
C h a r l e s L a m b
G o r d o n L a n d i s

J a c k O r e n s t e i n
D a n W e i n r e b

S O October 1991/%1.34, No.10/COMMUNICATIONS OF THE ACM

bjectStore is an object-oriented database management system
(OODBMS) that provides a tightly integrated language
interface to the traditional DBMS features of persistent

storage, transaction management (concurrency control and recovery),
distributed data access, and associative queries. ObjectStore was designed
to provide a unified programmatic interface to both persistently
allocated data (i.e., data that lives beyond the execution of an applica-
tion program) and transiently allocated data (i.e., data that does not
survive beyond an application's execution), with object-access speed for
persistent data usually equal to that of an in-memory dereference of a
pointer to transient d a t a . ~ - _ - - - - -

These goals were derived from
the requirements of ObjectStore's
target applications, which are typi-
cally data-intensive programs that
perform complex manipulations on
large databases of objects with intri-
cate structure, e.g., CAD, CAE,
CAP, CASE, and geographic infor-
mation systems (GIS). This struc-
tural complexity is generally real-
ized by inter-object references, e.g.,
pointers from one object to an-
other. Objects are located, possibly
with the intent to update them, by
traversing these references and by
associative queries.

We selected C + + as the primary
language through which Ob-
jectStore is accessed because it is
becoming a very popular language
among the developers of Ob-
jectStore's target applications. Ob-
jectStore can also be used from C
programs--providing access from
C is easy because the data model o f
C is a subset of that of C+ +. Use of
ObjectStore from other program-
ming languages is discussed later.

The key to ObjectStore's integra-
tion with C+ + is that persistence is
not part of the type of an object.
Objects of any C + + data type
whatsoever can be allocated tran-
siently (on the ordinary heap) or
persistently (in a database), from
built-in types such as integers and
character strings, to arbitrary user-
defined structures (which may con-

tain pointers, use C + + virtual
functions and multiple inheritance,
etc). In particular, there is no need
to inherit from a special "persistent
object" base class. Different objects
of the same type may be persistent
or transient within the same pro-
gram.

There are several motivations for
our goal of making ObjectStore
closely integrated with the pro-
gramming language. These in-
clude:

Ease of learning: It was intention-
ally designed so that a C+ + user
would only have to learn a little bit
more in order to try out Ob-
jectStore and start to use it effec-
tively. After that, a user can learn
more, and take advantage of more
of the capabilities the database of-
fers. In particular, there is no need
to learn a new type system or a new
way to define objects. The declara-
tive and procedural parts of the
language are used for both kinds of
objects. By providing a gradual
learning path and making it easy
for users to get started, we hope to
make ObjectStore accessible to a
wider range of developers, and
help ease the transition into the use
of object-oriented database tech-
nology.

No translation code: We wanted to
save the programmer from having

to write code that translates be-
tween the disk-resident representa-
tion of data, and the representation
used during execution. For exam-
ple, to store a C+ + object into a re-
lational database, the programmer
must construct a mapping between
the two, and write code that picks
fields out o f tuples and copies them
into data members o f objects. (This
is part of the problem that has been
called the "impedance mismatch"
between a programming language
and a database access language [2,
13].) With ObjectStore, no translat-
ing and no copying is needed. Per-
sistent data is just like ordinary
heap-allocated (transient) data:
once a pointer is obtained to it, the
user can just use it in the ordinary
way. ObjectStore automatically
takes care of locking, and keeps
track of what has been modified.

Expressive power: We wanted the
interface to persistently allocated
objects to support all o f the power
of the host programming language.
This contrasts with the traditional
data manipulation capabilities o f
languages such as SQL, which are
much less powerful than a general-
purpose programming language.

Reusability: We wanted to promote
reusability of code, by allowing the
same code to operate on either per-
sistent or transient data, and to

COMMUNICATIONS OF THE ACM/October 1991/Vol.34, No.10 S l

allow libraries that were developed
for manipulating transient data to
work on persistent data without
change. For example, if a program-
mer has a library routine that takes
an array of floating-point numbers
and computes the fast Fourier
transforra, he or she can pass it an
ObjectStore persistent array, and it
will work. Usually, if a library does
not need to do any persistent allo-
cation o f its own, the library can be
applied to persistent data without
even being recompiled.

Conversion: Many programmers
who are interested in using object-
oriented DBMSs would like to add
persistence to existing applications
that deal with transient objects,
rather than build new applications
from scratch. We wanted to make it
as easy as possible to convert an ex-
isting application to use persistent
objects throughout. In particular,
this means that basic data opera-
tions such as dereferencing point-
ers and getting and setting data
members should be syntactically the
same for persistent and transient
objects, and that variables should
not have 1:o have their type declara-
tions changed when persistent ob-
jects are used.

Type checking: We wanted the
compile-time type-checking of
C+ + to apply to persistent data as
well as transient data, with the en-
tire application using a single type
system. The compiler's type check-
ing applies to objects in the data-
base. For example, a variable refer-
ring to an object o f class employee
would have type 'employee *'. Such
a variable could refer to a persistent
employee or a transient employee,
at different times during program
execution. A function that takes a
reference to an employee as an ar-
gument can therefore operate on a
persistent or a transient employee.

The second goal o f ObjectStore
is to provide a very high perfor-
mance for the kinds o f applications
to which ObjectStore is targetted.
From the point o f view of perfor-

mance, the target applications are
very different from traditional
database applications such as pay-
roll programs and on-line transac-
tion processing systems, in several
ways, as we found from interview-
ing developers of such applications.

Temporal locality: When many
users access a shared database, very
often the next user of a data item
will be the same as the previous
user. In other words, while concur-
rent access must be allowed and
must work correctly, many data
items will be used 'mostly' by one
user over a short span of time.

Spatial locality: Often an applica-
tion will use only a portion of a
database, and that portion will be
(or can be arranged to be) in a small
section of the database that is con-
tiguous, or mostly so.

Fine interleaving: Applications
often interleave small database op-
erations (i.e., go from one object to
a reference object) with small
amounts of computation. That is,
there are many very small database
operations rather than relatively
few large ones. I f every database
operation required a significant
per-operation overhead cost (such
as the cost of sending a network
message), overhead costs would
become prohibitive.

Developers told us that it is im-
perative that ordinary data manip-
ulation be as fast as possible. For
example, an ECAD circuit simula-
tion is CPU-intensive, traversing a
network of objects representing a
circuit, carrying out computations
on the way. These simulations are
quite expensive. Any approach to
data management that penalizes
the running time of such an appli-
cation is impractical. This means
that one critical operation must be
as fast as possible: the operation of
obtaining data from an object,
given a pointer or reference to the
object. This operation might be
called 'fetching an object'; more
precisely, it is dereferencing a
pointer. ObjectStore is designed to

make the speed of dereferencing of
pointers to persistent objects be as
close as possible to that of transient
objects, namely the speed of a sin-
gle load instruction.

ObjectStore also has some of the
same performance goals as ordi-
nary relational DBMSs, and it gen-
erally accomplishes these using
familiar techniques such as indexes,
query optimization, log-based re-
covery, and so on. The implemen-
tation section explains how we ap-
proached all of these performance
goals, focusing on the aspects of
ObjectStore that differ from con-
ventional techniques.

Another goal of ObjectStore is to
provide several features that are
missing from C + + and from most
DBMSs: a collection facility (sets,
lists, and so on), a way to express
bidirectional relationships, and
support for groupware based on
versioned data.

Application Interface
In addition to the data definition
and manipulation facilities pro-
vided by the host languages, C and
C + + , ObjectStore provides sup-
port for accessing persistent data
inside transactions, a library of col-
lection types, bidirectional relation-
ships, an optimizing query facility,
and a version facility to support col-
laborative work. Tools supporting
database schema design, database
browsing, database administration,
and application compilation and
debugging, are also provided.

There are three programming
interfaces supported, a C library
interface, a C + + library interface,
and an extended C+ + which pro-
vides a tighter language integration
to the query and relationship facili-
ties. This interface is accessible only
through ObjectStore's C + + com-
piler, while the two library inter-
faces are accessible through other
third-party C or C + + compilers,
thus providing maximum portabil-
ity. All of the features and perfor-
mance benefits of the ObjectStore
architecture are realized in all of
the interfaces.

S 2 October 1991/Vo1.34, No.10/COMMUNICATION8 OF THE ACM

Accessing Persistent Data
A simple C+ + program which uses
the extended C+ + interface to the
system is presented in Figure 1.
This program opens an existing

:ili~!:!iii!i i:!!:iiiiiii:
:ili!!i!i!i!! #Lrxcludo (obJ ectstore/obj ect~tore H~!
iiiii;ii!!~ #include (r~Co~ds H)
iiiii~ill ~iiiiii

database, creates a new persistent {
object of class employee, adds the
new employee to an existing de- / / D e ~ e a e, ~ " olnt" into ~ e
partment, and sets the salary of the // H e of ~ e "~o ~ . d e p n t "
employee to 1,000. The keyword
pers is tent specifies a storage class, d~t.~b~e *db;
saying that this variable resides in p e r s t ~ n t (d b) ~department* englnee dep nt;
the specified database. Persistent
variables associate names with per- / /Open ~ e ch~t~b~e.
sistent objects, providing the start- db ~ ~ e : : ~ (" / c o ~ ecords");
ing point from which navigations or

queries begin. The db argument to / /S t a r t a ~ a o t ~ o n so ~ a t t~e dat, abaso
the new operator specifies that the / l o a n be ~ s s e d .
employee object being created t a ' ~ a o t t o n : : b e ~ () ;
should be allocated in database db.

It should be noted that the ma- / /The nex t ~ e e s~atements c r e a ~ and m a
nipulation of data looks just like an / / p e r s i s t e n t obJeog represent!rig a person named Fred,
ordinary C + + program, even loyeo . e m p ~ (~b) empl0yoe (" ~ d ") ;
though the objects are persistent, e > loyoo (emp);
They also compile into the same o m p ~ > s a l ~ = 1 ~ 0 ;
machine instructions: the update of
the salary field just uses a simple //CO ~; all o h ~ e S ~ ~ ~ e .
store instruction. ObjectStore auto- ~t,lon::c ~);
matically sets read and write locks, }
and automatically keeps track of
what has been modified, helping to
protect the integrity of the database
against the possibility of program-
mer error. Access to persistent data
is guaranteed to be transaction-
consistent (i.e., all-or-none update
semantics), and recoverable in the
event of system failure.

It should be noted that in Fig-
ure 1 the variable engineering_
depar tment is not explicitly initial-
ized. This is because it is a persis-
tent variable, which refers to an
object stored in the "/compax~/
recorch~" database. The object is
looked up by name, 'en-
gineering_department', in the data-
base, and the program variable is
initialized to refer to the named
object in the database. (It would
have been an error if there had
been no such object in the data-
base.) The persistent keyword in
the ObjectStore extended C+ + in-
ferface simply provides a short-
hand for looking up an object in the
database by name, and binding a

Manipulating persistent data

/* file records.H */

class employee
{
public:

char* ilaIne;
int salary;

};
class depar tment
{
public:

os_Set(employee*> employees,

void add_employee (employee *e)
{ employees->insert (e); }

int works_here (employee *e)
{ r e tu rn employees-->contains (e); }

Using COlleCtions

i j jli/i

!ii!!iiii!!iiiiii!i!i!i ili!iii!iiiiiiiii iiii!!i!i iiiiiiiii i!!i i i
iii!iii~ili~iiiiiiiii!~iiii!iiiiiiiiiiiiiiiii!!i!iii!iiii~i!i!iii!~i!~

COMMUNICATIONS; OF THE ~ M / O c t o b e r 1991/Vol.34, No.10 S ~

local program variable to the per-
sistent database object.

Collections
ObjectStore provides a collection
facility in 1:he form of an object class
library. Collections are abstract
structures which resemble arrays in
traditional programming lan-
guages, or tables in relational
DBMSs. Unlike arrays or tables,
however, ObjectStore collections
provide a variety of behaviors, in-
cluding ordered collections (lists),
and collections with or without
duplicates (bags or sets).

Performance tuning often in-
volves replacing simple data struc-

tures, such as lists, with more effi-
cient but more complex structures
such as b-trees or hash tables. This
aspect of application development
is also handled by the collection li-
brary. Users may optionally de-
scribe intended usage by estimating
frequencies of various operations,
(e.g., iteration, insertion, and re-
moval), and the collection library
will transparently select an appro-
priate representation. Further-
more, a policy can be associated with
the collection, dictating how the
representation should change in
response to changes in the collec-
tion's cardinality. These perfor-
mance-tuning facilities reduce the

developer's involvement from cod-
ing data structures to describing
access patterns.

Figure 2 shows the user-written
include file re0ords.H, used in this
example. Note that the class de-
partment declares a data member
of type os_Set(employee*) .os_Set
is a (parameterized) collection class,
found in the ObjectStore collection
class library. I f d is a department,
then d->add_ .employee(e) simply
adds e into d's set of employees.
d - ->wor lm_here (e) returns true if
e is contained in d's set of employ-
ees, false otherwise.

ObjectStore includes a looping
construct to iterate over sets. For
example, the code in Figure 3 gives

. a 10% raise to each employee in
depar tment d. In the loop, e is
bound to each element o f d - > e m -
ploy0es in turn.

Iteration over a collection

/* file records .H , /

class employee
(
pub]to:

skring name;
~t salary;
dep~ent* dept

t n v e ~ l e _ m e m b e r d~m-~lanent: :em91oyeee;

class department

publlc-
os~et(employee*) employees

Lnve~e_membex. eml)loyeetzde]pt;

void azid_.employ0e (employee *e)
(employoos-->tnsex~ (e); }

void works_here (employee *e)
{ employees - ->con ta lns (e) ; }

};

Using relationships

The Relationship Facility
Complex objects such as parts hier-
archies, designs, documents, and
multimedia information can be
modeled using ObjectStore's rela-
tionship facility. Relationships can
be thought of as a pair o f inverse
pointers, so that if one object points
to another, the second object has an
inverse pointer back to the first.
Relationships maintain the integrity
o f these pointers. For example, if
one participant in a relationship is
deleted, then the pointer to that
object, f rom the other participant,
is set to null. One-to-one, one-to-
many, and many-to-many relation-
ships are supported.

To continue the example in Fig-
ure 3, we could create a relation-
ship between employees and de-
partments, as in Figure 4. The dept
data member o f employee and the
employees data member o f de-
pa-m, m 0 n t are declared to be in-
verses o f one another. Because one
data member is a single pointer and
the other is a set, the relationship is
one-to-many. Whenever an em-
ployee is inserted into a depart-
ment's set of employees, the em-
ployee is automatically updated to
refer to the depar tment (and vice-

S4 October 1991/Vol.34, No.IO/COMMUNIC&TIONS OF THE ACM

versa). Similarly, when an employee
is deleted from a depar tment ' s set
of employees, the pointer from the
employee to the depa r tmen t is set
to null, guarantee ing referential
integrity.

Syntactically, relationships are
accessed jus t like data members in
C + + , but updat ing the value of a
relationship causes the inverse rela-
t ionship to be upda ted as well, so
that the two sides are always consis-
tent with one another. This means
that after d - - > a d d _ e m p l o y e e (e) in
the code example given in Figure 1,
o's dep t would be eng inee r ing_
d e p a r t m e n t , even though this field
was not explicitly set by the appli-
cation. This update of e would oc-
cur as a result of inserting e into
d - - > e m p l o y e e s , because of the in-
v e r s o _ m e m b e r declarations. Simi-
larly, if o - - > d e p t is set to another
depar tment , d2, then e is removed
from d - - > e m p l o y e e s , and inserted
to d2 - ->employees . In general ,
maintenance actions can involve
simply unsett ing the inverse, or ac-
tually delet ing the object on the in-
verse, at the schema-definer 's dis-
cretion. The latter behavior is
useful for delet ing hierarchies of
objects, so that, for example, delet-
ing an assembly would cause all of
its subassemblies to be deleted,
along with their subassemblies, re-
cursively.

Associative Ouerles
In relational DBMSs, queries are
expressed in a special language,
usually SQL. SQL has its own vari-
ables and expressions, which differ
in syntax and semantics from the
variables and expressions in the
host language. Bindings between
variables in the two languages must
be established explicitly. Ob-
jectStore queries are more closely
integrated with the host language.
A query is simply an expression
that operates on one or more col-
lections and produces a collection
or a reference to an object.

Selection predicates, which ap-
pear within query expressions, are
also expressions, ei ther C + + ex-

pressions or queries. Cont inuing
the previous example, suppose that
~]1 employees is a set of employee
objects:

os_Set(employee*) a l l_employees;

The following statement uses a
query against a l L e m p l o y e e s to
find employees earning over
$100,000, and assign the result to
overpa id_employees :

os_Set(employee*)&
overpa id_employees =
a l L e m p l o y e e s
[: s a l a r y > = 100,000 :];

[: :] is ObjectStore syntax for
queries. The contained expression
is a selection predicate, that is (con-
ceptually) appl ied to each element
of A.11 employees in turn. (In fact,
the query will be optimized if an
index on salary is present. This is
discussed later.)

Any collection, even one result-
ing from an expression, can be que-
ried. For example, this query finds
overpaid employees of depa r tmen t
d:

d - - > e m p l o y e e s
[: s a l a r y > = 100000 :]

Query expressions can also be
nested, to form more complex que-
ries. The following query locates
employees who work in the same
depar tmen t as Fred:

a l l_employees
[: d e p t - - > e m p l o y e e s
[: n a m e = = 'Fred ' :] :];

Each member of all employees has
a depar tment , dept, which has an
embedded set of employees. The
nested query is true for depar t -
ments having at least one employee
whose name is Fred.

All of these examples make use
of the language extensions available
only through the ObjectStore C+ +
compiler; the [: :] syntax, for exam-
ple, is a language extension. The
same queries can be expressed via
the l ibrary interface. The previous
query would be restated in the
C+ + library interface as:

os_Set(employee*)>
& work_with__fred =
a l L e m p l o y e e s - - > q u e r y (
'employee* ' ,
"dept-- > e m p l o y e e s
[: n a m e = = \ ' F r e d ' \ :]");

The first a rgument to query,
employee*, indicates the type of
the collection elements. The second
a rgument is simply the string rep-
resenting the query expression. It is
also possible to use the library inter-
face to store precompiled and opti-
mized queries in the database for
later execution.

In its cur rent form, the Ob-
jectStore query language can ex-
press 'semijoins' but not full joins;
i.e., the result of a query is a subset
of the collection being queried.

Versions
ObjectStore provides facilities for
multiple users to share data in a
cooperative fashion (sometimes re-
fer red to as groupware). With these
facilities, a user can check out a ver-
sion of an object or group of ob-
jects, make changes (perhaps en-
tailing a long series o f individual
update transactions), and then
check changes back in to the main
development project so that they
are visible to o ther members of the
cooperat ing team. In the interim,
o ther users can continue to use the
previous versions, and therefore
are not impeded by concurrency
conflicts on their shared data, re-
gardless of the dura t ion of the edit-
ing sessions involved. These ex-
tended edit ing sessions on private,
checked-out versions are often re-
fer red to as long transactions. The
design was influenced by [3, 6, 9,
]0].

If o ther users want to make con-
current parallel changes, they can
check out alternative versions of the
same object or groups of objects,
and work on their versions in pri-
vate. Again, the result is that there
are no concurrency conflicts, even
though the users are opera t ing on
(different versions of) the same
objects. Alternative versions can

COMMUNICATIONS OF THE ACM/October 1991/Vol.34, No.10 S S

later be merged back together to
reconcile differences resulting
from this parallel development.
This merging operation is a diffi-
cult prob]Lem and is left to the user
to implement on an application-
specific basis [8]. In support of this,
ObjectStore allows simultaneous
access to both versions of an object
during the merge.

Users can control exactly which
versions I:o use, for each object or
group of objects o f interest, by set-
ting up private workspaces that
specify the desired version. This
might be the most recent version,
or a particular previous version
(such as the previous release), or
even a version on an alternative
branch. Users can also use
workspaces to selectively share their
work in progress. Workspaces can
inherit fi'om other workspaces, so
that one designer could specify that
his or her workspace should by de-
fault inherit "whatever is in the
team's shared workspace"; he or
she could, then add individual new
versions as changes are made, over-
riding thiis default.

For example, a team of designers
working on a CPU design might set
up a workspace in which all of their
new versions are created. Only
when their CPU design is com-
pleted would the finished version(s)
be checked in to the corporate
workspace, making them available
to, say, the manufacturing group.
Within the design team's work-
space, there might be multiple
subworkspaces, which are used by
subgroups o f the design team or
individual team members. Just as
the entire group makes its work
available to manufacturing by
checking in a completed version to
the corporate workspace, individ-
ual designers or teams of designers
can make their work-in-progress
available to one another by check-
ing their intermediate versions in to
their shared workspaces. This is il-
lustrated in Figure 5.

Just as the persistence of an ob-
ject is independent of type, the ver-
sioning oJF an object is independent

of type. This means that instances
of any type may be versioned, and
that versioned and nonversioned
instances can be operated on by the
same user code. This makes it easy
to take an existing piece of code,
which has no notion ofvers ioning--
for example, a circuit-design simu-
l a t o r - a n d use it on versioned data.
The simulator does not have to be
rewritten, because operating on a
particular version of a circuit de-
sign is identical to operating on a
nonversioned design.

Programs using versioned data
need not distinguish among
versioned, persistent, and transient
data in accordance with Ob-
jectStore's design principles.

Architecture and
Implementation

Storage System and Memory-
Mapped Architecture
One fundamental operation of a
database programming language is
dereferencing: finding and using a
target object that is referred to by a
source object. ObjectStore's inter-
face goals state that this must work
just as in ordinary C+ +, to provide
transparent integration with the
language and to make dereferenc-

ing as fast as possible. This means
that ordinary pointers f rom the
host language must be able to serve
as references from one persistent
object to another.

ObjectStore's performance goals
demand that once the target object
has been retrieved from the data-
base, subsequent references should
be just as fast as dereferencing an
ordinary pointer in the language.
This means that dereferencing a
pointer to a persistent target must
compile exactly the same as
dereferencing a pointer to a tran-
sient target, (i.e., as a single 'load'
instruction), without any extra in-
structions to check whether the tar-
get object has been retrieved from
the database yet. This creates a di-
lemma, since it is possible that the
target object really has not yet been
retrieved from the database.

Fortunately, these design goals
are analogous to those of virtual
memory systems, which support
uniform memory references to
data, whether that data is located in
primary or secondary memory.
ObjectStore takes advantage o f the
CPU's virtual memory hardware,
and the operating system's inter-
faces that allow ordinary software
to utilize that hardware. The virtual

I CORP 1

c.u) f - , . ° l

, ,u) [o,c.)

l Team 2 J

Nesting of workspaces

S 6 October 1991/Vo1.34, No.IO/COMMUNICATION$OFTHE ACM

memory system allows ObjectStore
to set the protect ion for any page o f
virtual memory to no access, read
only, or read/write. When an Ob-
jectStore application dereferences a
pointer whose target has not been
retr ieved into the client (i.e., a page
set to no access), the hardware de-
tects an access violation, and the
opera t ing system reflects this back
to ObjectStore, as a memory fault.
ObjectStore retrieves the page from
the server and places it in the cli-
ent's cache. I t then calls the operat-
ing system to set the protection of
the page to allow accesses to suc-
ceed (i.e., read only). Finally, it re-
turns from the memory fault,
which causes the dereference to
restart. This time, it succeeds. Sub-
sequent reads to the same target
object, or to o ther addresses on the
same page, will run in a single in-
struction, without causing a fault.
Writes to the target page will result
in faults that cause the page access
mode and lock to be upgraded to
read-write. All virtual memory
mapping and address space manip-
ulation in the application is handled
by the opera t ing system unde r the
direction o f ObjectStore, using nor-
mal system calls.

The ObjectStore server provides
the long-term reposi tory for persis-
tent data. Databases can be stored
ei ther of two ways: within files pro-
vided by the operat ing system's file
system, or within parti t ions of disks,
using ObjectStore's own file system.
The latter provides higher perfor-
mance, by keeping databases as
contiguous as possible even as they
gradually grow, and by avoiding
various opera t ing system over-
heads. The server and the client
communicate via local area network
when they are running on different
hosts, and by faster facilities such as
shared memory, and local sockets
when they are runn ing on the same
host.

The server stores and retrieves
pages of data in response to re-
quests from clients. The server has
no knowledge of the contents of a
page. It simply passes pages to and

from the client, and stores them on
disk. T h e server is also responsible
for concurrency control and recov-
ery, using techniques similar to
those used in conventional DBMSs.
It provides two-phase locking with
a read/write lock for each page.
Recovery is based on a log, using
the write-ahead log protocol.
Transactions involving more than
one server are coordinated using
the two-phase commit protocol.
The server also provides backup to
long-term storage media such as
tapes, allowing full dumps as well as
continuous archive logging.

Since the server has no knowl-
edge of the contents of the page,
much of the query and DBMS pro-
cessing is done on the client side of
the network. This contrasts with
tradit ional relational DBMS sys-
tems in which the server is largely
responsible for handl ing all query
processing, optimization, and for-
matting. Al though such off ioading
of work from the server is not ideal
for all applications, this architec-
ture does not preclude having the
server handle more of the work.

ObjectStore maintains a client
cache, a pool of database pages that
have recently been used, in the vir-
tual memory of the client host.
When the application signals a
memory fault, ObjectStore deter-
mines whether the page being ac-
cessed is in the client cache. I f not,
it asks the ObjectStore server to
transmit the page to the client, and
puts the page into the client cache.
Then, the page of the client cache is
mapped into virtual address space,
so that the application can access it.
Finally, the faulting instruction is
restarted, and the application con-
tinues.

Many applications tend to refer-
ence large numbers of small ob-
jects, but networks are, in general,
more efficient for bulk data. To
compensate for this, whole pages o f
data are brought from the server to
the client and placed in the cache
and mapped into virtual memory.
Objects are stored on the server in
the same format in which they are

seen by the language in virtual
memory. This avoids potential per-
object overhead such as calling a
dynamic memory allocator, creat-
ing entries in object tables, or refor-
matt ing the nonpoin te r elements o f
the object.

When a transaction finishes, all
pages are removed from the ad-
dress space and modif ied pages are
written back to the server (the client
waits for an acknowledgment from
the server that the pages have been
safely written to disk). However,
the pages remain in the client
cache, so that if the next transaction
uses those pages, it will not have to
communicate with the server to re-
trieve them; they will a l ready be
present in the cache. This improves
per formance when several succes-
sive transactions use many of the
same pages. Typical ObjectStore
applications interleave computat ion
very tightly with database access,
doing some computat ion, then
dereferencing a pointer and read-
ing or changing a few values, then
doing some more computat ion, etc.
I f it were necessary to communicate
with a remote server for each of
these simple database operations,
the cost o f the network and sched-
uler overhead would be enormous.
By making the data directly avail-
able to the application and allowing
ord inary instructions to manipulate
the data, such applications pe r fo rm
faster.

Since a page can reside in the cli-
ent cache without being locked,
some other client might modify the
page, invalidating the cached copy.
The mechanism for making sure
that transactions always see valid
copies of pages is called 'cache co-
herence' . A copy of a page in a cli-
ent cache is marked either as shared
or exclusive mode. The server keeps
track of which pages are in the
caches of which clients, and with
which modes. When a client re-
quests a page from the server and
the server notices that the page is in
the cache of some other client (the
holding client), the server will check
to see if the modes conflict. I f they

COMMUNICATIONS OF THE ACM/October 1991/Vo1.34, No.10 S7

A p p l i c a t i o n s c a n i m p r o v e
p e ! r f o r m a n ¢ e b y e x e r c i s i n g c o n t r o l

o v e r t h e p l a c e m e n t o f O b j e C t S
w i t h i n a d a t a b a s e .

do, the ,~erver sends a message to
the holding client, asking it to re-
move the page from its cache. This
is called a callback message, since it
goes in t]~e opposi te direction from
the usual request: the server is
making a request of the client.

When the holding client receives
the callback, it checks to see if the
page is locked, and if not, agrees to
immediately relinquish the page,
and removes the copy of the page
from its cache. I f the page is locked,
the client replies negatively to the
server, and the server forces the
request ing client to wait until the
holder is, finished with the transac-
tion. When the holding client com-
mits or aborts, it then removes the
copy of the page from its cache, and
the server can allow the original cli-
ent to proceed. The use of callback
messages was inspired by the An-
drew File System [11]. Related
cache coherency algori thms are dis-
cussed in [4].

In an ideal computer architec-
ture with unlimited virtual address
space, every object in every data-
base could have a unique address,
and virtual addresses could serve as
unchanging object identifiers.
Modern computers have virtual
address spaces that are very large,
but not unlimited. Single databases
can exceed the size of the virtual
address space. Also, two indepen-
dent databases might each use the
same address for their own objects.
This is 1Lhe fundamenta l problem
that must be solved by any virtual
memory.-mapping approach to a
DBMS.

ObjectStore solves this problem
by dynamically assigning port ions
of address space to cor respond to
port ions of the databases used by

the application. It maintains a vir-
tual address map that shows which
database and which object within
the database is represented by any
address. As the application refer-
ences more databases and more
objects, addit ional address space is
assigned, and the new objects are
mapped into these new addresses.
At the end of each transaction the
virtual address map is reset, and
when the next transaction starts,
new assignments are made.

This solution does not place any
limits on the size of a database. Nat-
urally, each transaction is limited to
accessing no more data than can fit
into the virtual address space. In
practice, this limit is rarely reached,
since modern computers have very
large virtual address spaces, and
transactions are generally short
enough that they do not access
nearly as much data as can fit. An
opera t ion large enough to ap-
proach this limit would be divided
into several transactions, and
checked out into a workspace to
provide isolation f rom other users.

When a page is mapped into vir-
tual memory, the correspondence
of objects and virtual addresses may
have changed. The value o f each
pointer stored in the page must be
updated , to follow the new virtual
address of the object. This is called
relocation of the pointers. When
possible, ObjectStore arranges to
assign the address space so that
pointers as s tored on the server
happen to be the same as the values
they ought to have in virtual mem-
ory. In this case, relocation is not
needed, which improves perfor-
mance. But sometimes relocation
cannot be avoided. For example,
when the database size exceeds the

size of the available address space,
relocation is required.

ObjectStore maintains an auxil-
iary data structure called the tag
table that keeps track o f the loca-
tion and type of every object in the
database. When a page is mapped
into virtual address space and
pointer relocation is needed, Ob-
jectStore consults the tag table to
f ind out what objects reside on the
page, and then uses the database
schema to learn which locations
within each object contain pointers.
I t then adjusts the value of the
pointer to account for the new as-
signments of data to the virtual
address space. To minimize space
overhead while keeping access fast,
the tag table is heavily compressed,
and is indexed. Each tag table entry
contains a 16-bit type code, which
indexes into a type table s tored in
the database's schema. The type
table entry indicates which words of
the type contain pointers. Tag table
pages are brought into the client
cache as needed, and managed in
the cache like ord inary database
pages.

Applications can improve per-
formance by exercising control
over the placement o f objects
within a database. By clustering
together objects that are frequently
referenced together, locality is in-
creased, the client cache is used
more efficiently, and fewer pages
need to be t ransfer red in o rde r to
access the objects. ObjectStore di-
vides a database into areas called
segments, and whenever an appli-
cation creates a new persistent ob-
ject, it can specify the segment in
which that object should be created.
Applications can create as many
segments as are needed. Segments

S 8 October 1991/Vol.34, No.10/COMMUNICATIONS OF THE ACM

S i n c e l o c k i n g g r a n u l a r i t y i s o n a
p e r - p a g e b a s i s , t h e a d v a n t a g e s

o f c l u s t e r i n g a r e r e a l i z e d
i n d e c r e a s e d l o c k i n g o v e r h e a d .

may be transferred from server to
client either en masse, or one page
at a time, depending on the setting
of an application-controlled per-
segment flag.

Objects can cross page bounda-
ries, and can be much larger than a
page. Image data, for example, can
be stored in very large arrays that
span many pages. I f an application
needs to access only a small portion
of such a huge object, it can use
page-granularity transfer, to trans-
fer only the pages of the object that
are actually used. Conversely, many
small objects can reside on a single
page. Since locking granularity is
on a per-page basis, the advantages
of clustering are also realized in
decreased locking overhead.

ObjectStore depends on the op-
erating system to control the map-
ping and protection of pages, and
to allow access violations to be han-
dled by software. The most stan-
dard versions of Unix, such as
SVR4, OSF/I, Berkeley bsd 4.3,
and SunOS all provide these facili-
ties. For other versions of Unix,
ObjectStore includes a device
driver that must be linked with the
kernel when ObjectStore is in-
stalled. ObjectStore never modifies
the Unix kernel itself. Future ver-
sions of these operating systems are
expected to provide these memory
manipulation facilities. ObjectStore
currently runs on Sun 3 and
SPARC, under SunOS, IBM RS/
6000, under AIX, DEC DS3100,
under Ultrix, HP series 300, 400,
and 700, under HP/UX. By the end
of 1991, ObjectStore should also be
running on DEC under VMS, and
SGI. Most other popular kernel-
based operating systems, including
VMS and OS/2, provide the facili-

ties that ObjectStore needs. Ob-
jectStore is also available on Micro-
soft Windows 3.0. Windows does
not have a protected kernel like
Unix, so ObjectStore controls vir-
tual memory directly.

Collections
In designing the collection facility,
an important design goal was that
performance must be comparable
to that of hand-coded data struc-
tures, across a wide range of appli-
cations and cardinality. Often, ob-
jects have embedded collections.
For example, a Person object might
contain a set of children. In these
cases, cardinalities are usually
small, often 0 or 1, and only occa-
sionally above 5-10. Collections are
also used to store all objects of some
type, e.g., all employees, and such
collections can be arbitrarily large.
Furthermore, access patterns differ
greatly among applications, and
even over time within a single ap-
plication. Clearly, a single repre-
sentation type will be inadequate
when performance is a concern, so
multiple representations of collec-
tions must be supported. However,
it is not desirable for the user to
have to deal with these representa-
tions directly. The user should be
able to work through an interface
that reflects behavior, not repre-
sentation.

The ObjectStore collection facili-
ties are arranged into two class hi-
erarchies: one for collections, and
another for cursors. The base o f
the collection hierarchy is os_collec-
tion, which is actually the base for
two hierarchies. One of these con-
tains os_set, os_bag, and os_list.
These provide familiar combina-
tions of behavior. Other combina-

tions _an be obtained by specifying
combinations of behavior for an
os_collection, (e.g., a list without
duplicates, or a set that raises an
exception upon insertion of a du-
plicate, instead of silently ignoring
it).

The other hierarchy under os_
collection provides for various rep-
resentations of collections. Each
representation supports the entire
os_collection interface, but with dif-
ferent performance characteristics.
These classes are available for di-
rect use, but it should never be nec-
essary to work with representations
directly. Instead, a representation is
normally selected automatically,
based on user-supplied estimates of
access patterns (i.e., how frequently
various operations will be carried
OUt) .

Operations on collections appear
as methods, (or member functions, to
use the C + + terminology). As is
typical o f object-oriented lan-
guages, there is a run-time function
dispatch, to locate the appropriate
implementation of each function,
based on the collection's behavior
and representation. When a collec-
tion modifies itself to employ a dif-
ferent representation, it actually
modifies its own (representation)
type description, so function dis-
patches will continue to work cor-
rectly.

Queries
Syntactically, queries are treated as
ordinary expressions in an ex-
tended C + + . However, query
expressions are handled quite dif-
ferently from other kinds of ex-
pressions. The obvious implemen-
tation strategy--iterate and check
the predicate--would provide very

COMMUNICATIONS OF THE ACM/October t991/Vol.34, No.10 ~ 9

poor performance for large collec-
tions. In relational DBMSs, indexes
can be supplied to permit more ef-
ficient implementations. A query
optimizer examines a variety of
strategies and chooses the least ex-
pensive. ObjectStore also uses in-
dexes anti a query optimizer. The
indexes :are more complex than
indexes in a relational DBMS, since
they may index paths through ob-
jects and collections, not just fields
directly contained in objects. The
query optimization and index
maintenance ideas presented here
were inspired by [14]. Similar ideas
on indexing and paths appear in
[12, 15, 16].

Optimization techniques devel-
oped for relational DBMSs do not
seem we]ll-suited for ObjectStore.
In a relational DBMS, relations are
always identified by name. As a re-
sult, information about the relation,
e.g., the .available indexes, is avail-
able when the query is optimized,
and a single strategy can be gener-
ated. In ObjectStore, collections are
often not known by name. They
may be pointed at (e.g., by a pointer

variable or call-by-reference pa-
rameter), or result from the evalua-
tion of an expression. This means
that multiple strategies must be
generated, with the final selection
left until the moment the collection
being queried is known, and the
query is to be run.

Relational database schemas are
heavily n o r m a l i z e d i t h e r e are no
such things as embedded sets or
pointers. As a result, queries in-
volve multiple tables whose con-
tents are related to one another by
~join terms', i.e., expressions involv-
ing rows from a pair of tables (e.g.,
the depar tment identifier column
in the Employee table and the iden-
tifier column in the Department
table). Consequently, optimizers
spend most of their time figuring
out the best way to evaluate queries
with multiple join terms. In Ob-
jectStore, queries tend to be over a
small number of top-level (i.e.,
nonembedded) collections, usually
one. Selection predicates involve
paths through objects and embed-
ded collections. These paths ex-
press the same sort o f connections

O0

80

60

40

20

94

mwarm
i I cold

, , l ill ,
13 84

oodbl ObjectStore oodb3 oodb4 rdbmsl index
System

Warm and cold cache traversal results

that join terms expressed in rela-
tional queries. Since the path is
materialized in the database, with
inter-object references and embed-
ded collections, join optimization is
less of a problem.

In ObjectStore, a parse tree rep-
resenting the query is constructed
at compile-time. Information con-
cerning paths that appear in the
query is propagated up the tree to
the nodes representing queries.
During code generation, a pair of
functions is generated for each
node in the query's parse tree. One
is used to implement a scan-based
strategy (visit each element and
check the predicate), and the other
implements an index-based strat-
egy. Functions corresponding to
query nodes also contain code to
examine the collection being que-
ried, (e.g., what indexes are pres-
ent? what is the cardinality?) and
make final choices about strategy.
This approach allows for flexibility
at run time, yet still carries out
much expensive work (analysis of
the query) at compile time.

I f ObjectStore's C+ + compiler is
used, then query parsing and opti-
mization occurs during compile
time. Queries expressed using the
library interface are actually parsed
and optimized at run time. The
same run-time library supporting
query execution is used in both
cases.

As noted earlier, paths can be
viewed as precomputed joins. In
ObjectStore, indexes can be created
on paths. As a result, the join opti-
mization problem faced by rela-
tional DBMS optimizers is replaced
by a much simpler index selection
problem. Analysis of the query in-
dicates which indexes could be rele-
vant. For example, this query finds
employees who earn over $100,000
and work in the same department
as Fred.

employees[: sa la ry > 100000 &&
dept - ->employees[:
n a m e = = 'Fred' :] :]

There are two paths h e r e - - o n e
on salary, and another starting at

6 0 October 1991/VoL34, No.10/COMMUNICATIONS OF THE ACM

an employee - -pas s ing th rough the
depa r tmen t of the employee, the
set o f employees of that depar t -
ment, and the name of each such
employee. An index for each path
ei ther exists or it does n o t - - t h e
choice can be made quickly at run
time. The re is no need to reason
about strategies based on the pres-
ence or absence of an index for
each step of each path, as in a rela-
tional optimizer.

This is not to say that queries
over paths avoid all query process-
ing problems due to the presence of
joins. In general, a comparison of a
path to a constant (e.g., dept-->
n a m e = = 'Research ') , involves
index selection only. Join optimiza-
tion problems occur when two
paths are compared, as in this
query (not based on any object
classes described previously):

p ro jec t s [:
eng inee r s [:
p ro j_ ld = = w o r k s _ o n &&
n a m e -- = 'Fred ' :] :]

This query find projects involv-
ing Fred. The re is no stored con-
nection between projects and engi-
neers. They are matched up by
compar ing the p roJAd o f a Pro jec t
and the works_on field of an Engi-
neer. ObjectStore would evaluate
this jo in using iteration over p ro j -
ects, and an index lookup on engi-
nee r s , (assuming the index is avail-
able). An index on engineers '
names could also be used.

While this query is a valid Ob-
jectStore query, it is an unusual
one, and it reflects an unusual Ob-
jectStore schema. Normally, the
connection between projects and
engineers would be represented by
inter-object references, i.e., the jo in
would be p recomputed and stored
in the part icipating objects. This is
just i f ied by analysis of programs in
our application domains. True
joins, as in the earl ier query, are
quite rare. For this reason we have
not yet implemented jo in optimiza-
tion. It is unusual to have queries
involving multiple ' top-level' coilec-
tions, (e.g., class extents) whose ele-

ments are related by compar ing at-
tributes. I t is more common to have
queries over a single top-level col-
lection, with nested queries on
embedded collections (i.e., queries
over paths that may go through col-
lections). The ObjectStore query
optimizer reflects this.

While jo in optimization is less o f
a problem, compared to a relational
DBMS, index maintenance is much
more difficult. In a relational
DBMS, updates affecting indexes
are expressed in SQL. In Ob-
jectStore, where the integration
between the DBMS and the host
language is much tighter, updates
are ord inary expressions that have
certain side effects. For example:

Person* p;

p - - > a g e = p - - > a g e + 1;

The assignment statement up-
dates the age of person p. I f
p - > a g e happens to be the key to
some index, then that index must
be updated. It is not practical to
check if index maintenance is re-
quired for every statement that
modifies an object. The perfor-
mance consequences would be dis-
astrous. Instead, ObjectStore re-
quires the declaration of data
members that could potentially be
used as index keys. Index mainte-
nance checks are pe r fo rmed for
these data members only. Example:

c lass P e r s o n
{

i n t age tmde~ble!
i n t he igh t ;

};

The declaration of age as index-
able indicates that updates o f age
need to be checked for index main-
tenance. Updates of h e i g h t do not
have to be checked. The indexab le
declarat ion does not affect type. As
a result, most changes in in-
dexability (adding or removing a
declarat ion of indexab le to an ex-
isting data member do not affect

the schema of the database. (But
recompilat ion would always be re-
quired.)

Index maintenance is fur ther
complicated by the presence of in-
dexes on paths. For example, con-
sider an index on children's names
for a set of people. Such an index is
useful for queries such as "Find
people who have a child named
Fred." Index updates are required
when a person is added to the col-
lection, a person in the collection
has a child, or when one o f this per-
son's chi ldren changes his or her
name.

Indexes on paths could be single-
step, with an access method (e.g.,
hash table) used to represent each
step o f the path, or there could be
one structure recording the associa-
tion for the entire path. These al-
ternatives have been discussed in
[14]. ObjectStore uses a series of
single-step indexes. When an in-
dexable data member is updated,
all affected access methods are
updated. Then, all access methods
downstream in affected index paths
are upda ted too. Similarly, an up-
date to a collection triggers updates
that may affect all access methods
of all indexes o f the collection.

Applications
The per formance and productivity
benefits of ObjectStore have been
demonst ra ted in a number of Ob-
jectStore applications.

Performance Benefits
The Cattell Benchmark [5] was de-
signed to reflect the access pat terns
of engineer ing (e.g., CASE and
CAD) applications. The benchmark
consists of several tests, but only the
traverse test results are shown here
since it best illustrates the perfor-
mance benefits of ObjectStore's
architecture. The test traverses a
graph o f objects similar to one that
might be found in a typical engi-
neer ing application (e.g., a
schema). The graph in Figure 6
shows that the warm and cold cache
traversal results when the client and
server are on different machines

COMMUNICATIONS OF THE ACM/October 1991/Vo1.34, No.10 61

(i.e., the remote case).
A cold[cache is an empty cache,

as would exist when a client starts
accessing part o f the database for
the first time in recent history. A
warm cache is the same cache after
a number o f iterations have been
run. I f the next iteration accesses
the same part of the database, the
cache is said to be warm. The dif-
ference between cold and warm
cache times demonstrates that both
the client cache and the virtual
memory-mapping architecture
have a significant performance
benefit.

Cold cache times are dominated
by the time required to get data
f rom the disk o f the server into the
client's address space. Warm times
reflect processing speed of data
that is already present at the client
and mapped into memory. We be-
lieve this to be the most important
performance concern for our tar-
get application areas.

ProductlvlW Benefits
The productivity benefits are dem-
onstratecl by the experiences of
Lucid, Inc., which is developing an
extensible C + + programming en-
vironment named Cadillac [7]. The
environment has been under devel-
opment since 1989 and will be re-
leased as a product. The system is
being implemented in C+ +.

Before ObjectStore was available,
the dew.qopers of Cadillac used a
C + + object class which, when in-
herited, provided persistence.
Classes that might have persistent
instances had to inherit f rom this
class. For each such class, methods
(i.e., functions) for storing and re-
trieving the object from the data-
base had to be defined. A reference
to an object resulted in a retrieval
from the database, if the object had
not already been retrieved. While
reads were transparent in that no
special functions had to be called by
the class user, writes had to be ex-
plicitly specified as function calls--
a process that was prone to error.
This mechanism was supported by
a conventional Index Sequential

Access Method (ISAM)-based file
system.

Porting Cadillac to ObjectStore
took one developer one week. The
modifications were limited to three
source files out o f several dozen
and involved, for the most part, dis-
abling the persistence mechanism
that had been in use. The simplicity
of the port was due in large part to
the architecture of ObjectStore,
which treats persistence as a storage
class rather than as an aspect of
type. The conversion would have
been much more difficult if func-
tions that manipulated objects had
to be modified to distinguish be-
tween persistent and transient ob-
jects.

In order to speed the porting
process, the developers chose to al-
locate all objects in the database,
even those that did not need to be
persistent. Once fine-grained tun-
ing commenced, however, objects
and values that could be allocated
transiently were allocated on the
transient heap. Transaction bound-
aries were also added to shorten
transactions, minimizing commit
time and reducing concurrent con-
flicts.

The performance of Cadillac
improved considerably following
the installation of ObjectStore.
Compilation from within the Cadil-
lac environment ran three to five
times faster with ObjectStore than
with the original ISAM-based per-
sistence mechanism. Compilation is
a write-intensive operation, split
into two transactions, one for each
pass of the compiler. Read-inten-
sive operations showed even more
improvement, running 10 times
faster using ObjectStore.

Work in Progress
Object Design, Inc. was founded in
August 1988, and version 1.0 o f
ObjectStore was released in Octo-
ber 1990. Version 1.1, described
here, was released in March 1991
and was the result of approximately
30 person-years of effort.

We are extending this work in a
number o f ways. New features

under development include:

• Schema evolution: When a type
definition changes, instances o f
the type, stored in the database,
need to be modified to reflect the
change.

• Support for heterogenous archi-
tectures: Some applications re-
quire access to a database from
multiple architectures with vary-
ing memory layouts (e.g., differ-
ent byte orderings and floating-
point representations).

• Communicat ion with ex is t ing
databases: Many applications
require the ability to access exist-
ing, nonobject-oriented databases
(e.g., SQL and IMS databases).
To retain the productivity bene-
fits o f ObjectStore, it is necessary
to provide transparent access to
these databases, i.e., through the
existing ObjectStore interface.

C o n c l u s i o n s

ObjectStore was designed for use in
applications that perform complex
manipulations on large databases o f
objects with intricate structure.
Developers of these applications
require high productivity through
ease of use, expressive power, a
reusable code base, and tight inte-
gration with the host environment.
However, even more important is
the need for high performance.
Speed cannot be sacrificed to obtain
these benefits.

The key to meeting these re-
quirements is the virtual memory-
mapping architecture. Because of
this architecture, ObjectStore users
deal with a single type system. This
permits tight integration with the
host environment, ease of use, and
the reuse o f existing libraries.
Other approaches to persistence
taken by other object-oriented
DBMSs require transient and per-
sistent objects to be typed differ-
ently. As a result, conversion be-
tween transient and persistent
representations are required, or
software that had been developed
to deal with transient objects must
be modified or duplicated to ac-

6 ~ October 1991/Vol.34, No.10/COMMUNICATION8 OF THE ACM

commoda te persis tent objects. In a
relat ional DBMS, all persis tent data
is accessed within the scope of the
SQL language with its own inde-
p e n d e n t type system.

T h e virtual m e m o r y - m a p p i n g
archi tecture also leads to high per-
formance. References to t rans ien t
and persis tent objects are hand led
by the same mach ine code se-
quences. O the r architectures re-
qui re references to potential ly per-
sistent objects to be hand led in
software, an d this is necessarily
slower.

ObjectStore 's collection, relat ion-
ship, a n d query facilities provide
suppor t for conceptual mode l ing
constructs such as muh iva lued at-
tr ibutes, and many- to -many rela-
t ionships can be t ranslated directly
into declarative ObjectStore con-
structs. []

References
1. Agrawal, R., Gehani, N.H. ODE

(Object database and environment):
The language and the data model.
ACM-S1GMOD 1989 International
Conference on Management of Data
(May-June 1989).

2. Bancilhon, F., Maier, D. Muhilan-
guage object oriented systems: New
answers to old database problems.
Future Generation Computers H,
K. Fuchi and L. Kotti, Eds., North-
Holland, 1988.

3. Biliris, E. Configuration manage-
ment and versioning in a CAD/
CAM data management environ-
ment (An example). Prime/Com-
putervision internal memo, June
1989.

4. Carey, M.J., Franklin, M.J., Livny,
M., Shekita, E.J. Data caching
trade-offs in client-server DBMS
architectures. In Proceedings ACM
SIGMOD International Conference on
the Management of Data (1991).

5. Cattell, R.G.G. and Skeen, J. Object
operations benchmark. ACM Trans.
Database Syst. To be published.

6. Chou, H., Kim, W. Versions and
change notification in an object-
oriented database system. In Pro-
ceedings of 25th ACM/IEEE Design
Automation Conference (1988).

7. Gabriel, R.P., Bourbaki, N., Devin,
M., Dussud, P., Gray, D., Sexton, H.
Foundation for a C++ program-

ming environment. In Conference
Proceedings of C+ + At Work.

8. Glew, A. Boxes, links and parallel
trees. In Proceedings of the April '89
Usenix Software Management Work-
shop.

9. Goldstein, I.P. and Bobrow, D. A
layered approach to software de-
sign. Xerox PARC CSL-80-5, Dec.
1980.

10. Goldstein, I.P., Bobrow, D. An ex-
perimental description-based pro-
gramming environment: Four re-
ports. Xerox PARC CSL 81-3, Mar.
1981.

11. Kazar, M.L. Synchronization and
caching issues in the Andrew file
system. In Usenix Conference Proceed-
ings, (Dallas, Winter 1988), pp. 27-
36.

12. Kemper, A., Moerkotte, G. Access
support in object bases. In Proceed-
ings ACM SIGMOD International
Conference on Management of Data
(1990).

13. Maier, D. Making database systems
fast enough for CAD applications in
object-oriented concepts, database
and applications. W. Kim and F.
Lochovsky, Eds., Addison-Wesley,
Reading, Mass., 1989, pgs. 573-
581.

14. Maier, D., Stein, J. Development
and implementation of an object-
oriented DBMS. In Research Direc-
tions in Object-Oriented Programming,
B. Shriver and P. Wegner, Eds.,
MIT Press 1987. Also in Readings in
Object-Oriented Database Systems, S.B.
Zdonik and D. Maier, Morgan
Kaufmann, Eds., 1990.

15. Shekita, E. High-performance im-
plementation techniques for next-
generation database systems. Com-
puter Sciences Tech. Rep. #1026,
University of Wisconsin-Madison,
1991.

16. Shekita, E., Carey, M. Performance
enhancement through replication
in an object-oriented DBMS. In
Proceedings ACM SIGMOD Interna-
tional Conference on Management of
Data (1990).

CR Categories and Subject Descrip-
tors: C.2.4 [Computer Systems Organi-
zation]: Computer-Communication
Networks--Distributed systems; D.3.2
[Software]: Programming Languages--
Language classifications; D.4.2 [Soft-
ware]: Operating Systems--Storage
management; H.2.1 [Information Sys-

terns]: Database Management--Logical
design; H.2.3 [Database Management]:
Languages--Query languages; H.2.4
[Database Management]: Systems--
Query processing, transaction processing;
H.2.8 [Information Systems]: Database
Management--Database applications

General Terms: Design, Management
Additional Key Words and Phrases:

C++, database (persistent) program-
ruing languages, ObjectStore, object-
oriented programming

About the Authors:
CHARLES W, LAMB is a member of
the engineering staff and co-founder of
Object Design. He was previously an
employee of Symbolics, where he
worked on the design and implementa-
tion of the Statice object-oriented data-
base system.

GORDON LANDIS is a member of the
engineering staff of Object Design. He
was previously a co-founder of On-
tologic, where he led the design and
implementation of the Vbase object-
oriented database system.

JACK A. ORENSTEIN is a member of
the engineering staff and co-founder of
Object Design. He was previously a
computer scientist at Computer Corpo-
ration of America, where he conducted
research on spatial data modeling and
spatial query processing on the PROBE
project.

DANIEL L. WEINREB is a Database
Architect and co-founder of Object De-
sign. He was previously a co-founder of
Symbolics, where he led the design and
implementation of the Statice object-
oriented database system.

Authors' Present Address: Object
Design, Inc., One New England Execu-
tive Park, Burlington, MA 01803; email:
cacm@odi.com

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

©ACM0002-0782/91/1000-050 $1.50

C O M M U N I C A T I O N S OF THE ACM/Octobcr 1991/Vol.34, No.10 63

