
- 1 -

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

SIGMOD '97 5/97, Tucson, Arizona, USA

Improved Query Performance with Variant Indexes

Patrick O’Neil Dallan Quass
Department of Mathematics and Computer Science Department of Computer Science
University of Massachusetts at Boston Stanford University
Boston, MA 02125-3393 Stanford, CA 94305
poneil@cs.umb.edu quass@cs.stanford.edu

Abstract: The read-mostly environment of data warehousing
makes it possible to use more complex indexes to speed up
queries than in situations where concurrent updates are present.
The current paper presents a short review of current indexing
technology, including row-set representation by Bitmaps, and
then introduces two approaches we call Bit-Sliced indexing and
Projection indexing. A Projection index materializes all values
of a column in RID order, and a Bit-Sliced index essentially
takes an orthogonal bit-by-bit view of the same data. While
some of these concepts started with the MODEL 204 product,
and both Bit-Sliced and Projection indexing are now fully real-
ized in Sybase IQ, this is the first rigorous examination of such
indexing capabilities in the literature. We compare algorithms
that become feasible with these variant index types against algo-
rithms using more conventional indexes. The analysis demon-
strates important performance advantages for variant indexes in
some types of SQL aggregation, predicate evaluation, and
grouping. The paper concludes by introducing a new method
whereby multi-dimensional group-by queries, reminiscent of
OLAP/Datacube queries but with more flexibility, can be very
efficiently performed.

1. Introduction

Data warehouses are large, special-purpose databases that con-
tain data integrated from a number of independent sources, sup-
porting clients who wish to analyze the data for trends and
anomalies. The process of analysis is usually performed with
queries that aggregate, filter, and group the data in a variety of
ways. Because the queries are often complex and the warehouse
database is often very large, processing the queries quickly is a
critical issue in the data warehousing environment.

Data warehouses are typically updated only periodically, in a
batch fashion, and during this process the warehouse is un-
available for querying. This means a batch update process can
reorganize data and indexes to a new optimal clustered form, in
a manner that would not work if the indexes were in use. In this
simplified situation, it is possible to use specialized indexes
and materialized aggregate views (called summary tables in
data warehousing literature), to speed up query evaluation.

This paper reviews current indexing technology, including row-
set representation by Bitmaps, for speeding up evaluation of
complex queries. It then introduces two indexing structures,
which we call Bit-Sliced indexes and Projection indexes. We
show that these indexes each provide significant performance
advantages over traditional Value-List indexes for certain
classes of queries, and argue that it may be desirable in a data
warehousing environment to have more than one type of index
available on a column, so that the best index can be chosen for

the query at hand. The Sybase IQ product currently provides
both variant index types [EDEL95, FREN95], and recommends
multiple indexes per column in some cases.

Late in the paper, we introduce a new indexing approach to
support OLAP-type queries, commonly used in Data
Warehouses. Such queries are called Datacube queries in
[GBLP96]. OLAP query performance depends on creating a set
of summary tables to efficiently evaluate an expected set of
queries. The summary tables pre-materialize needed aggregates,
an approach that is possible only when the expected set of
queries is known in advance. Specifically, the OLAP approach
addresses queries that group by different combinations of
columns, known as dimensions.

Example 1.1. Assume that we are given a star-join schema,
consisting of a central fact table Sales, containing sales data, and
dimension tables known as Stores (where the sales are made),
Time (when the sales are made), Product (involved in the sales),
and Promotion (method of promotion being used). (See
[KIMB96], Chapter 2, for a detailed explanation of this schema.
A comparable Star schema is pictured in Figure 5.1.) Using pre-
calculated summary tables based on these dimensions, OLAP
systems can answer some queries quickly, such as the total dol-
lar sales that were made for a brand of products in a store on the
East coast during the past 4 weeks with a sales promotion based
on price reduction. The dimensions by which the aggregates are
"sliced and diced" result in a multi-dimensional crosstabs calcu-
lation (Datacube) where some or all of the cells may be precalcu-
lated and stored in summary tables. But if we want to perform
some selection criterion that has not been precalculated, such as
repeating the query just given, but only for sales that occurred
on days where the temperature reached 90, the answer could not
be supplied quickly if summary tables with dimensions based
upon temperature did not exist. And there is a limit to the num-
ber of dimensions that can be represented in precalculated sum-
mary tables, since all combinations of such dimensions must be
precalculated in order to achieve good performance at runtime.
This suggests that queries requiring rich selection criteria must
be evaluated by accessing the base data, rather than precalcu-
lated summary tables. u

The paper explores indexes for efficient evaluation of OLAP-
style queries with such rich selection criteria.

Paper outline: We define Value-List, Projection, and Bit-
Sliced indexes and their use in query processing in Section 2.
Section 3 presents algorithms for evaluating aggregate functions
using the index types presented in Section 2. Algorithms for
evaluating Where Clause conditions, specifically range predi-
cates, are presented in Section 4. In Section 5, we introduce an
index method whereby OLAP-style queries that permit non-di-
mensional selection criteria can be efficiently performed. The
method combines Bitmap indexing and physical row clustering,
two features which provide important advantage for OLAP-
style queries. Our conclusions are given in Section 6.

-2-

2. Indexing Definitions

In this section we examine traditional Value-List indexes and
show how Bitmap representations for RID-lists can easily be
used. We then introduce Projection and Bit-Sliced indexes.

2.1 Traditional Value-List Indexes

Database indexes provided today by most database systems use
B+-tree1 indexes to retrieve rows of a table with specified values
involving one or more columns (see [COMER79]). The leaf
level of the B-tree index consists of a sequence of entries for in-
dex keyvalues. Each keyvalue reflects the value of the indexed
column or columns in one or more rows in the table, and each
keyvalue entry references the set of rows with that value. Since
all rows of an indexed relational table are referenced exactly once
in the B-tree, the rows are partitioned by keyvalue. However,
object-relational databases allow rows to have multi-valued at-
tributes, so that in the future the same row may appear under
many keyvalues in the index. We therefore refer to this type of
index simply as a Value-List index.

Traditionally, Value-List (B-tree) indexes have referenced each
row individually as a RID, a Row IDentifier, specifying the disk
position of the row. A sequence of RIDs, known as a RID-list,
is held in each distinct keyvalue entry in the B-tree. In indexes
with a relatively small number of keyvalues compared to the
number of rows, most keyvalues will have a large number of as-
sociated RIDs and the potential for compression arises by list-
ing a keyvalue once, at the head of what we call a RID-list
Fragment, containing a long list of RIDs for rows with this
keyvalue. For example, MVS DB2 provides this kind of com-
pression, (see [O'NEI96], Figure 7.19). Keyvalues with RID-
lists that cross leaf pages require multiple Fragments. We as-
sume in what follows that RID-lists (and Bitmaps, which fol-
low) are read from disk in multiples of Fragments. With this
amortization of the space for the keyvalue over multiple 4-byte
RIDs of a Fragment, the length in bytes of the leaf level of the B-
tree index can be approximated as 4 times the number of rows in
the table, divided by the average fullness of the leaf nodes. In
what follows, we assume that we are dealing with data that is
updated infrequently, so that B-tree leaf pages can be completely
filled, reorganized during batch updates. Thus the length in
bytes of the leaf level of a B-tree index with a small number of
keyvalues is about 4 times the number of table rows.

2.1.1 Bitmap Indexes

Bitmap indexes were first developed for database use in the
Model 204 product from Computer Corporation of America (see
[O'NEI87]). A Bitmap is an alternate form for representing RID-
lists in a Value-List index. Bitmaps are more space-efficient than
RID-lists when the number of keyvalues for the index is low.
Furthermore, we will show that Bitmaps are usually more CPU-
efficient as well, because of the simplicity of their representation.
To create Bitmaps for the n rows of a table T = {r1, r2, . . . rn}, we
start with a 1-1 mapping m from rows of T to Z[M], the first M
positive integers. In what follows we avoid frequent reference to
the mapping m. When we speak of the row number of a row r of
T, we will mean the value m(r).

1B+-trees are commonly referred to simply as B-trees in database
documentation, and we will follow this convention.

Note that while there are n rows in T = {r1, r2, . . . rn}, it is not
necessarily true that the maximum row number M is the same as
n, since a method is commonly used to associate a fixed number
of rows p with each disk page for fast lookup. Thus for a given
row r with row number j, the table page number accessed to re-
trieve row r is j/p and the page slot is (in C terms) j%p. This
means that rows will be assigned row numbers in disk clustered
sequence, a valuable property. Since the rows might have vari-
able size and we may not always be able to accommodate an
equal number of rows on each disk page, the value p must be a
chosen as a maximum, so some integers in Z[M] might be wasted.
They will correspond to non-existent slots on pages that cannot
accommodate the full set of p rows. (And we may find that m-1(j)
for some row numbers j in Z[M] is undefined.)

A "Bitmap" B is defined on T as a sequence of M bits. If a Bitmap
B is meant to list rows in T with a given property P, then for
each row r with row number j that has the property P, we set bit
j in B to one; all other bits are set to zero. A Bitmap index for a
column C with values v1, v2, . . ., vk, is a B-tree with entries hav-
ing these keyvalues and associated data portions that contain
Bitmaps for the properties C = v1, . . ., C = vk. Thus Bitmaps in
this index are just a new way to specify lists of RIDs for specific
column values. See Figure 2.1 for an Example. Note that a series
of successive Bitmap Fragments make up the entry for "depart-
ment = 'sports'".

B- t r ee Root Node f or depar t ment
i ndex

' cl ot hes' ' chi na' . . . ' spor t s' . . .
' t ool s'

' spor t s
'

 101101 . . . 01011 . .
.

' spor t s
'

Figure 2.1. Example of a Bitmap Index on department,
a column of the SALES table

We say that Bitmaps are dense if the proportion of one-bits in
the Bitmap is large. A Bitmap index for a column with 32 values
will have Bitmaps with average density of 1/32. In this case the
disk space to hold a Bitmap column index will be comparable to
the disk space needed for a RID-list index (which requires about
32 bits for each RID present). While the uncompressed Bitmap
index size is proportional to the number of column values, a
RID-list index is about the same size for any number of values
(as long as we can continue to amortize the keysize with a long
block of RIDs). For a column index with a very small number of
values, the Bitmaps will have high densities (such as 50% for
predicates such as GENDER = 'M' or GENDER = 'F'), and the
disk savings is enormous. On the other hand, when average
Bitmap density for a Bitmap index becomes too low, methods ex-
ist for compressing a Bitmap. The simplest of these is to trans-
late the Bitmap back to a RID list, and we will assume this in
what follows.

2.1.2 Bitmap Index Performance

An important consideration for database query performance is
the fact that Boolean operations, such as AND, OR, and NOT are

-3-

extremely fast for Bitmaps. Given Bitmaps B1 and B2, we can
calculate a new Bitmap B3, B3 = B1 AND B2, by treating all
bitmaps as arrays of long ints and looping through them, using
the & operation of C:

for (i = 0; i < len(B1); i++)
/* Note: len(B1)=len(B2)=len(B3) */

B3[i] = B1[i] & B2[i];
/* B3 = B1 AND B2 */

We would not normally expect the entire Bitmap to be memory
resident, but would perform a loop to operate on Bitmaps by
reading them in from disk in long Fragments. We ignore this
loop here. Using a similar approach, we can calculate B3 = B1
OR B2. But calculating B3 = NOT(B1) requires an extra step.
Since some bit positions can correspond to non-existent rows,
we postulate an Existence Bitmap (designated EBM) which has
exactly those 1 bits corresponding to existing rows. Now when
we perform a NOT on a Bitmap B, we loop through a long int ar-
ray performing the ~ operation of C, then AND the result with
the corresponding long int from EBM.

for (i = 0; i < len(B1); i++)
B3[i] = ~B1[i] & EBM[i];

/* B3 = NOT(B1)for rows that exist */

Typical Select statements may have a number of predicates in
their Where Clause that must be combined in a Boolean manner.
The resulting set of rows, which is then retrieved or aggregated
in the Select target-list, is called a Foundset in what follows.
Sometimes, the rows filtered by the Where Clause must be further
grouped, due to a group-by clause, and we refer to the set of
rows restricted to a single group as a Groupset.

Finally, we show how the COUNT function for a Bitmap of a
Foundset can be efficiently performed. First, a short int array
shcount[] is declared, with entries initialized to contain the
number of bits in the entry subscript. Given this array, we can
loop through a Bitmap as an array of short int values, to get the
count of the total Bitmap as shown in Algorithm 2.1. Clearly
the shcount[] array is used to provide parallelism in calculating
the COUNT on many bits at once.

Algorithm 2.1. Performing COUNT with a Bitmap
/* Assume B1[] is a short int array

overlaying a Foundset Bitmap */
count = 0;
for (i = 0; i < SHNUM; i++)

count += shcount[B1[i]];
/* add count of bits for next short int */

u

Loops for Bitmap AND, OR, NOT, or COUNT are extremely fast
compared to loop operations on RID lists, where several opera-
tions are required for each RID, so long as the Bitmaps involved
have reasonably high density (down to about 1%).

Example 2.1. In the Set Query benchmark of [O'NEI91], the
results from one of the SQL statements in Query Suite Q5 gives
a good illustration of Bitmap performance. For a table named
BENCH of 1,000,000 rows, two columns named K10 and K25
have cardinalities 10 and 25, respectively, with all rows in the
table equally likely to take on any valid value for either column.
Thus the Bitmap densities for indexes on this column are 10%
and 4% respectively. One SQL statement from the Q5 Suite is:

[2.1] SELECT K10, K25, COUNT(*) FROM BENCH
GROUP BY K10, K25;

A 1995 benchmark on a 66 MHz Power PC of the Praxis Omni
Warehouse, a C language version of MODEL 204, demonstrated
an elapsed time of 19.25 seconds to perform this query. The
query plan was to read Bitmaps from the indexes for all values of
K10 and K25, perform a double loop through all 250 pairs of
values, AND all pairs of Bitmaps, and COUNT the results. The
250 ANDs and 250 COUNTs of 1,000,000 bit Bitmaps required
only 19.25 seconds on a relatively weak processor. By compar-
ison, MVS DB2 Version 2.3, running on an IBM 9221/170 used
an algorithm that extracted and wrote out all pairs of (K10, K25)
values from the rows, sorted by value pair, and counted the re-
sult in groups, taking 248 seconds of elapsed time and 223 sec-
onds of CPU. (See [O'NEI96] for more details.) u

2.1.3 Segmentation

To optimize Bitmap index access, Bitmaps can be broken into
Fragments of equal sizes to fit on single fixed-size disk pages.
Corresponding to these Fragments, the rows of a table are parti-
tioned into Segments, with an equal number of row slots for
each segment. In MODEL 204 (see [M204, O'NEI87]), a Bitmap
Fragment fits on a 6 KByte page, and contains about 48K bits,
so the table is broken into segments of about 48K rows each.
This segmentation has two important implications.

The first implication involves RID-lists. When Bitmaps are suf-
ficiently sparse that they need to be converted to RID-lists, the
RID-list for a segment is guaranteed to fit on a disk page (1/32 of
48K is about 1.5K; MODEL 204 actually allows sparser
Bitmaps than 1/32, so several RID lists might fit on a single
disk page). Furthermore, RIDs need only be two bytes in
length, because they only specify the row position within the
segment (the 48K rows of a segment can be counted in a short
int). At the beginning of each RID-list, the segment number will
specify the higher order bits of a longer RID (4 byte or more),
but the segment-relative RIDs only use two bytes each. This is
an important form of prefix RID compression, which greatly
speeds up index range search.

The second implication of segmentation involves combining
predicates. The B-tree index entry for a particular value in
MODEL 204 is made up of a number of pointers by segment to
Bitmap or RID-list Fragments, but there are no pointers for seg-
ments that have no representative rows. In the case of a clus-
tered index, for example, each particular index value entry will
have pointers to only a small set of segments. Now if several
predicates involving different column indexes are ANDed, the
evaluation takes place segment-by-segment. If one of the predi-
cate indexes has no pointer to a Bitmap Fragment for a segment,
then the segment Fragments for the other indexes can be ignored
as well. Queries like this can turn out to be very common in a
workload, and the I/O saved by ignoring I/O for these index
Fragments can significantly improve performance.

In some sense, Bitmap representations and RID-list representa-
tions are interchangeable: both provide a way to list all rows
with a given index value or range of values. It is simply the case
that, when the Bitmap representations involved are relatively
dense, Bitmaps are much more efficient than RID-lists, both in
storage use and efficiency of Boolean operations. Indeed a
Bitmap index can contain RID-lists for some entry values or
even for some Segments within a value entry, whenever the
number of rows with a given keyvalue would be too sparse in

-4-

the segment for a Bitmap to be efficiently used. In what follows,
we will assume that a Bitmapped index combines Bitmap and
RID-list representations where appropriate, and continue to re-
fer to the hybrid form as a Value-List Index. When we refer to the
Bitmap for a given value v in the index, this should be under-
stood to be a generic name: it may be a Bitmap or it may be a
RID-list, or a segment-by-segment combination of the two forms.

2.2 Projection Indexes

Assume that C is a column of a table T; then the Projection in-
dex on C consists of a stored sequence of column values from C,
in order by the row number in T from which the values are ex-
tracted. (Holes might exist for unused row numbers.) If the col-
umn C is 4 bytes in length, then we can fit 1000 values from C
on each 4 KByte disk page (assuming no holes), and continue to
do this for successive column values, until we have constructed
the Projection index. Now for a given row number n = m(r) in
the table, we can access the proper disk page, p, and slot, s, to re-
trieve the appropriate C value with a simple calculation: p =
n/1000 and s = n%1000. Furthermore, given a C value in a
given position of the Projection index, we can calculate the row
number easily: n = 1000*p + s.

If the column values for C are variable length instead of fixed
length, there are two alternatives. We can set a maximum size
and place a fixed number of column value on each page, as before,
or we can use a B-tree structure to access the column value C by
a lookup of the row number n. The case of variable-length val-
ues is obviously somewhat less efficient than fixed-length, and
we will assume fixed-length C values in what follows.

The Projection index turns out to be quite efficient in certain
cases where column values must be retrieved for all rows of a
Foundset. For example, if the density of the Foundset is 1/50
(no clustering, so the density is uniform across all table seg-
ments), and the column values are 4 bytes in length, as above,
then 1000 values will fit on a 4 KByte page, and we expect to
pick up 20 values per Projection index page. In contrast, if the
rows of the table were retrieved, then assuming 200-byte rows
only 20 rows will fit on a 4 KByte page, and we expect to pick
up only 1 row per page. Thus reading the values from a
Projection index requires only 1/20 the number of disk page ac-
cess as reading the values from the rows. The Sybase IQ product
is the first one to have utilized the Projection index heavily,
under the name of "Fast Projection Index" [EDEL95, FREN95].

The definition of a Projection index is reminiscent of vertically
partitioning the columns of a table. Vertical partitioning is a
good strategy for workloads where small numbers of columns are
retrieved by most Select statements, but it is a bad idea when
most queries retrieve many most of the columns. Vertical parti-
tioning is actually forbidden by the TPC-D benchmark, presum-
ably on the theory that the queries chosen have not been suffi-
ciently tuned to penalize this strategy. But Projection indexes
are not the same as vertical partitioning. We assume that rows of
the table are still stored in contiguous form (the TPC-D require-
ment) and the Projection indexes are auxiliary aids to retrieval
efficiency. Of course this means that column values will be du-
plicated in the index, but in fact all traditional indexes duplicate
column values in this same sense.

2.3. Bit-Sliced Indexes

A Bit-Sliced index stores a set of "Bitmap slices" which are "or-
thogonal" to the data held in a Projection index. As we will see,

they provide an efficient means to calculate aggregates of
Foundsets. We begin our definition of Bit-Sliced indexes with
an example.

Example 2.2. Consider a table named SALES which contains
rows for all sales that have been made during the past month by
individual stores belonging to some large chain. The SALES
table has a column named dollar_sales, which represents for each
row the dollar amount received for the sale.

Now interpret the dollar_sales column as an integer number of
pennies, represented as a binary number with N+1 bits. We de-
fine a function D(n, i), i = 0, . . . , N, for row number n in SALES,
to have value 0, except for rows with a non-null value for dol-
lar_sales, where the value of D(n, i) is defined as follows:

D(n, 0) = 1 if the 1 bit for dollar_sales in row number n is on
D(n, 1) = 1 if the 2 bit for dollar_sales in row number n is on

 . . .
D(n, i) = 1 if the 2i bit for dollar_sales in row number n is on

Now for each value i, i = 0 to N, such that D(n, i) > 0 for some
row in SALES, we define a Bitmap Bi on the SALES table so
that bit n of Bitmap Bi is set to D(n, I). Note that by requiring
that D(n, i) > 0 for some row in SALES, we have guaranteed that
we do not have to represent any Bitmap of all zeros. For a real
table such as SALES, the appropriate set of Bitmaps with non-
zero bits can easily be determined at Create Index time. u

The definitions of Example 2.1 generalize to any column C in a
table T, where the column C is interpreted as a sequence of bits,
from least significant (i = 0) to most significant (i = N).

Definition 2.1: Bit-Sliced Index. The Bit-Sliced index on the
C column of table T is the set of all Bitmaps Bi as defined analo-
gously for dollar_sales in Example 2.2. Since a null value in the
C column will not have any bits set to 1, it is clear that only
rows with non-null values appear as 1-bits in any of these
Bitmaps. Each individual Bitmap Bi is called a Bit-Slice of the
column. We also define the Bit-Sliced index to have a Bitmap
Bnn representing the set of rows with non-null values in column
C, and a Bitmap Bn representing the set of rows with null values.
Clearly Bn can be derived from Bnn and the Existence Bitmap
EBM, but we want to save this effort in algorithms below. In
fact, the Bitmaps Bnn and Bn are so useful that we assume from
now on that Bnn exists for Value-List Bitmap indexes (clearly Bn
already exists, since null is a particular value). u

In the algorithms that follow, we will normally be assuming that
the column C is numeric, either an integer or a floating point
value. In using Bit-Sliced indexes, it is necessary that different
values have matching decimal points in their binary representa-
tions. Depending on the variation in size of the floating point
numbers, this could lead to an exceptionally large number of
slices when values differ by many orders of magnitude. Such an
eventuality is unlikely in business applications, however.

A user-defined method to bit-slice aggregate quantities was
used by some MODEL 204 customers and is defined on page 48
of [O'NEI87]. Sybase IQ currently provides a fully realized Bit-
Sliced index, which is known to the query optimizer and trans-
parent to SQL users. Usually, a Bit-Sliced index for a quantity
of the kind in Example 2.2 will involve a relatively small num-
ber of Bitmaps (less than the maximum significance), although
there is no real limit imposed by the definition. Note that 20

-5-

Bitmaps, 0 . . .19, for the dollar_sales column will represent
quantities up to 220 - 1 pennies, or $10,485.75, a large sale by
most standards. If we assume normal sales range up to $100.00,
it is very likely that nearly all values under $100.00 will occur
for some row in a large SALES table. Thus, a Value-List index
would have nearly 10,000 different values, and row-sets with
these values in a Value-List index would almost certainly be
represented by RID-lists rather than Bitmaps. The efficiency of
performing Boolean Bitmap operations would be lost with a
Value-List index, but not with a Bit-Sliced index, where all val-
ues are represented with about 20 Bitmaps.

It is important to realize that these index types are all basically
equivalent.

Theorem 2.1. For a given column C on a table T, the informa-
tion in a Bit-sliced index, Value-List index, or Projection index
can each be derived from either of the others.

Proof. With all three types of indexes, we are able to determine
the values of columns C for all rows in T, and this information is
sufficient to create any other index. u

Although the three index types contain the same information,
they provide different performance advantages for different opera-
tions. In the next few sections of the paper we explore this.

3. Comparing Index types for Aggregate Evaluation

In this section we give algorithms showing how Value-List in-
dexes, Projection indexes, and Bit-Sliced indexes can be used to
speed up the evaluation of aggregate functions in SQL queries.
We begin with an analysis evaluating SUM on a single column.
Other aggregate functions are considered later.

3.1 Evaluating Single-Column Sum Aggregates

Example 3.1. Assume that the SALES table of Example 2.2 has
100 million rows which are each 200 bytes in length, stored 20
to a 4 KByte disk page, and that the following Select statement
has been submitted:

[3.1] SELECT SUM(dollar_sales) FROM SALES
WHERE condition;

The condition in the Where clause that restricts rows of the
SALES table will result in a Foundset of rows. We assume in
what follows that the Foundset has already been determined,
and is represented by a Bitmap Bf, it contains 2 million rows and
the rows are not clustered in a range of disk pages, but are
spread out evenly across the entire table. We vary these as-
sumptions later. The most likely case is that determining the
Foundset was easily accomplished by performing Boolean oper-
ations on a few indexes, so the resources used were relatively
insignificant compared to the aggregate evaluation to follow.

Query Plan 1: Direct access to rows to calculate SUM.
Each disk page contains only 20 rows, so there must be a total
of 5,000,000 disk pages occupied by the SALES table. Since
2,000,000 rows in the Foundset Bf represent only 1/50 of all
rows in the SALES table, the number of disk pages that the
Foundset occupies can be estimated (see [O'NEI96], Formula
[7.6.4]) as:

5 ,000,000(1 - e-2,000,000/5,000,000) = 1,648,400 disk pages

The time to perform such a sequence of I/Os, assuming one disk
arm retrieves 100 disk pages per second in relatively close se-
quence on disk, is 16,484 seconds, or more than 4 hours of disk
arm use. We estimate 25 instructions needed to retrieve the
proper row and column value from each buffer resident page, and
this occurs 2,000,000 times, but in fact the CPU utilization as-
sociated with reading the proper page into buffer is much more
significant. Each disk page I/O is generally assumed to require
several thousand instructions to perform (see, for example,
[PH96], Section 6.7, where 10,000 instructions are assumed).

Query Plan 2: Calculating SUM with a Projection index.
We can use the Projection index to calculate the sum by access-
ing each dollar_sales value in the index corresponding to a row
number in the Foundset; these row numbers will be provided in
increasing order. We assume as in Example 2.2 that the dol-
lar_sales Projection index will contain 1000 values per 4
KByte disk page. Thus the Projection index will require
100,000 disk pages, and we can expect all of these pages to be
accessed in sequence when the values for the 2,000,000 row
Foundset are retrieved. This implies we will have 100,000 disk
page I/Os, with elapsed time 1000 seconds (roughly 17 min-
utes), given the same I/O assumptions as in Query Plan 1. In ad-
dition to the I/O, we will use perhaps 10 instructions to convert
the Bitmap row number into a disk page offset, access the appro-
priate value, and add this to the SUM.

Query Plan 3: Calculating SUM with a Value-List index.
Assuming we have a Value-List index on dollar_sales, we can
calculate SUM(dollar_sales) for our Foundset by ranging
through all possible values in the index and determining the
rows with each value, then determining how many rows with
each value are in the Foundset, and finally multiplying that
count by the value and adding to the SUM. In pseudo code, we
have Algorithm 3.1 below.

Algorithm 3.1. Evaluating SUM(C) with a Value-List Index
If (COUNT(Bf AND Bnn) == 0) /* no non-null values * /

Return null;
SUM = 0.00;
For each non-null value v in the index for C {

Designate the set of rows with the value v as Bv
SUM += v * COUNT(Bf AND Bv);

}
Return SUM;

u

Our earlier analysis counted about 10,000 distinct values in
this index, so the Value-List index evaluation of SUM(C) re-
quires 10,000 Bitmap ANDs and 10,000 COUNTs. If we make
the assumption that the Bitmap Bf is held in memory
(100,000,000 bits, or 12,500,000 bytes) while we loop through
the values, and that the sets Bv for each value v are actually RID-
lists, this will entail 3125 I/Os to read in Bf, 100,000 I/Os to
read in the index RID-lists for all values (100,000,000 RIDs of 4
bytes each, assuming all pages are completely full), and a loop of
several instructions to translate 100,000,000 RIDs to bit posi-
tions and test if they are on in Bf.

Note that this algorithm gains an enormous advantage by as-
suming Bf is a Bitmap (rather than a RID-list), and that it can be
held in memory, so that RIDs from the index can be looked up
quickly. If Bf were held as a RID-list instead, the lookup would
be a good deal less efficient, and would probably entail a sort by
RID value of values from the index, followed by a merge-inter-

-6-

sect with the RID-list Bf. Even with the assumption that Bf is a
Bitmap in memory, the loop through 100,000,000 RIDs is ex-
tremely CPU intensive, especially if the translation from RID to
bit ordinal entails a complex lookup in a memory-resident tree to
determine the extent containing the disk page of the RID and the
corresponding RID number within the extent. With optimal as-
sumptions, Plan 3 seems to require 103,125 I/Os and a loop of
length 100,000,000, with a loop body of perhaps 10 instruc-
tions. Even so, Query Plan 3 is probably superior to Query
Plan 1, which requires I/O for 1,340,640 disk pages.

Query Plan 4: Calculating SUM with a Bit-Sliced index.
Assuming we have a Bit-Sliced index on dollar_sales as defined
in Example 2.2, we can calculate SUM(dollar_sales) with the
pseudo code of Algorithm 3.2.

Algorithm 3.2. Evaluating SUM(C) with a Bit-Sliced Index
/ * We are given a Bit-Sliced index for C, containing bitmaps

Bi, i = 0 to N (N = 19), Bn and Bnn, as in Example 2.2
and Definition 2.1. * /
If (COUNT(Bf AND Bnn) == 0)

Return null;
SUM = 0.00
For i = 0 to N

SUM += 2i * COUNT(Bi AND Bf);
Return SUM;

u

With Algorithm 3.2, we can calculate a SUM by performing 21
ANDs and 21 COUNTs of 100,000,000 bit Bitmaps. Each
Bitmap is 12.5 MBytes in length, requiring 3125 I/Os, but we
assume that Bf can remain in memory after the first time it is read.
Therefore, we need to read a total of 22 Bitmaps from disk, using
22*3125 = 68,750 I/Os, a bit over half the number needed in
Query Plan 2. For CPU, we need to AND 21 pairs of Bitmaps,
which is done by looping through the Bitmaps in long int
chunks, a total number of loop passes on a 32-bit machine equal
to: 21*(100,000,000/32) = 65,625,000. Then we need to per-
form 21 COUNTs, looping through Bitmaps in half-word
chunks, with 131,250,000 passes. However, all these
196,875,000 passes to perform ANDs and COUNTs are single
instruction loops, and thus presumably take a good deal less
time than the 100,000,000 multi-instruction loops of Plan 2.

3.1.1 Comparing Algorithm Performance

Table 3.1 compares the above four Query Plans to calculate
SUM, in terms of I/O and factors contributing to CPU.

Method I/O CPU contributions

Add from Rows 1,341K I/O + 2M*(25 ins)
Projection index 100K I/O + 2M *(10 ins)
Value-List index 103K I/O + 100M *(10 ins)
Bit-Sliced index 69K I/O + 197M *(1 ins)

Table 3.1. I/O and CPU factors for the four plans

We can compare the four query plans in terms of dollar cost by
converting I/O and CPU costs to dollar amounts, as in [GP87].
In 1997, a 2 GB hard disk with a 10 ms access time costs
roughly $600. With the I/O rate we have been assuming, this is
approximately $6.00 per I/O per second. A 200 MHz Pentium
computer, which processes approximately 150 MIPS (million in-
structions per second), costs roughly $1800, or approximately
$12.00 per MIPS. If we assume that each of the plans above is

submitted at a rate of once each 1,000 seconds, the most expen-
sive plan, "Add from rows", will keep 13.41 disks busy at a cost
of $8046 purchase. We calculate the number of CPU instruc-
tions needed for I/O for the various plans, with the varying as-
sumptions in Table 3.2 of how many instructions are needed to
perform an I/O. Adding the CPU cost for algorithmic loops to
the I/O cost, we determine the total dollar cost ($Cost) to sup-
port the method. For example, for the "Add from Rows" plan, as-
suming one submission each 1000 seconds, if an I/O uses (2K,
5K, 10K) instructions, the CPU cost is ($32.78, $81.06,
$161.52). The cost for disk access ($8046) clearly swamps the
cost of CPU in this case, and in fact the relative cost of I/O com-
pared to CPU holds for all methods. Table 3.2 shows that the
Bit-sliced index is the most efficient for this problem, with the
Projection index and Value-List index a close second and third.
The Projection index is so much better than the fourth ranked
plan of accessing the rows that one would prefer it even if thir-
teen different columns were to be summed, notwithstanding the
savings to be achieved by summing all the different columns
from the same memory-resident row.

Method $Cost for
2K ins
per I/O

$Cost for
5K ins
per I/O

$Cost for
10K ins
 per I/O

Add from Rows $8079 $8127 $8207
Projection index $603 $606 $612
Value-List index $632 $636 $642
Bit-Sliced index $418 $421 $425

Table 3.2. Dollar costs of four plans for SUM

3.1.2 Varying Foundset Density and Clustering

Changing the number of rows in the Foundset has little effect on
the Value-List index or Bit-Sliced index algorithms, because the
entire index must still be read in both cases. However, the algo-
rithms Add from rows and using a Projection index entail work
proportional to the number of rows in the foundset. We stop
considering the plan to Add from rows in what follows.

Suppose the Foundset contains kM (k million) rows, clustered
on a fraction f of the disk space. Both the Projection and Bit-
Sliced index algorithms can take advantage of the clustering.
The table below shows the comparison between the three index
algorithms.

Method I/O CPU contributions
Projection index f . 100K I/O + kM . (10 ins)
Value-List index 103K I/O + 100M . (10 ins)
Bit-Sliced index f . 69K I/O + f .197M . (1 ins)

Table 3.3. Costs of four plans, I/O and CPU factors, with
kM rows and clustering fraction f

Clearly there is a relationship between k and f in Table 3.3, since
for k = 100, 100M rows sit on a fraction f = 1.0 of the table, we
must have k ≤ f.100. Also, if f becomes very small compared to
k/100, we will no longer pick up every page in the Projection
or Bit-Sliced index. In what follows, we assume that f is suffi-
ciently large that the I/O approximations in Table 3.3 are valid.

The dollar cost of I/O continues to dominate total dollar cost of
the plans when each plan is submitted once every 1000 seconds.
For the Projection index, the I/O cost is f.$600. The CPU cost,

-7-

assuming that I/O requires 10K instructions is:
((f .100.10,000+k.1000.10)/1,000,000).$12. Since k ≤ f.100, the
formula f.100.10,000 + k.1000.10 ≤ f.100.10,000 + f.100.1000.10
= f.2,000,000. Thus, the total CPU cost is bounded above by
f .$24, which is still cheap compared to an I/O cost of f.$600. Yet
this is the highest cost we assume for CPU due to I/O, which is
the dominant CPU term. In Table 3.4, we give the maximum dol-
lar cost for each index approach.

Method $Cost for 10K
ins per I/O

Projection index f .$624
Value-List index $642
Bit-Sliced index f .$425

Table 3.4. Costs of the four plans in dollars, with kM rows
and clustering fraction f

The clustered case clearly affects the plans by making the
Projection and Bit-Sliced indexes more efficient compared to the
Value-List index.

3.2 Evaluating Other Column Aggregate Functions

We consider aggregate functions of the form in [3.2], where
AGG is an aggregate function, such as COUNT, MAX, MIN, etc.

[3.2] SELECT AGG(C) FROM T WHERE condition;

Table 3.5 lists a group of aggregate functions and the index
types to evaluate these functions. We enter the value "Best" in a
cell if the given index type is the most efficient one to have for
this aggregation, "Slow" if the index type works but not very ef-
ficiently, etc. Note that Table 3.5 demonstrates how different in-
dex types are optimal for different aggregate situations.

Aggregate Value-List
Index

Projection
Index

Bit-Sliced
Index

COUNT Not needed Not neededNot needed
SUM Not bad Good Best
AVG (SUM/COUNT) Not bad Good Best
MAX and MIN Best Slow Slow
MEDIAN, N-TILE Usually

Best
Not Useful Sometimes

Best2

Column-Product Very Slow Best Very Slow

Table 3.5. Tabulation of Performance by Index Type for
Evaluating Aggregate Functions

The COUNT and SUM aggregates have already been covered.
COUNT requires no index, and AVG can be evaluated as
SUM/COUNT, with performance determined by SUM.

The MAX and MIN aggregate functions are best evaluated with
a Value-List index. To determine MAX for a Foundset Bf, one
loops from the largest value in the Value-List index down to the
smallest, until finding a row in Bf. To find MAX and MIN using
a Projection index, one must loop through all values stored.
The algorithm to evaluate MAX or MIN using a Bit-Sliced index
is given in our extended paper, [O'NQUA], together with other
algorithms not detailed in this Section.

2Best only if there is a clustering of rows in B in a local
region, a fraction f of the pages, f ≤ 0.755.

To calculate MEDIAN(C) with C a keyvalue in a Value-List in-
dex, one loops through the non-null values of C in decreasing
(or increasing) order, keeping a count of rows encountered, until
for the first time with some value v the number of rows encoun-
tered so far is greater than COUNT(Bf AND Bnn)/2. Then v is
the MEDIAN. Projection indexes are not useful for evaluating
MEDIAN, unless the number of rows in the Foundset is very
small, since all values have to be extracted and sorted.
Surprisingly, a Bit-Sliced index can also be used to determine
the MEDIAN, in about the same amount of time as it takes to de-
termine SUM (see [O'NQUA]).

The N-TILE aggregate function finds values v1, v2, . . ., vN-1,
which partition the rows in Bf into N sets of (approximately)
equal size based on the interval in which their C value falls: C
<= v1, v1 < C <= v2, . . ., vN-1 < C. MEDIAN equals 2-TILE.

An example of a COLUMN-PRODUCT aggregate function is
one which involves the product of different columns. In the
TPC-D benchmark, the LINEITEM table has columns
L_EXTENDEDPRICE and L_DISCOUNT. A large number of
quer ies in TPC-D re t r ieve the aggrega te :
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)), usually with
the column alias "REVENUE". The most efficient method for cal-
culating Column-Product Aggregates uses Projection indexes
for the columns involved. It is possible to calculate products of
columns using Value-List or Bit-Sliced indexes, with the sort of
algorithm that was used for SUM, but in both cases, Foundsets
of all possible cross-terms of values must be formed and counted,
so the algorithm are terribly inefficient.

4. Evaluating Range Predicates

Consider a Select statement of the following form:

[4.1] SELECT target-list FROM T
WHERE C-range AND <condition>;

Here, C is a column of T, and <condition> is a general search-
condition resulting in a Foundset Bf. The C-range represents a
range predicate, {C > c1, C >= c1, C = c1, C >= c1, C > c1, C be-
tween c1 and c2}, where c1 and c2 are constant values. We will
demonstrate below how to further restrict the Foundset Bf, creat-
ing a new Foundset BF, so that the compound predicate "C-range
AND <condition>" holds for exactly those rows contained in
BF. We do this with varying assumptions regarding index types
on the column C.

Evaluating the Range using a Projection Index. If there is a
Projection index on C, we can create BF by accessing each C
value in the index corresponding to a row number in Bf and test-
ing whether it lies within the specified range.

Evaluating the Range using a Value-List Index. With a
Value-List index, evaluation the C-range restriction of [4.1] uses
an algorithm common in most database products, looping
through the index entries for the range of values. We vary
slightly by accumulating a Bitmap Br as an OR of all row sets in
the index for values that lie in the specified range, then AND
this result with Bf to get BF. See Algorithm 4.1.

Note that for Algorithm 4.1 to be efficiently performed, we must
find some way to guarantee that the Bitmap Br remains in memory
at all times as we loop through the values v in the range. This
requires some forethought in the Query Optimizer if the table T

-8-

being queried is large: 100 million rows will mean that a
Bitmap Br of 12.5 MBytes must be kept resident.

Algorithm 4.1. Range Predicate with a Value-List Index
Br = the empty set
For each entry v in the index for C that satisfies the
range specified

Designate the set of rows with the value v as Bv
Br = Br OR Bv

BF = Bf AND Br
u

Evaluating the Range using a Bit-Sliced Index. Rather sur-
prisingly, it is possible to evaluate range predicates efficiently
using a Bit-Sliced index. Given a Foundset Bf, we demonstrate
in Algorithm 4.2 how to evaluate the set of rows BGT such that
C > c1, BGE such that C >= c1, BEQ such that C = c1, BLE such
that C <= c1, BLT such that C < c1.

In use, we can drop Bitmap calculations in Algorithm 4.2 that
do not evaluate the condition we seek. If we only need to eval-
uate C >= c1, we don't need steps that evaluate BLE or BLT.

Algorithm 4.2. Range Predicate with a Bit-Sliced Index
BGT = BLT = the empty set; BEQ = Bnn
For each Bit-Slice Bi for C in decreasing significance

If bit i is on in constant c1
BLT = BLT OR (BEQ AND NOT(Bi))
BEQ = BEQ AND Bi

else
BGT = BGT OR (BEQ AND Bi)
BEQ = BEQ AND NOT(Bi)

BEQ = BEQ AND Bf;
BGT = BGT AND Bf; BLT = BLT AND Bf
BLE = BLT OR BEQ; BGE = BGT OR BEQ

u

Proof that BEQ BGT and BGE are properly evaluated. The
method to evaluate BEQ clearly determines all rows with C = c1,
since it requires that all 1-bits on in c1 be on and all 0-bits 0 in
c1 be off for all rows in BEQ. Next, note that BGT is the OR of a
set of Bitmaps with certain conditions, which we now describe.

Assume that the bit representation of c1 is bNbN-1. . .b1b0, and
that the bit representation of C for some row r in the database is
rNrN-1. . .r1r0. For each bit position i from 0 to N with bit bi off in
c1, a row r will be in BGT if bit ri is on and bits rNrN-1. . .r1ri+1 are
all equal to bits bNbN-1. . .bi+1. It is clear that C > c1 for any
such row r in BGT. Furthermore for any value of C > c1, there
must be some bit position i such that the i-th bit position in c1
is off, the i-th bit position of C is on, and all more-significant
bits in the two values are identical. Therefore, Algorithm 4.2
properly evaluates BGT. u

4.1 Comparing Algorithm Performance

Now we compare performance of these algorithms to evaluate a
range predicate, "C between c1 and c2". We assume that C val-
ues are not clustered on disk. The cost of evaluating a range
predicate using a Projection index is similar to evaluating SUM
using a Projection index, as seen in Fig. 3.2. We need the I/O to
access each of the index pages with C values plus the CPU cost

to test each value and, if the row passes the range test, to turn on
the appropriate bit in a Foundset.

As we have just seen, it is possible to determine the Foundset of
rows in a range using Bit-Sliced indexes. We can calculate the
range predicate c2 >= C >= c1 using a Bit-Sliced index by calcu-
lating BGE for c1 and BLE for c2, then ANDing the two. Once
again the calculation is generally comparable in cost to calculat-
ing a SUM aggregate, as seen in Fig. 3.2.

With a Value-List index, algorithmic effort is proportional to the
width of the range, and for a wide range, it is comparable to the
effort needed to perform SUM for a large Foundset. Thus for wide
ranges the Projection and Bit-Sliced indexes have a performance
advantage. For short ranges the work to perform the Projection
and Bit-Sliced algorithms remain nearly the same (assuming the
range variable is not a clustering value), while the work to per-
form the Value-List algorithm is proportional to the number of
rows found in the range. Eventually as the width of the range
decreases the Value-List algorithm is the better choice. These
considerations are summarized in Table 4.1.

Range Evaluation Value-List
Index

Projection
Index

Bit-Sliced
Index

Narrow Range Best Good Good
Wide Range Not bad Good Best

 Table 4.1. Range Evaluation Performance by Index Type

4.2 Range Predicate with a Non-Binary Bit-Sliced Index

Sybase IQ was the first product to demonstrate in practice that
the same Bit-Sliced index, called the "High NonGroup Index"
[EDEL95], could be used both for evaluating range predicates
(Algorithm 4.2) and performing Aggregates (Algorithm 3.2, et
al). For many years, MODEL 204 has used a form of indexing to
evaluate range predicates, known as "Numeric Range" [M204].
Numeric Range evaluation is similar to Bit-Sliced Algorithm
4.2, except that numeric quantities are expressed in a larger base
(base 10). It turns out that the effort of performing a range re-
trieval can be reduced if we are willing to store a larger number
of Bitmaps. In [O'NQUA] we show how Bit-Sliced Algorithm
4.2 can be generalized to base 8, where the Bit-Slices represent
sets of rows with octal digit Oi ≥ c, c a non-zero octal digit.
This is a generalization of Binary Bit-Slices, which represent
sets of rows with binary digit Bi ≥ 1.

5. Evaluating OLAP-style Queries

Figure 5.1 pictures a star-join schema with a central fact table,
SALES, containing sales data, together with dimension tables
known as TIME (when the sales are made), PRODUCT (product
sold), and CUSTOMER (purchaser in the sale). Most OLAP
products do not express their queries in SQL, but much of the
work of typical OLAP queries could be represented in SQL
[GBLP96] (although more than one query might be needed).

[5.1] SELECT P.brand, T.week, C.city, SUM(S.dollar_sales)
 FROM SALES S, PRODUCT P, CUSTOMER C, TIME T

 WHERE S.day = T.day and S.cid = C.cid
and S.pid = P.pid and P.brand = :brandvar
and T.week >= :datevar and C.state in

('Maine', 'New Hampshire', 'Vermont',
 'Massachusetts', 'Connecticut', 'Rhode Island')

 GROUP BY P.brand, T.week, C.city;

-9-

Query [5.1] retrieves total dollar sales that were made for a prod-
uct brand during the past 4 weeks to customers in New
England.

CUSTOMER
Dimension

SALES Fact

PRODUCT
Dimension

cid
gender

city
state
zip
hobby

day
week
month
year
holiday_flg
weekday_flg

cid
pid
day
dollar_sales
dollar_cost
unit_sales

pid
SKU
brand
size
weight
package_type

TI ME
Dimensio
n

 Figure 5.1. Star Join Schema of SALES, CUSTOMER,
PRODUCT, and TIME

An important advantage of OLAP products is evaluating such
queries quickly, even though the fact tables are usually very
large. The OLAP approach precalculates results of some
Grouped queries and stores them in what we have been calling
summary tables. For example, we might create a summary table
where sums of Sales.dollar_sales and sums of Sales.unit_sales
are precalculated for all combination of values at the lowest
level of granularity for the dimensions, e.g., for C.cid values,
T.day values, and P.pid values. Within each dimension there are
also hierarchies sitting above the lowest level of granularity. A
week has 7 days and a year has 52 weeks, and so on. Similarly, a
customer exists in a geographic hierarchy of city and state.
When we precalculate a summary table at the lowest dimen-
sional level, there might be many rows of detail data associated
with a particular cid, day, and pid (a busy product reseller cus-
tomer), or there might be none. A summary table, at the lowest
level of granularity, will usually save a lot of work, compared to
detailed data, for queries that group by attributes at higher lev-
els of the dimensional hierarchy, such as city (of customers),
week, and brand. We would typically create many summary ta-
bles, combining various levels of the dimensional hierarchies.
The higher the dimensional levels, the fewer elements in the
summary table, but there are a lot of possible combinations of hi-
erarchies. Luckily, we don't need to create all possible summary
tables in order to speed up the queries a great deal. For more de-
tails, see [STG95, HRU96].

By doing the aggregation work beforehand, summary tables pro-
vide quick response to queries, so long as all selection condi-
tions are restrictions on dimensions that have been foreseen in
advance. But, as we pointed out in Example 1.1, if some restric-
tions are non-dimensional, such as temperature, then summary
tables sliced by dimensions will be useless. And since the size

of data in the summary tables grows as the product of the number
of values in the independent dimensions (counting values of hi-
erarchies within each dimension), it soon becomes impossible to
provide dimensions for all possible restrictions. The goal of
this section is to describe and analyze a variant indexing ap-
proach that is useful for evaluating OLAP-style queries
quickly, even when the queries cannot make use of preaggrega-
tion. To begin, we need to explain Join indexes.

5.1 Join Indexes

Definition 5.1. Join Index. A Join index is an index on one
table for a quantity that involves a column value of a different
table through a commonly encountered join u

Join indexes can be used to avoid actual joins of tables, or to
greatly reduce the volume of data that must be joined, by per-
forming restrictions in advance. For example, the Star Join index
— invented a number of years ago — concatenates ordinal en-
codings of column values from different dimension tables of a
Star schema, and lists RIDs in the central fact table for each con-
catenated value. The Star Join index was the best approach
known in its day, but there is a problem with it, comparable to
the problem with summary tables. If there are numerous columns
used for restrictions in each dimension table, then the number of
Star Join indexes needed to be able to combine arbitrary column
restrictions from each dimension table is a product of the number
of columns in each dimension. Thus, there will be a "combinato-
rial explosion" of Join Indexes in terms of the number of inde-
pendent columns.

The Bitmap join index, defined in [O'NGG95], addresses this
problem. In its simplest form, this is an index on a table T based
on a single column of a table S, where S commonly joins with T
in a specified way. For example, in the TPC-D benchmark
database, the O_ORDERDATE column belongs to the ORDER
table, but two TPC-D queries need to join ORDER with
LINEITEM to restrict LINEITEM rows to a range of
O_ORDERDATE. This can better be accomplished by creating
an index for the value ORDERDATE on the LINEITEM table.
This doesn't change the design of the LINEITEM table, since
the index on ORDERDATE is for a virtual column through a
join. The number of indexes of this kind increases linearly with
the number of useful columns in all dimension tables. We de-
pend on the speed of combining Bitmapped indexes to create ad-
hoc combinations, and thus the explosion of Star Join indexes
because of different combinations of dimension columns is not a
problem. Another way of looking at this is that Bitmap join in-
dexes are Recombinant, whereas Star join indexes are not.

The variant indexes of the current paper lead to an important
point, that Join indexes can be of any type: Projection, Value-
List, or Bit-Sliced. To speed up Query [5.1], we use Join in-
dexes on the SALES fact table for columns in the dimensions. If
appropriate join indexes exist for all dimension table columns
mentioned in the queries, then explicit joins with dimension ta-
bles may no longer be necessary at all. Using Value-List or Bit-
Sliced join indexes we can evaluate the selection conditions in
the Where Clause to arrive at a Foundset on SALES, and using
Projection join indexes we can then retrieve the dimensional
values for the Query [5.1] target-list, without any join needed.

5.2 Calculating Groupset Aggregates

We assume that in star-join queries like [5.1], an aggregation is
performed on columns of the central fact table, F. There is a

-10-

Foundset of rows on the fact table, and the group-by columns in
the Dimension tables D1, D2, . . . (they might be primary keys of
the Dimension tables, in which case they will also exist as for-
eign keys on F). Once the Foundset has been computed from the
Where Clause, the bits in the Foundset must be partitioned into
groups, which we call Groupsets, again sets of rows from F.
Any aggregate functions are then evaluated separately over
these different Groupsets. In what follows, we describe how to
compute Groupset aggregates using our different index types.

Computing Groupsets Using Projection Indexes. We as-
sume Projection indexes exist on F for each of the group-by
columns (these are Join Indexes, since the group-by columns are
on the Dimension tables), and also for all columns of F involved
in aggregates. If the number of group cells is small enough so
that all grouped aggregate values in the target list will fit into
memory, then partitioning into groups and computing aggregate
functions for each group can usually be done rather easily.

For each row of the Foundset returned by the Where clause, clas-
sify the row into a group-by cell by reading the appropriate
Projection indexes on F. Then read the values of the columns to
be aggregated from Projection indexes on these columns, and
aggregate the result into the proper cell of the memory-resident
array. (This approach can be used directly for functions such a
SUM(C); for functions such as AVG(C), it can be done by accu-
mulating a "handle" of results, SUM(C) and COUNT(C), to cal-
culate the final aggregate.)

If the total set of cells in the group-by cannot be retained in a
memory-resident array, then the values to be aggregated can be
tagged with their group cell values, and then values with iden-
tical group cell values brought together using a disk sort (this
is a common method used today, not terribly efficient).

Computing Groups Using Value-List Indexes. The idea of
using Value-List indexes to compute aggregate groups is not
new. As mentioned in Example 2.1, Model 204 used them years
ago. In this section we formally present this approach.

Algorithm 5.1. Grouping by columns D1.A, D2.B using a
Value-List Index

For each entry v1 in the Value-List index for D1.A
For each entry v2 in the Value-List index for D2.B

Bg = Bv1 AND Bv2 AND Bf
Evaluate AGG(F.C) on Bg
/* We would do this with a Projection index * /

u

Algorithm 5.1 presents an algorithm for computing aggregate
groups that works for queries with two group-by columns (with
Bitmap Join Value-List indexes on Dimension tables D1 and
D2). The generalization of Algorithm 5.1 to the case of n group-
by attributes is straightforward. Assume the Where clause con-
dition already performed resulted in the Foundset Bf on the fact
table F. The algorithm generates a set of Groupsets, Bg, one for
each (D1.A, D2.B) group. The aggregate function AGG(F.C) is
evaluated for each group using Bg in place of Bf.

Algorithm 5.1 can be quite inefficient when there are a lot of
Groupsets and rows of table F in each Groupset are randomly
placed on disk. The aggregate function must be re-evaluated for
each group and, when the Projection index for the column F.C is
too large to be cached in memory, we must revisit disk pages for
each Groupset. With many Groupsets, we would expect there to

be few rows in each, and evaluating the Grouped AGG(F.C) in
Algorithm 5.1 might require an I/O for each individual row.

5.3 Improved Grouping Efficiency Using Segmentation
and Clustering

In this section we show how segmentation and clustering can
be used to accelerate a query with one or more group-by at-
tributes, using a generalization of Algorithm 5.1. We assume
that the rows of the table F are partitioned into Segments, as ex-
plained in Section 2.1. Query evaluation is performed on one
Segment at a time, and the results from evaluating each Segment
are combined at the end to form the final query result.
Segmentation is most effective when the number of rows per
Segment is the number of bits that will fit on a disk page. With
this Segment size, we can read the bits in an index entry that cor-
respond to a segment by performing a single disk I/O.

As pointed out earlier, if a Segment s1 of the Foundset (or
Groupset) is completely empty (i.e., all bits are 0), then ANDing
s1 with any other Segment s2 will also result in an empty
Segment. As explained in [O'NEI87], the entry in the B-tree leaf
level for a column C that references an all-zeros Bitmap Segment
is simply missing, and a reasonable algorithm to AND Bitmaps
will test this before accessing any Segment Bitmap pages. Thus
neither s1 nor s2 will need be read from disk after an early phase
of evaluation. This optimization becomes especially useful
when rows are clustered on disk by nested dimensions used in
grouping, as we will see.

Consider a Star Join schema with a central fact table F and a set
of three dimension tables, D1, D2, D3. We can easily generalize
the analysis that follows to more than three dimensions. Each
dimension Dm, 1 ≤ m ≤ 3, has a primary key, dm , with a domain of
values having an order assigned by the DBA. We represent the
number of values in the domain of dm by nm, and list the values
of dm in increasing order, differentiated by superscript, as: dm

1,

dm
2, . . ., dm

nm. For example, the primary key of the TIME dimen-
sion of Figure 5.1 would be days and have a natural temporal
order. The DBA would probably choose the order of values in
the PRODUCT dimension so that the most commonly used hier-
archies, such as product_type or category, consist of contiguous
sets of values in the dimensional order. See Figure 5.2.

PROD1
PROD2
PROD3
PROD4
PROD5
PROD6
PROD7
PROD8

ProductProduct TypeCategory

Soap

Shampoo

Personal
Hygiene

Figure 5.2. Order of Values in PRODUCT Dimensions

In what follows, we will consider a workload of OLAP-type
queries which have group-by clauses on some values in the di-
mension tables (not necessarily the primary key values). The
fact table F contains foreign key columns that match the primary
keys of the various dimensions. We will assume indexes on
these foreign keys for table F and make no distinction between
these and these and the primary keys of the Dimensions. We in-

-11-

tend to demonstrate how these indexes can be efficiently used to
perform group-by queries using Algorithm 5.1.

We wish to cluster the fact table F to improve performance of the
most finely divided group-by possible (grouping by primary
key values of the dimensions rather than by any hierarchy val-
ues above these). It will turn out that this clustering is also ef-
fective for arbitrary group-by queries on the dimensions. To
evaluate the successive Groupsets by Algorithm 5.1, we con-
sider performing the nested loop of Figure 5.3.

For each key-value v1 in order from D1
For each key-value v2 in order from D2

For each key-value v3 in order from D3
<calculate aggregates for cell v1, v2, v3>

End For v3
End For v2

End For v1

Figure 5.3. Nested Loop to Perform a Group-By

In the loop of Figure 5.3, we assume the looping order for di-
mensions (D1, D2, D3) is determined by the DBA (this order has
long-term significance; we give an example below). The loop on
dimension values here produces conjoint cells (v1, v2, v3), of the
group-by. Each cell may contain a large number of rows from
table F or none. The set of rows in a particular cell is what we
have been referring to as a Groupset.

It is our intent to cluster the rows of the fact table F so that all
the rows with foreign keys matching the dimension values in
each cell (v1, v2, v3) are placed together on disk, and further-
more that the successive cells fall in the same order on disk as
the nested loop above on (D1, D2, D3).

Given this clustering, the Bitmaps for each Groupset will have
1-bits in a limited contiguous range. Furthermore, as the loop is
performed to calculate a group-by, successive cells will have
rows in Groupset Bitmaps that are contiguous one to another
and increase in row number. Figure 5.4 gives a schematic repre-
sentation of the Bitmaps for index values of three dimensions.

D1 = d1
1 1111111111111111100000000000000000000...

= d1
2 0000000000000000011111111111111111000...

. . .
D2 = d2

1 1111111000000000011111110000000000111...
= d2

2 0000000111111100000000001111111000000...
. . .

D3 = d3
1 1100000110000000011000000000000000110...

= d3
2 0011000001100000000110000000000000001...

. . .

= d3
n3 0000011000001100000000110000000000001...

Figure 5.4. Schematic Representation of Dimension
Index Bitmaps for Clustered F

The Groupset Bitmaps are calculated by ANDing the appropri-
ate index Bitmaps for the given values. Note that as successive
Groupset Bitmaps in loop order are generated from ANDing, the
1-bits in each Groupset move from left to right. In terms of
Figure 5.4, the Groupset for the first cell (d1

1, d2
1, d3

1) calcu-
lated by a Bitmap AND of the three index Bitmaps D1 = d1

1, D2 =
d2

1, and D3 = d3
1, is as follows.

1100000000000000000000000000000000000...

The Groupset for the next few cells will have Bitmaps:

0011000000000000000000000000000000000...
0000110000000000000000000000000000000...

And so on, moving from left to right.

To repeat: as the loop to perform the most finely divided group-
by is performed, and Groupset Bitmaps are generated, succes-
sive blocks of 1-bits by row number will be created, and succes-
sive row values from the Projection index will be accessed to
evaluate an aggregate. Because of Segmentation, no unnecessary
I/Os are ever performed to AND the Bitmaps of the individual
dimensions. Indeed, due to clustering, it is most likely that
Groupset Bitmaps for successive cells will have 1-bits that
move from left to right on each Segment Bitmap page of the Value
index, and the column values to aggregate will move from left to
right in each Projection index page, only occasionally jumping
to the next page. This is tremendously efficient, since relevant
pages from the Value-list dimension indexes and Projection in-
dexes on the fact table need be read only once from left to right
to perform the entire group-by.

If we consider group-by queries where the Groupsets are less
finely divided than in the primary key loop given, grouping in-
stead by higher hierarchical levels in the dimensions, this ap-
proach should still work. We materialize the grouped
Aggregates in memory, and aggregate in nested loop order by
the primary keys of the dimensions as we examine rows in F.
Now for each cell, (v1, v2, v3) in the loop of Figure 5.3, we de-
termine the higher order hierarchy values of the group-by we are
trying to compute. Corresponding to each dimension primary

key value of the current cell, vi = di
m, there is a value in the di-

mension hierarchy we are grouping by hi
r; thus, as we loop

through the finely divided cells, we aggregate the results for

(d1
m1, d2

m2, d3
m3) into the aggregate cell for (h1

r1, h2
r2, h3

r3).
As long as we can hold all aggregates for the higher hierarchical
levels in memory at once, we have lost none of the nested loop
efficiency. This is why we attempted to order the lowest level
dimension values by higher level aggregates, so the cells here
can be materialized, aggregated, and stored on disk in a streamed
fashion. In a similar manner, if we were to group by only a sub-
set of dimensions, we would be able to treat all dimensions not
named as the highest hierarchical level for that dimension,
which we refer to as ALL, and continue to use this nested loop
approach.

5.4 Groupset Indexes

While Bitmap Segmentation permits us to use normal Value-List
indexing, ANDing Bitmaps (or RID-lists) from individual in-
dexes to find Groupsets, there is some inefficiency associated
with calculating which Segments have no 1-bits for a particular
Cell to save ANDing segment Bitmaps. In Figure 5.1, for exam-
ple, the cell (d11, d2

1, d3
1) has only the leftmost 2 bits on, but

the Value-List index Bitmaps for these values have many other
segments with bits on, as we see in Figure 5.4, and Bitmaps for
individual index values might have 1-bits that span many
Segments.

To reduce this overhead, we can create a Groupset index, whose
keyvalues are a concatenation of the dimensional primary-key
values. Since the Groupset Bitmaps in nested loop order are
represented as successive blocks of 1-bits in row number, the

-12-

Groupset index value can be represented by a simple integer,
which represents the starting position of the first 1-bit in the
Groupset, and the ending position of that Bitmap can be deter-
mined as one less than the starting position for the following
index entry. Some cells will have no representative rows, and
this will be most efficiently represented in the Groupset index
by the fact that there is no value representing a concatenation of
the dimensional primary-key values.

We believe that the Groupset index makes the calculation of a
multi-dimensional group-by as efficient as possible when pre-
calculating aggregates in summary tables isn't appropriate.

6. Conclusion

The read-mostly environment of data warehousing has made it
feasible to use more complex index structures to speed up the
evaluation of queries. This paper has examined two new index
structures: Bit-Sliced indexes and Projection indexes. Indexes
like these were used previously in commercial systems, Sybase
IQ and MODEL 204, but never examined in print.

As a new contribution, we have shown how ad-hoc OLAP-
style queries involving aggregation and grouping can be effi-
ciently evaluated using indexing and clustering, and we have
introduced a new index type, Groupset indexes, that are espe-
cially well-suited for evaluating this type of query.

References

[COMER79] Comer, D. The Ubiquitous B-tree. Comput. Surv.
11 (1979), pp. 121-137.

[EDEL95] Herb Edelstein. Faster Data Warehouses.
Information Week, Dec. 4, 1995, pp. 77-88. Give title and au-
thor on http://www.techweb.com/search/advsearch.html.

[FREN95] Clark D. French. "One Size Fits All" Database
Architectures Do Not Work for DSS. Proceedings of the 1995
ACM SIGMOD Conference, pp. 449-450.

[GBLP96] Jim Gray, Adam Bosworth, Andrew Layman, and
Hamid Pirahesh. Data Cube: A Relational Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. Proc. 12th
Int. Conf. on Data Eng., pp. 152-159, 1996.

[GP87] Jim Gray and Franco Putzolu. The Five Minute Rule for
Trading Memory for Disk Accesses and The 10 Byte Rule for
Trading Memory for CPU Time. Proc. 1987 ACM SIGMOD, pp.
395-398.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey D.
Ullman. Implementing Data Cubes Efficiently. Proc. 1996 ACM
SIGMOD, pp. 205-216.

[KIMB96] Ralph Kimball. The Data Warehouse Toolkit. John
Wiley & Sons, 1996.

[M204] MODEL 204 File Manager's Guide, Version 2, Release
1.0, April 1989, Computer Corporation of America.

[O'NEI87] Patrick O'Neil. Model 204 Architecture and
Performance. Springer-Verlag Lecture Notes in Computer
Science 359, 2nd Int. Workshop on High Performance
Transactions Systems (HPTS), Asilomar, CA, 1987, pp. 40-59.

[O'NEI91] Patrick O'Neil. The Set Query Benchmark. The
Benchmark Handbook for Database and Transaction Processing
Systems, Jim Gray (Ed.), Morgan Kaufmann, 2nd Ed. 1993, pp.
359-395.

[O'NEI96] Patrick O'Neil. Database: Principles, Programming,
and Performance. Morgan Kaufmann, 3rd printing, 1996.

[O'NGG95] Patrick O'Neil and Goetz Graefe. Multi-Table
Joins Through Bitmapped Join Indices. SIGMOD Record,
September, 1995, pp. 8-11,

[O'NQUA] Patrick O'Neil and Dallan Quass. Improved
Query Performance with Variant Indexes. Extended paper, avail-
able on http:/www.cs.umb.edu/~poneil/varindexx.ps

[PH96] D. A. Patterson and J. L. Hennessy. Computer Archi-
tecture, A Quantitative Approach. Morgan Kaufmann, 1996.

[STG95] Stanford Technology Group, Inc., An INFORMIX Co..
Designing the Data Warehouse on Relational Databases.
Informix White Paper, 1995, http://www.informix.com.

[TPC] TPC Home Page. Descriptions and results of TPC
benchmarks, including the TPC-C and TPC-D benchmarks.
http://www.tpc.org.

