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Introduction

In evolutionary games, we dispense with a premise that most other applications of game theory depend on: players are fully rational, acting in their best interests, and seeking to maximize their expected payoffs.  In real-world decision making, this assumption may have some truth in it; people are not perfectly calculating and, oftentimes, choose a sub-optimal strategy out of naivety, socialization, or computational limits.  In this case, we want to examine the dynamics of a large population of players, each with a particular strategy, when elements of selection are involved.  In these games, the selection of successful players (and their reproduction) and the elimination of unsuccessful players reinforces successful strategies.  Additionally, occasional mutation of strategies can introduce even fitter strategies into the population

Evolutionary games can be easily simulated by computers.  Players can be defined in software, each with a specific strategy, and numerous copies can be made and inserted into a population.  These software players can also be given the ability to mutate.  To simulate a game, we make a large number of software players, define games for them to play, and then play the game for multiple iterations.  For selection, the computer can remove poorly-performing players after each round of play to encourage successful strategies.

I wrote my simulations in Python, a simple object-oriented scripting language.  For each game, I defined a player and a game object that I could create instances of to fill a population.  To play each game, I would write a script to create a population of players.  I would then run the populations through multiple iterations of game play, selection, and mutation.  Statistics on the population and games were outputted to a text file at the end of every round.  That data is was then imported into Excel to make graphs and other visualizations of the data.
Prisoner’s Dilemma Game
The first game I model is a population playing the prisoners’ dilemma game (code sample B.1).  Payoffs for the game are symmetrical: if both players cooperate, both receive a payoff of two, but if both defect, both would get a payoff of 1.  If only one defects, the defector would get a payoff of 3 and the cooperator would get a payoff of -2.  The population size is kept at 1,000.  Players in the game begin with a health of 20 (maximum of 30) and were initialized to always cooperate.  Each round, each player is randomly paired off with another player in the population and plays the game.  The payoff in the results is added to or subtracted from that player’s health, and, after all games are played, every player with a remaining health below zero is removed from the population.  For each removed player, a clone is made of one of the existing players (an element of reproduction) to take the vacant spot.  At the end of the round, after all substitutions are made, the “mutate” method of every player in the population is called.  The mutate method will, one percent of the time, randomly generate a new strategy for the player: half the time the mutation will cause the player to always cooperate and half the time it will cause the player to always defect.

The results of the experiment are graphed in figure A.1.  The percentage of defectors starts at 0 (as all players were initialized to cooperate), and, as we would expect, grows (without deaths, we would expect the percentage to become stable at 50%).  The population shift slows around 50%, but then a rash of deaths in the population shoot the percentage of defectors up into the nineties where the system appears to become evolutionary stable (the population will never get completely to 100% defectors because of random mutations).  Defectors successfully invade the population.  Also interesting is the value of net social benefits over the shift in population.  When all players cooperate, social benefits are at their theoretical maximum (2000 = 2 x 1000).  This value dips sharply as defectors invade the population, down as far as the 800s, as cooperators are taken advantage of by defectors and get payoffs of -2.  Social benefits become stable at around 900 when the population stabilizes.  The stable equilibrium point here is monomorphic—one strategy dominates the population

In figure A.2, it’s important to note that the same equilibrium and population stability is generated when all players are initialized as defectors.  Evolutionary pressures force a near-complete defector population no matter what the initial conditions.
Chicken

In this game, players are made to play the well-known game of chicken.  For players in the population, there are two play options: always swerve (wimp) or always drive straight (macho).  In each game, if both players swerve, both get a payoff of zero.  However, if both players drive straight, they get an even worse payoff of -2.  If one player swerves while the other player drives straight, the swerver will get a payoff of -1 while the other gets a payoff of 1.  For mutations, we assign drivers a new, random strategy 0.1% of the time after each round of the game.  There are 1000 players initially, with 99% of them as macho straight drivers.  After each round, the 50 unhealthiest players are removed from the population.

The graph of the population changes here is very interesting (fig. A.3).  As the population of swervers grows through mutation, it quickly hits a critical mass large enough to throw the population into a violent swing, almost all the way back to the other direction.  At that point, mutation changes introduce new, healthy straight drivers, who then begin to invade the population.  We see a number of these swings, declining in amplitude, and the population converges to a level of about 66% swervers. Also graphed is the game from the other direction, 99% wimps.  We see a similar stabilization.

This game is interesting as it finds a point of evolutionary stability with two different phenotypes.  The population is polymorphic—evolutionary pressures keep the ratio of wimpy swervers to macho straight drivers away from the extremes.  This makes sense: an excess of macho drivers vastly increases the possibility of a head-on crash, giving macho drivers a payoff of -2 to a wimp’s -1.  However, in wimp-dominated populations, macho drivers are unlikely to crash and can get payoffs of 1 to wimps’ -1.  These pressures on either side of the equilibrium push the ratio to a constant.
Battle of the Sexes


In this game, the players need to coordinate their choices.  If player 1 and player 2 both choose 0 (ballet, for example), they get a payoff of 2 and 1 respectively.  If both choose 1 (football, perhaps), then the payoffs are 1 and 2.  However, if they payoffs do not match, both players get a payoff of 0.  We again run the simulation with a population of 1000, with each player having a 50-50 chance of being assigned either strategy (0 or 1).  Each player has a 0.1% chance of mutating after each round, in which case the player is randomly assigned a new strategy.  Every player starts with a health of 20.  At the end of each round, the fifty players with the lowest levels of health are eliminated and replaced by a clone of a remaining player.


When we run the simulation, one of two things happens.  The population is invaded by either one of the two strategies.  In some runs, the proportion of ballet goers rises until the population is almost entirely ballet.  In other cases, football becomes dominant and eventually dominates the population.

There are conformity pressures in the payoff structure of this game.  When the majority of the population is of one strategy, a player with a different strategy will likely receive a payoff of zero and be replaced in the population.  When we change the initial conditions (change the ratio of ballet goers to football watchers), then the most prevalent strategy at the beginning of the game will, most likely (especially when the ratio is far away from .5), become the evolutionary stable strategy.  In figure A.4, we plot the change in population for a number of different initial conditions.  Note how ratios below .5 converge to 0 while ratios above .5 converge to 1.

Rock-Paper-Scissors


This game differs from the previous games because it has three possible play strategies.  Each player in the simulation plays an integer value of 0, 1, or 2, which correspond with the common rock, paper, or scissors.  In this case, 1 beats 0, 2 beats 1, and 0 beats 2.  The winner of a game gets a payoff of 1, the loser gets -1, while a tie gets both players 0.  We start with a population of rocks (strategy 0) of size 1000.  Mutations occur with a probability of 5% after each round.  A mutation causes a player to select a new strategy at random.  Again, the 50 unhealthiest players are removed after each round and are replaced by clones of other players.

When the simulation is run, the number of rocks decreases as a result of mutation, but the largest growth is seen in paper-strategy players, which are able to take advantage of the large number of rocks.  Paper eventually becomes the most numerous, which gives the advantage to scissors, then to rock, then paper, etc.  Figure A.5 is an X-Y graph of rocks vs. paper (scissors are then just 1000 – rocks – papers).  In this graph, a spiral is formed, “orbiting” the final equilibrium point of roughly a third of the population for each strategy.  Figure A.6 shows these population changes as a straight-line graph.  In the line graph, we see the populations rotating around the equilibrium point, forming periodic waves of population shifts.
Cournot Game


Unlike previous games, this game can be played by more than two players.  In this case, we play the game with three players.  Additionally, this game is the first game so far to not have discrete options for players—instead, players choose any real value on a continuum.  In this case, players are choosing a value for the quantity of a good they intend to produce.  The other two players will also choose a quantity.  The sum of these quantities is plugged into a price function (1000 – 5 * total quantity, in this case), and the payoff for each player is the product of his own quantity and the price.  We assume the cost of production to be the same for all firms, 10 per unit.  The simulation involves 1000 players, each initialized to play a random price between 0 and 100.  Each player has an initial health of 100.  In each round, a player’s strategy (his quantity) has a random number between -1 and 1 added to it (for mutation purposes; the quantity is not permitted to go below zero).  After each round, the bottom 50 players are eliminated and replaced by clones of other players.

With those variables, we see the average quantity produced by each firm converge around near a quantity of 48.  In the data, we also see a tightening of the standard deviation to roughly three (we don’t see an absolute convergence on account of the mutations still occurring at this point).  A graph of the convergence can be seen in figure A.7.

The graph also shows the population shifts for varying levels of steepness in the price function.  On the graph are different curves for different values of c in the price function ( p(q) = 1000 – cq ).  As is shown on the graph, a lower value of c produces a higher equilibrium output by each firm, while a higher value of c results in a lower equilibrium output.
Bertrand Game

In the Bertrand Game, the different firms are engaged in a bidding contest.  Each firm in the game chooses a price to sell its goods at.  The firm with the lowest price will capture the market and sell all of its goods at the winning price (ties will similarly split the market).  In our simulation, each game involves three firms bidding.  Again, we generate 1000 players.  Each player is given a random number between 10 and 100 as a strategy for price setting.  The cost of producing a unit is 10, so valid prices are bounded at the bottom by 10 to prevent firms from price setting under cost.  We group the firms into groups of three and allow them to play (with 1000 players, one player sits out each round).  We also impose a per-round cost of operation of 2 units (this forces down the health of firms that were successful in early rounds and keeps them from sustaining that health while earning zero payoffs in later rounds).  After each round, the 50 firms with the lowest levels of health are eliminated and replaced with a clone of a remaining player.  Also, after each round, every firm mutates its strategy slightly—a random number between -.1 and .1 is added to the firm’s strategy price.

Figure A.8 shows the dynamics in finding an equilibrium here.  As we would expect, the average price bid by a firm in our simulation converges to the cost of production, 10.  In the program’s output, we also see a very strong convergence in the standard deviation of prices bid, below .15.  This result is reasonable; firms choosing to bid higher than the average price would likely get an outcome of zero; those firms would be eliminated in selection; the average price would constantly be forced down.  The average price does not converge completely to the cost of production, however, because of the presence of continued mutations (pushing firms’ prices higher when current prices are near the bound of production costs).
Conclusion


By modeling these evolutionary games with simulated actors, we can display experimentally the changes in population over the course of many iterations.  The results we found matched what the theoretical outcomes of these games should be.  Also, in some games, we observed particular phenomena that would not have been foreseen by theoretical solutions (the rock-paper-scissors “equilibrium orbiting” behavior was a prime example).  Computer-based simulation of evolutionary games is also useful in modeling very complex games for which equilibria would be difficult to identify by hand.
