressions (e.g. SUM (L_.EXTENDEDPRICE*(1-L DISCOUNT))) we replaced it

with a simpler aggregate expression (e.g. SUM (L.LEXTENDEDPRICE)).

113

7 1600 450 120 O Normal
c
S 1400 ggg 100] B Re-Optimized
8 1200 | T
2 1000 | 300 - 80
= 250 - 60
5 8001 200 _
3 600 A 150 40
g 400 - 100 - 20 |
2200 50
3 o 0- 0-

QL Q6 Q3 Q10 Q5 Q7 Q8

Simple Medium Complex

Figure 70: Performance of Dynamic Re-Optimization
500 120
100
80
60 Hil
40 H
20 Hil
o LIl

B No Re-Optimization

B Memory Management Only
E Plan Modification Only
OBoth

400
300
200

100

0

Query execution time (seconds)

Q3 Q10

Medium Complex

Figure 71: Isolating the effect of improvements due to memory management and plan
modification

as complex queries. In the query set that we used, Q1 and Q6 are simple, Q3 and Q10
are medium, while Q5, Q7 and Q8 are complex.

Figure 70 shows the results of our experiments. We see that queries Q1 and Q6 do
not benefit at all from Dynamic Re-Optimization. This is an expected result, since these
are simple queries. We see a small increase in the execution time for Q1, indicating the
overhead of statistics collection. Q3 and Q10 show modest improvements (upto 5%)
in performance, while the complex queries show larger improvements (10 to 30%).

From the previous experiment, it is unclear how much of the performance improve-
ment is due to improvements in the memory allocation for the query and how much

is due to plan modification. To isolate these effects we performed another experiment

114

z=03 z=06
_ 600 600
7600 600 @ Normal
g 500 - 500 4 500 | 500 A m Re-Optimized
G - m
Y| 400 400 | 400
o] 300 - 300 | 300 |
=20 200 200 | 200
X
5 100 100 - 100 | 100
[}
& o 0- 0 0-
@ Q10 @ QT8 Q3 Q10 Q5 Q7 Q8
Medium Complex Medium Complex

Figure 72: Effect of skew

in which the Dynamic Re-Optimization was run in two different modes. In one mode,
the improvements in statistics were used solely for improving the memory management
of the query, and plan modification was turned off. In the second mode, dynamic re-
allocation of memory was turned off and only plan modification was used to improve
the performance of the query. The results of this experiment are shown in Figure 71.
A couple of interesting observations can be made about these results. First, we see
that all the medium queries benefit only from improved memory management. Second,
the compler queries benefit from both, improved memory management, as well as plan
modification. They see a small improvement (5 to 10%) due to memory management
and a larger one (10 to 20%) due to plan modification. Since the simple queries are
not really affected by Dynamic Re-Optimization we have not included them in this or
later experiments.

We also ran some experiments to study the effect of skew on the performance
of Dynamic Re-Optimization. For this, we used the same queries with skewed data.
Instead of generating TPC-D data with uniform distributions, we modified the data
generator to skew all non-key attributes using generalized Zipfian distribution ([Zip49]

as described in [P0095]). We ran two sets of experiments with values for the Zipf factor

115

£
= 1 —O—__
- =
o} NN
= \O——p
3 ~
)] N ~g
< X ~~
Al ~ ~
e ><\\. o
= * \\D\
~
% 0.5+ ~><\\\x o
5 . ‘\\
S Sx
IS —o— Memory Management Only
- — O — Plan Modification Only
—x--- Both
T T T T T T T T 1
2 4 6 8 10

Number of Joins

Figure 73: Dynamic Re-Optimization: Random Queries

(z) value set at 0.3 and 0.6. The results of these experiments are plotted in Figure 72.
Comparing these charts with the charts for the uniform data (Figure 70) we see that
the relative performance of Dynamic Re-Optimization improves slightly as more skew
is introduced in the system. In some cases the benefit from re-optimization actually
decreases when skew increases (for example Q10). This can be attributed to the fact
that in some cases, the accuracy of serial histograms actually increases when skew is

increased.

5.3.3 Experimental Results Using Randomly Generated Queries

In the previous section, we conducted a performance study based on a few TPC-D
queries. Since the number of queries were very limited, there is a chance that the
results might not be statistically skewed. To overcome this problem, we repeated
similar experiments with randomly generated queries over a synthetic database.

We used a database which had ten relations of different sizes from containing about

116

10000 to a 100000 tuples. The sizes ranged from 10MB to 100MB. The total size of the
database was about 2.5GB. We randomly generated queries containing 1 to 10 joins.
Each relation in a query had a select predicate defined on it. The selectivity of the
predicate had a uniform probability of being either 1%, 5%, 10%, 20% or 50%. Each join
had a 90% chance of being a foreign key join, 10% chance having a non-key attribute in
the join predicate. Each query had a 90% chance of having an aggregate in the project
list. The aggregate function, the aggregating columns and the grouping columns were
picked randomly. Each data-point in the graphs represents three randomly generated
queries. Each query was run 5 times and the average time was reported. We used the
same hardware platform as in the previous section.

Figure 73 shows the results. Since the execution times of two different randomly
generated queries can vary wildly even though they have the same number of joins, we
have only reported the ratio of the time taken for executing the re-optimized plan to
the time taken for execution of the original plan. We see that the improvement due
to Dynamic Re-Optimization increases steadily as the number of joins in the query
increases. There is an improvement of about 25% for queries containing 5 joins, and
it is about 60% for queries containing 10 joins. We see that most queries show about
a 5 to 15% improvement due to memory management. The rest of the improvement

comes from plan modification.

117

Chapter 6

Related Work

6.1 Extensible Query Optimization

Extensible query optimizers proposed in the literature fall mainly into two categories:
those that offer a fixed search strategy and make it easy to add new algorithms and
operators, and those that allow the search strategy itself to be extensible. In OPT++
we have tried to achieve both these goals by coming up with a design in which the
search strategy itself is extensible, and, for any search strategy implemented using this
framework, the addition of new algorithms and operators is easy.

Most optimizers that allow extensibility of the query algebra employ some form
of a rule-based system that uses rewrite rules to describe transformations that can
be performed to optimize a query expression [Fre87, Gra87, PHH92, FG91]. These
systems usually offer a more-or-less fixed search strategy that is difficult to modify or
extend.

Freytag [Fre87] describes an architecture in which the translation of a query into an
executable plan is completely based on rules. He describes a System-R style optimizer
that can be built using various sets of rules. One set of rules is used to convert the
query into an algebraic tree. Other sets of rules are used to generate access paths, join
orderings, and join methods in that order.

The optimizer developed as a part of the Starburst project [LFL88, HP88| uses a

two step process to optimize queries. The first phase uses a set of production rules to

118

heuristically transform the query into an equivalent query that (hopefully) offers both
faster execution than the old query and is better suited for cost-based optimization.
In the second phase, query processing alternatives are specified using grammar-like
production rules. Each “non-terminal” in the grammar can have multiple production
rules (suggesting execution alternatives) and conditions of applicability. These rules
are used to construct an optimal execution plan in a bottom up fashion similar to the
System-R optimizer. Cost estimates are used for choosing between alternatives.

This approach has several limitations. The rewrite phase (first one) uses equiva-
lence transformations to rewrite the query heuristically. While such heuristic transfor-
mations work in a number of cases, the heuristics sometimes make incorrect decisions
because they are not based on cost estimates. The second phase (the cost-based opti-
mizer) is built using grammar-like rules that are used to build bigger and bigger plans.
While this approach is well suited for access method and join enumeration, it is not
clear how this can be used to optimize queries containing non-relational operators and
complicated transformations.

The optimizers generated by the Exodus Optimizer Generator [GD87], the Volcano
Optimizer Generator [GM93] and the Cascades Framework [Gra95] use algebraic equiv-
alence rules to transform an operator tree for a query into other, equivalent operator
trees. Implementation rules are used to determine what algorithms can be used to im-
plement the various operators. The algebraic transformation rules are used to generate
all possible operator trees that are equivalent to the input query. The implementation
rules are used to generate access plans corresponding to the operator trees.

Like the Volcano Optimizer Generator and the Starburst optimizer, OPT++ in-

corporates extensible specification of logical algebra operators, execution algorithms,

119

logical and physical properties, and selectivity and cost estimation functions. Interest-
ing physical properties, input constraints for execution algorithms and enforcers (“glue”
operators) are also supported. OPT++ can be used to emulate both, the Starburst as
well as the Exodus/Volcano based optimizers. The search strategies that are used in
those optimizer generators are both built into OPT++. In fact, OPT++ can also be
used to implement the transformation rules and implementation rules of Volcano and
the rewrite rules and production rules of Starburst. In addition, the search strategy in
OPT++ is extensible and can be modified to fit the optimization problem, if necessary.
Our experience with the implementation of an optimizer using OPT++ shows that this
flexibility is achieved without sacrificing performance.

The Cascades Framework [Gra95] is similar to the Volcano Optimizer Generator,
but it uses C++ classes to represent the transformation rules, implementation rules
and predicates. It also allows the search strategy to be “guided” through the use of
user defined Guidance classes that can heuristically control the application of the trans-
formation rules. However, the basic search strategy remains a transformative strategy
that uses transformation rules to generate equivalent plans. It can be “guided”, but
cannot be changed or replaced. For example, a System-R style bottom-up optimizer
cannot be implemented using the Cascades Framework.

Various architectures have been proposed to allow extensible control over the search
strategy of an optimizer. The region-based optimizer architecture of Mitchell et al. [MDZ93],
the modular optimizer architecture by Sciore and Sieg [SJ90], the blackboard archi-
tecture of Kemper, Moerkotte and Peithner [KMP93|, are all based on the concept
of dividing an optimizer into regions that carry out different parts of the optimiza-
tion. A query then has to pass through these various regions to be optimized. These

architectures differ in the methods used to pass control between the various regions.

120

In [SJ90], control passes from one region to another in a fixed sequence. [MDZ93] uses
a hierarchy of regions in which the parent region dynamically controls the sequence
of regions through which the query passes while being optimized. In the blackboard
approach [KMP93], knowledge sources are responsible for moving the queries between
regions.

All these architectures describe very general frameworks for extensible query opti-
mization that support multiple optimizer control strategies and allow the addition of
new control strategies. By making very specific assumptions about the kinds of ma-
nipulations that are allowed on the operator trees and access plans, OPT++ is able to
put a significant fraction of the functionality of an optimizer into the part of the code
that does not depend upon the specific query algebra. This makes it much easier to
write an optimizer from scratch. In spite of these assumptions, a number of different
search strategies can easily be implemented in OPT++ quite easily.

The query optimizer used in the [BG92] system uses a formal concept of a many-
sorted relational algebra to design a rule-based optimizer that is extensible and can
handle new data types. However, the architecture is based on algebraic equivalence
rules. Hence, unlike OPT++, it limits the Optimizer-Implementor to implement only
transformation based optimization schemes.

Lanzelotte and Valduriez [LV91] also describe an object-oriented design for an ex-
tensible query optimizer. The design of the search strategy code in OPT++ is inspired
by this work. However, OPT++ differs in its modeling of the query algebra and the
search space. In particular, OPT++ has a clear separation between the logical algebra
(operator trees) and the physical algebra (access plans). We believe this separation
is necessary for the efficiency of the optimizer as well as for clarity and extensibility.

Although [LV91] discusses extensibility of the search strategy in detail, it is not clear

121

how extensible their design is in terms of adding new operators and algorithms, mod-
ifying the search space, or how such changes would interact with one another or with
the search strategy.

The EROC toolkit for building optimizers [MBHT96] was developed concurrently
with OPT++ and comes closest in terms of design philosophy to OPT++. EROC is
a toolkit for building query optimizers based on components that are C++ abstract
classes that they have identified as central to query optimization. These classes provide
System-R and Volcano style search strategies, implementation of common algebraic
equivalence rules, derivation of properties and handling of predicate manipulations,
catalog information and types. At the current time, EROC does not have implementa-
tions of any other search strategies, but randomized algorithms and greedy heuristics
are planned future work.

Although the basic principles of EROC are very similar to those of OPT++ there
are fundamental differences between the two architectures. First, EROC does not
differentiate between the Search Space and the Search Strategy components. There
is an Enumerator abstract class that determines both the search space that will be
searched, and what search strategy will be used. We believe, that by separating these
two components, OPT++ provides for more re-use of code and easier extensibility.
Second, in OPT++ the mapping from the Logical Algebra (operator trees) to the
Physical Algebra (access plans) is done on a per operator tree basis, by a number of
different classes!, each of which handles one specific type of mapping. By contrast, in
EROC, the whole space of generated operator trees is transformed to access plans by
a single call to a “Mapper” class. We believe, this model misses some opportunities

at modularization and fine-grained control, and this would make it more difficult to

IDifferent classes derived from the TREETOPLANGENERATOR classes, as explained in Section 2.4

122

modify or extend this operation. Finally, we would like to point out that the EROC
architecture also contains abstractions to handle predicates, catalog information, types,
and other “support” functions needed for implementing an optimizer. This is an issue

not addressed in OPT++ currently.

6.2 Dynamic Re-Optimization

One of the earliest query optimizers [WY76] was, in some sense, a dynamic query
optimizer. However, after the publication of [SAC*79], most of the work on query
optimization has focussed on optimization of a query at compile time. Since the late
80s, however, the limitations of this approach have begun to be felt, and there has
been an emergence of a number of different query optimization schemes in which some
of the optimization decisions are postponed to query execution time.

[DMP93] describes a scheme in which query execution plans generated by an op-
timizer are re-optimized just before query execution time if they are believed to be
sub-optimal. At query optimization time, the statistics used by the optimizer to gen-
erate the optimal plan are stored with the plan in the database system. At query
execution time, the actual statistics from the system catalogs are compared against
the statistics stored in the plan. If they are found to differ significantly the query
is re-optimized before execution. This differs significantly from our approach. First,
the query is only re-optimized before execution begins. In their approach, there is no
collection of statistics, or modification of the plan in the middle of query execution.

The competition model of Antoshenkov [Ant93, Ant96] represents another way of
dynamically determining the plan of a query. In his approach, competing executions
start executing using different plans. After a while, it becomes clear that one of the

plans is better than the others, and the execution of the sub- optimal plan is stopped.

123

While this approach might work well for determining which access method to use for
a particular table-scan, or which join algorithm to use for executing a particular join,
it cannot be extended easily to the case where the join order for a complex query
might be sub-optimal. Further, the competition model cannot be used for dynamically
improving the resource allocation of a query.

One important reason for sub-optimality of query execution plans is that a lot of in-
formation about the run-time system (availability of memory, bindings of host language
variables, existence of indices) is not available at query compile time. The dynamic
execution plans of [GW89, GC94|, and the parametric query optimization algorithm
of [INSS92] try to tackle this problem. Their approach is to produce a composite plan
that is in effect a combination of a number of different plans, each of which is optimal
for a given set of values of run-time parameters. One of the problems with this approach
is that as the number of things that are unknown at query optimization time increases,
the space/time complexity of the optimization algorithm, and the complexity of the
parameterized /dynamic plan produced by the algorithm increases. Given the limited
amount of time that is available for query optimization, these approaches either have
to resort to the use of randomization for exploring the vast search space [INSS92], or
to make simplifying assumptions [GC94]. Another shortcoming of these approaches is
that they do not address the issue of statistical and propagational errors in estimates.
Thus, if a histogram-based estimate of the selectivity of a predicate is inaccurate, the
corresponding sub-optimality in a plan cannot be detected using these approaches.
However, they do have an advantage over Dynamic Re-Optimization in that they do
not impose any overheads on query execution at run-time.

A hybrid algorithm that combines the parametric/dynamic query plans approach

and the Dynamic Re-Optimization algorithm could possibly combine the best features

124

of both approaches. The query optimizer can try to anticipate the most common
cases that might arise at run-time and produce a parameterized plan that covers these
possibilities. At query execution time, statistics can be observed/collected to deter-
mine which plan to choose for query execution. If a situation arises at run-time that
is not covered by the common cases anticipated by the query optimizer, dynamic
re-optimization can be used. This approach suggests a possible direction of future

research.

125

Chapter 7

Conclusions

Modern database systems expose a number of problems with traditional query optimiz-
ers. As new applications for database systems emerge, query optimization is becoming
more and more difficult, and at the same time more critical to the success of the sys-
tem. This thesis presents our attempts at solving some of the problems faced by query
optimizers.

To tackle the problems of extensibility and maintainability of query optimizers we
describe OPT++ a new architecture for building extensible optimizers. It uses an
object-oriented design to provide extensibility through the use of inheritance and late
binding. The design makes it easy to implement a new optimizer as well as to modify
existing optimizers implemented using OPT++. Extensibility is provided in the form
of the ability to easily extend the logical or physical query algebra, to easily modify the
search space explored by the search strategy, and to even change the search strategy.

We believe that these features of OPT++ will make it a very useful tool for building
query optimizers. First, it can be used for quickly building an optimizer for a new
database system as well as to evaluate different optimization techniques and search
strategies. This process can be very useful to an Optimizer-Implementor in deciding
what strategy is best suited to that database system. Further, having multiple search
strategies provides the option of dynamically determining the search strategy based on
the input query and other criteria. For example, an optimizer could use an exhaustive

strategy for small queries and a randomized strategy for large queries, or it could

126

use bushy join tree enumeration for small queries and left-deep join tree enumeration
for larger queries. Thus OPT++ can be used to build a smart query optimizer that
dynamically customizes its optimization strategy depending upon the input.

Debugging an optimizer is a complex and time-consuming task. In particular,
determining the source of a bug in an optimizer that produces sub-optimal plans is
difficult. We describe support for debugging that is incorporated into OPT++, includ-
ing visual optimizer execution tracing, and automated detection of potential sources
of errors using hints from the Optimizer-Implementor. This support is very valuable
for an Optimizer-Implementor and greatly reduces the development time required to
implement or modify an optimizer.

We have described the implementation and comparative performance study of vari-
ous relational and object-relational optimization techniques and search strategies. This
has been possible through the use of OPT++ and demonstrates the usefulness of the
OPT++ architecture as a tool for experimental study of query optimization. The
performance results we describe and the resulting recommendations would be valu-
able inputs to an Optimizer-Implementor who wishes to determine what optimization
techniques to implement in an optimizer for a specific database system.

The Dynamic Re-Optimization algorithm we described, can detect sub-optimalities
in query execution plans for complex queries, and improve the performance of such
queries by dynamically re-optimizing the execution plan. Strategically placed statistics
collectors are inserted into query execution plans to observe sizes and data distributions
of intermediate query result sizes at run-time. These run-time statistics are used to
improve the allocation of shared resources (memory) to the query, and to modify the
query execution plan if need be. We also describe how this can be done efficiently

without placing too much of an overhead on the execution of the query. We have

127

demonstrated experimental results to support our claim that Dynamic Re-Optimization
can significantly improve the performance of complex queries if their query execution
plans are sub-optimal without significantly slowing down the queries whose plans do
not benefit from re-optimization.

As emerging new applications force databases to support complex decision support
queries, complex data-types and user-defined methods, it will become more and more
difficult for query optimizers to statically produce good query execution plans. Some
form of re-optimization of query execution plans at run-time will become necessary in
such cases. We believe that the techniques we have presented, possibly in combination
with parameterized plans will form the basis for the future evolution of query optimizers
to meet this challenge.

Declarative query languages and automatic query optimization were an important
reason for the success of relational database systems. Lack of good query optimizers
could very well lead to the downfall of the next wave of innovations in database system
technology. In this thesis, we have examined the inadequacies of traditional query
optimizers in dealing with issues raised by modern database systems and demonstrated
ways to overcome them. We believe that the ideas contained in this thesis represent
an important step in ensuring that query optimizers keep up with the other advances

in database systems.

128

Bibliography

[Ant93]

[Ant96]

[BGY2]

[BMG93]

[C+92]

[CS96]

[DMP93]

[FGO1]

[FM85]

Gennady Antoshenkov. “Dynamic Query Optimization in Rdb/VMS”. In
In Proceedings of the IEEE Conference on Data Engineering, pages 538—
547, 1993.

Gennady Antoshenkov. “Dynamic Optimization of Index Scan Restricted
by Booleans”. In In Proceedings of the IEEE Conference on Data Engi-
neering, pages 430-440, 1996.

Ludger Becker and Ralf Harmut Guting. “Rule-Based Optimization and
Query Processing in an Extensible Geometric Database System”. In ACM

Transactions on Database Systems, volume 17:2, June 1992.

José A. Blakeley, William J. McKenna, and Goetz Graefe. “Experiences
Building the Open OODB Query Optimizer”. In Proceedings of the 1993
ACM-SIGMOD Conference, Washington, DC, May 1993.

M. S. Chen et al. “Using Segmented Right-Deep Trees for Execution of
Pipelined Hash Joins”. In Proc. of the 18th VLDB Conf., 1992.

Surajit Chaudhari and Kyuseok Shim. Optimizing queries with aggregate
views. In Proceedings of the 1996 ACM-SIGMOD Conference, Montreal,
Canada, June 1996.

Marcia A. Derr, Shinichi Morishita, and Geoffrey Phipps. “Adaptive Query
Optimization in a Deductive Database System”. In In Proceedings of the

Proceedings of the Second International Conference on Information and
Knowledge Management, Washington D. C., USA, 1993.

Béatrice Finance and Georges Gardarin. “A Rule Based Query Rewriter in
an Extensible DBMS”. In Proceedings of the 7th International Conference
on Data Engineering. IEEE, 1991.

P. Flajolet and G. N. Martin. “Probabilistic Counting Algorithms for
Database Applications”. In Journal of Computer and System Sciences,
volume 31(2), pages 182-209, 1985.

[Fre87]

[GCY4]

[GDS8T]

[GLPK94]

[GM93]

[Gra87]

[Gra95|

[GW89)

[Hel94]

[HPSS]

[1C91]

129

Johann Christoph Freytag. “A Rule-Based View of Query Optimization”.
In Proceedings of the 1987 ACM-SIGMOD Conference, San Francisco, Cal-
ifornia, May 1987.

Goetz Graefe and Richard Cole. “Optimization of Dynamic Query Evalua-
tion Plans”. In Proceedings of the 1994 ACM-SIGMOD Conference, 1994.

G. Graefe and D. J. DeWitt. “The EXODUS Optimizer Generator”. In
Proceedings of the 1987 ACM-SIGMOD Conference, San Francisco, Cali-
fornia, May 1987.

César Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten. “Fast,
Randomized, Join-Order Selection - Why Use Transformations”. In Proc.
of the 20th VLDB Conf., Santiago de Chile, Chile, 1994.

G. Graefe and W. J. McKenna. “The Volcano Optimizer Generator: Exten-
sibility and Efficient Search”. In Proc. IEEE Conf. on Data Eng., Vienna,
Austria, 1993.

Goetz Graefe. “Rule-Based Query Optimization in Fxtensible Database
Systems”. PhD thesis, University of Wisconsin—-Madison, November 1987.

Goetz Graefe. “The Cascades Framework for Query Optimization”. In
Bulletin of the Technical Committee on Data Engineering, volume 18-3,
pages 19-29, September 1995.

Goetz Graefe and Karen Ward. “Dynamic Query Evaluation Plans. In
SIGMOD Proceedings, pages 377-388. ACM, June 1989.

Joseph M. Hellerstein. “Practical Predicate Placement”. In Proceedings of
the 1994 ACM-SIGMOD Conference, Minneapolis, Minnesota, May 1994.

Wagqar Hasan and Hamid Pirahesh. “Query Rewrite Optimization in Star-
burst”. Research Report RJ 6367 (62349), IBM, 1988.

Yannis Ioannidis and S. Christodoulakis. “On the Propogation of Errors
in the Size of Join Results”. In Proceedings of the 1991 ACM-SIGMOD
Conference, Denver, Colorado, May 1991.

[1K84]

[1K90]

[INSS92]

[TW87]

[Kab98]

[Kan91]

[KBZ86]

[KD98]

[KGMO1]

[KMP93]

[LFLSS]

130

Toshihide Ibaraki and Tiko Kameda. “Optimal Nesting for Computing N-
relational Joins”. In ACM Transactions on Database Systems, volume 9 of
3, pages 482-502, October 1984.

Yannis E. Ioannidis and Younkyung Cha Kang. “Randomized Algorithms
for Optimizing Large Join Queries”. In Proceedings of the 1990 ACM-
SIGMOD Conference, June 1990.

Yannis Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos Sellis. “Para-
metric Query Optimization”. In Proc. of the 18th VLDB Conf., 1992.

Yannis E. Ioannidis and Eugene Wong. “Query Optimization by Simulated
Annealing”. In Proceedings of the 1987 ACM-SIGMOD Conference, San

Francisco, California, June 1987.

Navin Kabra. “Query Optimization for Relational and Object-Relational
Database Systems”. PhD thesis, University of Wisconsin, Madison, 1998.

Younkyung Cha Kang. “Randomized Algorithms for Query Optimization”.
Technical Report TR-1053, Computer Sciences Department, University of
Wisconsin-Madison, 1991.

Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. “Optimization of
Nonrecursive Queries”. In Proc. of the 12th VLDB Conf., Kyoto, August
1986.

Navin Kabra and David J. DeWitt. “Opt++: An Object Oriented Imple-
mentation for Extensible Database Query Optimization”. In to appear in
The VLDB Journal, 1998.

Tom Keller, Goetz Graefe, and David Maier. “Efficient Assembly of Com-
plex Objects”. In Proceedings of the 1991 ACM-SIGMOD Conference,
Denver, Colorado, May 1991.

Alfons Kemper, Guido Moerkotte, and Klaus Peithner. “A Blackboard
Architecture for Query Optimization in Object Bases”. In Proc. of the
19th VLDB Conf., 1993.

Mavis K. Lee, Johann Christoph Freytag, and Guy M. Lohman. “Imple-
menting an Interpreter for Functional Rules in a Query Optimizer”. In
Proc. of the 14th VLDB Conf., Los Angeles, California, 1988.

[LVO1]

[MBHT6]

[MD93]

[MDZ93]

IMST79]

[Nag99]

[OL90]

[P+97]

[PHH92]

[P195]

[PTHS96]

131

Rosana S. G. Lanzelotte and Patrick Valduriez. “Extending the Search
Strategy in a Query Optimizer”. In Proc. of the 17th VLDB Conf.,
Barcelona, September 1991.

William J. McKenna, Louis Burger, Chi Hoang, and Melissa Truong.
“EROC: A Toolkit for Building NEATO Query Optimizers”. In Proc.
of the 22nd VLDB Conf., Mumbai (Bombay), India, 1996.

Manish Mehta and David J. DeWitt. “Dynamic Memory Allocation for
Multiple Query Workloads”. In Proc. of the 19th VLDB Conf., Dublin,
Ireland, 1993.

Gail Mitchell, Umeshwar Dayal, and Stanley B. Zdonik. “Control of an
Extensible Query Optimizer: A Planning Based Approach”. In Proc. of
the 19th VLDB Conf., Dublin, Ireland, 1993.

C. L. Monma and J. B. Sidney. “Sequencing with Series-Parallel Precedence
Constraints”. In Mathematics of Operations Research, volume 4, pages
215-224, 1979.

Biswadeep Nag. “Memory Allocation Strategies for Decision Support Sys-
tems”. PhD thesis, University of Wisconsin—-Madison, August 1999.

K. Ono and G.M. Lohmann. “Extensible Enumeration of Feasible Joins
for Relational Query Optimization”. In Proc. of the 16th VLDB Conf.,
August 1990.

Jignesh M. Patel et al. “Building a Scalable Geo-Spatial DMBS: Technol-
ogy, Implementation, and Evaluation”. In Proceedings of the 1997 ACM-
SIGMOD Conference, Tuscon, Arizona, May 1997.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. “Extensi-
ble/Rule Based Query Rewrite Optimization in Starburst”. In Proceedings
of the 1992 ACM-SIGMOD Conference, June 1992.

Viswanath Poosala and Yannis loannidis. “Histogram-Based Solutions to
Diverse Database Estimation Problems”. In Data Engineering Bulletin,
volume 18(3), pages 10-18, 1995.

Viswanath Poosala, Yannis loannidis, Peter J. Haas, and Eugene Shekita.

“Improved Histograms for Selectivity Estimation of Range Predicates”. In

[Po095]

[Raa95]

[SACH+79]

[SAHS7]

[SCO0]

[SG88]

S192]

S790]

[Vit85]

[VMO6]

132

Proceedings of the 1996 ACM-SIGMOD Conference, Montreal, Canada,
June 1996.

Viswanath Poosala. “Zipf’s Law”. Technical report, University of Wiscon-
sin, Madison, 1995.

Francois Raab. “TPC Benchmark D — Standard Specification, Revision

1.07. Transaction Processing Performance Council, May 1995.

P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. “Access
Path Selection in a Relational Database Management System”. In Pro-
ceedings of the ACM SIGMOD Conference on Management of Data, May
1979.

Michael Stonebraker, Jeff Anton, and Michale Hirohama. “Extendability
in POSTGRES”. In Data Engineering Bulletin, volume 10(2), pages 16-23,
1987.

Eugene J. Shekita and Michael J. Carey. “A Performance Evaluation of

Pointer-Based Joins”. In Proceedings of the 1990 ACM-SIGMOD Confer-
ence, Atlantic City, New Jersey, May 1990.

Arun Swami and Anoop Gupta. “Optimization of Large Join Queries”. In
Proceedings of the 1988 ACM-SIGMOD Conference, 1988.

Arun Swami and Balakrishna R. Iyer. “A Polynomial Time Algorithm
for Optimizing Join Queries”. Research Report RJ 8812, IBM Almaden
Research Center, 1992.

Edward Sciore and John Seig Jr. “A Modular Query Optimizer Genera-
tor”. In Proc. IEEE Conf. on Data Engineering, Los Angeles, California,
February 1990.

J. S. Vitter. “Random Sampling with a Reservoir”. In ACM Transactions
on Mathematical Software, volume 11, pages 37-57, 1985.

Bennet Vance and David Maier. “Rapid Bushy Join-Order Optimization
with Cartesian Products”. In Proceedings of the 1996 ACM-SIGMOD Con-
ference, Montreal, Canada, 1996.

[WY76]

[YC93]

[YL95]

[Zip49]

133

Eugene Wong and Karel Youssefi. “Decomposition — A Strategy for Query
Processing”. In ACM Transactions on Database Systems, September 1976.

Philip S. Yu and D. W. Cornell. “Buffer Management Based on Return on
Consumption in a Multi-Query Environment”. In VLDB Journal, volume
2(1), January 1993.

Weipeng P. Yan and Per-Ake Larson. Eager and lazy aggregation. In Proc.
of the 21st VLDB Conf., Zurich, Switzerland, September 1995.

G. K. Zipf. “Human Behavior and the Principle of Least Resistance”.
Addison-Wesley, Reading, MA, 1949.

