
Storage Systems for
Mobile Devices

746 Guest Lecture

Nitin Agrawal

Life in the “Post-PC” Mobile Era

 Smartphone and tablet markets are huge & growing
– 100 Million smartphones shipped in Q4 2010, 92 M PCs [IDC]

– Out of 750 Million Facebook users, 250 Million (& growing)
access through mobile; mobile users twice as active [FB]

 Innovation in mobile hardware: packing everything
you need in your pocket
– Blurring the phone/tablet divide: Samsung Galaxy Note

– Hardware add-ons: NEC Medias (6.7mm thick, waterproof
shell, TV tuner, NFC, HD camera, ..)

 Manufacturers making it easier to replace PCs
– Motorola Atrix dock converts a phone into laptop

Mobile

2

3

Simple Pop Quiz

Who all here have a mobile device?

– How well do you know your phone/tablet?

What about its networking capabilities?

– 3G, 4G, LTE, 802.11n, Bluetooth, …

– What are their typical uplink/downlink speeds?

What about CPU?

– 1 Ghz, dual-core, …

– Do we really need quad-core CPUs on our phones?

What about storage?

– 16 – 64 GB internal flash on iPhone 4S, 32 GB on Nexus S

– How much of external storage?

– What kind of file systems do they use?
4

Understanding Mobile Devices

 Network performance can impact user experience
– 3G often considered the bottleneck for apps like browsing

– Service providers heavily investing in 4G and beyond

 CPU and graphics performance crucial as well
– Plenty of gaming, video, flash-player apps hungry for compute

– Quad-core CPUs, GPUs to appear on mobile devices

 Energy-efficient orchestration of components
– Battery life is one of the most important resources in mobile devices

– How to best manage cellular radio? How to offload computation?

 Does storage functionality impact mobile experience?
– For storage, vendors & consumers mostly refer to capacity

– In this class we will learn about the role of storage in mobile devices
7

Well understood!

Not well understood!

Being understood!

8

Quick Primer on Android

Android OS Architecture

9

 Android kernel based on Linux

o Contains low-level drivers for
network, storage, power mgmt

 Java middleware: Dalvik virtual
machine for application isolation
and memory management

o Each app runs as its own process,
with own Dalvik instance

 Libraries to support common needs
of applications

o Libc, Webkit, SSL

 Application framework for
development of new apps

o Abstractions for using system
services and hardware

 True multitasking, several apps run
as background processes or services

Storage Partitions on Android

10

/system
yaffs2

145MB
read-only

/cache
yaffs2
95MB

read write

/data
yaffs2

196.3MB
read write

Internal NAND Flash Memory (512MB)

/sdcard
FAT32
16GB

read write

/misc

896KB
settings

/recovery
rootfs
4MB

alternate boot

/boot
rootfs
3.5MB
kernel

External SD

Partition Function

Misc H/W settings, persistent shared space between OS & bootloader

Recovery Alternative boot-into-recovery partition for advanced recovery

Boot Enables the phone to boot, includes the bootloader and kernel

System Contains the remaining OS, pre-installed system apps ; read-only

Cache Used to stage and apply “over the air” updates; holds system images

Data Stores user data (e.g., contacts, messages, settings) and installed apps;
SQLite DB containing app data also stored here. Wiped on factory reset

Sdcard External SD card partition to store media, documents, backup files etc

Sd-ext Non-standard partition on SD card that can act as data partition

Things to Note…

 Storage partitioning similar to Linux
– Bunch of system and user partitions

 Application’s usage of the storage is sandboxed
– Apps mostly use the /data partition

 Some mobile-specific partitions
– “Over the air” updates

– External, removable media (different usage say from a USB key)

11

12

How do Mobile Apps use
Storage?

How is Storage Typically Used?

 App binaries/OS software stored on the internal flash

 Apps storing locally-generated user data

– Photos, movies, voice recordings

 Apps staging user data before network transfer

– Memos, calendar entries, email drafts,...

 App-private data

– Periodic game-save data, internal app state for checkpoints

– App Metadata (not system metadata)

 App caches to reduce network traffic

– Web browser cache, Google Map tiles, Facebook cache

 Mobile devices as sensors

– Periodic collection of sensor data through built-in sensors

 Supporting apps to operate in disconnected mode

– Book reader, subscription services, …

 Provide better user experience

– Media streaming buffer

Different apps use storage in

many different ways

Leads to varying performance

and reliability requirements

Diverse

Usage

Deconstructing the Browser App

 Reference architecture of a browser

14

How Does the Browser Use Storage?

 Storage schema for a web browser application

– Uses both SQLite and FS interfaces to store different data

15

/data/data/com.necla.webview

lib (empty)

cache

webviewCache

6aaa3f00, 03051d8d, …
many files (5.5MB)

databases

webview.db (14KB)

webviewCache.db (129KB)

These files written

to SQLite in sync

These files written to

FS in write-behind

Web Browser
Storage Schema

 Apps typically store some data in FS (e.g., cache files)
and some in a SQLite database (e.g., cache map)

– Data through SQLite is written synchronously slow but reliable

– Larger files typically written to FS fast but less reliable

16

Programming for Storage
on Mobile Devices

APIs, APIs, APIs

 App view of storage and data heavily dictated by APIs
– Android has one, iOS has one

 Modularity is great for the mobile app developer!
– Only need to know what the API offers in terms of storage options

– Few choices to make (examples coming up)

– Easy for naïve developers to write apps that deliver certain functionality

– Easy to enforce system-wide policies, data sharing, isolation

 Modularity can have negative consequences
– Can’t pick and choose beyond what the API offers

– If the API is restrictive, the app developer is stuck with it

– Unintended side effects on performance and resource utilization

17

Handling Data on Android

 Key-value API
– Very popular among apps to store any kind of application and/or user

data ; Android uses SQLite databases to provide structured storage

 File system API
– File I/O interface for internal and external storage

• openFileOutput(), read(), write(), and close()

 System-managed data
– Shared preferences, primitive data types stored in key-value pairs

 Sharing data
– Expose private data to other apps with a content provider

• Providing applications with access to a user’s phone log, or contacts

– Provides read/write access to app data subject to imposed restrictions

 Network data and Android data backup
– Store and retrieve data through Android backup or other web services

18

Handling Data on Apple iOS

 iOS also uses SQLite to store application data
– iOS Core Data is a data model framework built on top of SQLite

– Core data takes care of glue code so apps don’t have to worry about
SQL syntax in their UI

– Provides applications access to common functionality such as save,
restore, undo and redo

 Sharing mechanisms to share data among apps
– Similar to ContentProvider in Android (or vice versa)

 iOS 4 does not have a central file storage architecture
– Every file is stored within the context of an application

– No external storage on iPhones and iPads

19

Sample App Code for Data Storage

20

// get a FileOutputStream object by passing the file-name; file is private to the app

String string = “test data”;

FileOutputStream dataFileOutput = openFileOutput("datafile", Context.MODE_PRIVATE);

dataFileOutput.write(string.getBytes());

dataFileOutput.close();

// check if external media is available; files on SD can be accessed by other apps/user directly

if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {

 // can use the external storage …

// create a custom SQLite database for the app

public void onCreate(SQLiteDatabase db) {

 db.execSQL("CREATE TABLE Item (ItemID INTEGER, ItemName TEXT);");

}

// get the preferences, then editor, set a data item

SharedPreferences appPrefs = getSharedPreferences("MyAppPrefs", 0);

SharedPreferences.Editor prefsEd = appPrefs.edit();

prefsEd.putString("dataString", "some string data");

prefsEd.commit();

Shared Preferences

SQLite

SD card/external storage

Internal storage

Best Practices and Tradeoffs

 Multiple mechanisms for storage available on mobile platforms

– Local w/ sync, local w/o sync, network, …

– Performance and reliability are at odds (as always); judiciously choose type of storage
based on needs of the app

• Don’t throw everything in the SQLite databases, partition your schema carefully

 I/O operations can take noticeable time, especially true for interactive apps

– Avoid storage I/O in the main UI thread; separate threads for I/O operations

 Mobile storage is heavily used as a cache (Browser, Facebook, etc)

– Consider what data is worth caching, what is best brought fresh over network

– Tradeoff becomes more relevant on WiFi (penalty of storage I/O becomes non-trivial)

 Choice of storage partition determines data privacy

– Store on internal media for private app data, store on external for shared

– Use OS mechanisms to explicitly share data across apps (i.e., ContentManager)

21

Open Questions for Mobile Storage

 How are the apps using the storage?
– What is the state of the art?

 What are choices for storage on mobile devices?
– Flash-based widely popular right now

– PCM? PCM as a buffer?

– Plenty of challenges in low-level design and implementation

• FTL strategies for mobile flash need to operate with limited power + DRAM

 What is the right storage abstraction for mobile apps?
– How much information should be exposed to the apps?

• What is the right storage API for mobile app development?

– How is storage being managed underneath?

 Interplay of storage and wide-area networks raises interesting
challenges (and research potential!)

22

23

Are there interesting problems
to be solved in mobile storage?

24

Waiting is undesirable!

Annoying for the user

More time, more battery
Easy to lose customers

More so for interactive

mobile users

Aren’t network and CPU the real problem?
Why are we talking about storage?

25

26

Wireless Network Throughput Progression

 Flash storage on mobile performs better than wireless networks

 Most apps are interactive; as long as performance exceeds that of
the network, difficult for storage to be bottleneck

Standard (theoretical)

Mobile Flash

802.11 a/g

3G

Measured in Lab

27

 Storage coming under increasingly more scrutiny in mobile usage
– Random I/O performance has not kept pace with network improvements

– 802.11n (600 Mbps peak) and 802.11ad (7 Gbps peak) offer potential for
significantly faster network connectivity to mobile devices in the future

Mobile Flash Rand

Shifting Performance Bottlenecks
Why Storage is a Problem

Standard (theoretical)

Mobile Flash Seq

802.11 A/G

3G

Measured in Lab

28

Revisiting Storage for
Smartphones

Why Storage is a Problem

 Performance for random I/O
significantly worse than seq;
inherent with flash storage

Mobile flash storage classified
into speed classes based on
sequential throughput

 Random write performance is
orders of magnitude worse

29

Vendor
(16GB)

Speed
Class

Cost
US $

Seq
Write

Rand
Write

Transcend 2 26 4.2 1.18

RiData 2 27 7.9 0.02

Sandisk 4 23 5.5 0.70

Kingston 4 25 4.9 0.01

Wintec 6 25 15.0 0.01

A-Data 6 30 10.8 0.01

Patriot 10 29 10.5 0.01

PNY 10 29 15.3 0.01

Consumer-grade SD performance

P
e

rf
o

rm
an

ce
 M

B
/s

 However, we find that for several popular apps, substantial

fraction of I/O is random writes (including web browsing!)

Random versus Sequential Disparity

Deconstructing Mobile App Performance

 Focus: understanding contribution of storage

– How does storage subsystem impact performance of popular
and common applications on mobile devices?

– Performed analysis on Android for several popular apps

 Several interesting observations through measurements

– Storage adversely affects performance of even interactive apps,
including ones not thought of as storage I/O intensive

– SD Speed Class not necessarily indicative of app performance

– Higher total CPU consumption for same activity when using
slower storage; points to potential problems with OS or apps

 Improving storage stack to improve mobile experience

30

Phone and Generic Experimental Setup

 Rooted and set up a Google Nexus One phone for development
– GSM phone with a 1 GHz Qualcomm QSD8250 Snapdragon processor

– 512 MB RAM, and 512 MB internal flash storage

 Setup dedicated wireless access point
– 802.11 b/g on a laptop for WiFi experiments

 Installed AOSP (Android Open Source Project)
– Linux kernel 2.6.35.7 modified to provide resource usage information

31

Custom Experimental Setup

 Ability to compare app performance on different storage devices
– Several apps heavily use the internal non-removable storage

– To observe and measure all I/O activity, we modified Android’s init process to
mount all internal partitions on SD card

– Measurement study over the internal flash memory and 8 external SD cards,
chosen 2 each from the different SD speed classes

 Observe effects of shifting bottlenecks w/ faster wireless networks
– But, faster wireless networks not available on the phones of today

– Reverse Tethering to emulate faster networks: lets the smartphone access the
host computer’s internet connection through a wired link (miniUSB cable)

 Instrumentation to measure CPU, storage, memory, n/w utilization

 Setup not typical but allows running what-if scenarios with storage
devices and networks of different performance characteristics

32

Requirements beyond stock Android

Apps and Experiments Performed

WebBench Browser
Visits 50 websites

Based on WebKit

Using HTTP proxy server

App Install
Top 10 apps on Market

App Launch
Games, Weather, YouTube

GasBuddy, Gmail, Twitter,

Books, Gallery, IMDB

RLBench SQLite
Synthetic SQL benchmark

33

Facebook

Android Email

Google Maps

Pulse News Reader

Background
Apps: Twitter, Books, Gmail

Contacts, Picasa, Calendar

Widgets: Pulse, YouTube,

News, Weather, Calendar,

Facebook, Market, Twitter

Application Workload: Webbench

 Wrote a custom benchmark based on WebKit to mimic web browsing

 Visits 50 websites* continuously, reports elapsed time in seconds

 HTTP Proxy server is used to minimize external network effect

 Screen shots:

34

35

Experimental Evaluation

0

100

200

300

400

500

600
T

im
e
 (

s
e
c
o

n
d

s
)

WIFI
USB

0

1000

2000

3000

4000

T
im

e
 (

s
e
c
o

n
d

s
) WIFI

USB

WebBench Results: Runtime

36

Runtime on WiFi varies by 2000% between internal and Kingston
• Even with repeated experiments, with new cards across speed classes

Even without considering Kingston, significant performance variation (~200%)
Storage significantly affects app performance and consequently user experience
With a faster network (USB in RT), variance was 222% (without Kingston)

With 10X increase in N/W speed, hardly any difference in runtime

Time taken for iPerf

to download 100MB

WiFi

USB

0

20

40

60

80

100

T
im

e
 (

s
)

Runtimes for Popular Apps (without Kingston)

37

We find a similar trend for several popular apps
Storage device performance important, better card faster apps

Apart from the benefits provided by selecting a good flash device,
are there additional opportunities for improvement in storage?

0

100

200

FaceBook

0

100

200
Maps

0

20

40
Email

0

200

400

App Install

0

100

200
RLBench

0

50

100

Pulse News

WebBench: Sequential versus Random I/O

38

• Few reads, mostly at the start; significantly more writes
• About 2X more sequential writes than random writes
• Since rand is worse than seq by >> 2X, random dominates
• Apps write enough randomly to cause severe performance drop
 Paper has a table on I/O activity for other apps

I/O Breakdown
Vendor Seq:Rand

perf ratio
Rand
IOPS

Transcend 4 302

Sandisk 8 179

RiData 395 5

Kingston 490 2.6

Wintec 1500 2.6

A-Data 1080 2.6

Patriot 1050 2.6

PNY 1530 2.6

Application Launch Performance

39

0

100

200

300

400

500

600

Baseline Cache in
RAM

DB in RAM All in RAM Disable
fsync

T
im

e
 (

s
e
c
o

n
d

s
)

What-If Analysis for Solutions

What is the potential for improvements?

–E.g., if all data could be kept in RAM?

–Analysis to answer hypothetical questions

40

Placing Cache on
Ramdisk does not

improve perf. much
DB on Ramdisk
alone improves

perf. significantly
Both Cache and
DB in RAM

no extra benefit

Both Cache and DB
on SD without sync
recoups most perf

A. Web Cache in RAM

B. DB (SQLite) in RAM

C. All in RAM

D. All on SD w/ no-sync

WebBench on RiData

A B C D

Implications of Experimental Analysis

 Storage stack affects mobile application performance

– Depends on random v/s sequential I/O performance

 Key bottleneck is ``wimpy’’ storage on mobile devices

– Performance can be much worse than laptops, desktops

– Storage on mobile being used for desktop-like workloads

 Android exacerbates poor storage performance through
synchronous SQLite interface

– Apps use SQLite for functionality, not always needing reliability

– SQLite write traffic is quite random further slowdown!

 Apps use Android interfaces oblivious to performance

– Browser writes cache map to SQLite; slows cache writes a lot

41

WebBench on RiData

0

20

40

60

80

100

120

T
im

e
 (

s
e

c
o

n
d

s
)

0

100

200

300

400

500

600

T
im

e
 (

s
e

c
o

n
d

s
)

Pilot Solutions
 RAID-0 over SD card and internal flash

– Leverage I/O parallelism already existent

– Simple software RAID driver with striped I/O

– As expected speedup, along with super linear
speedup due to flash idiosyncrasies (in paper)

 Back to log-structured file systems
– Using NilFS2 to store SQLite databases

– Moderate benefit; suboptimal implementation

 Application-specific selective sync
– Turn off sync for files that are deemed async

per our analysis (e.g., WebCache Map DB)

– Benefits depend on app semantics & structure

 PCM write buffer for flash cards
– Store performance sensitive I/O (SQLite DB)

– Small amount of PCM goes a long way

PCM

RAM

RAID

Base

SelSync LogFS

PCM
RAM

RAID

Base

SelSync LogFS

Conclusion

 Contrary to conventional wisdom, storage does affect
mobile application performance

– Effects are pronounced for a variety of interactive apps!

 Pilot solutions hint at performance improvements

– Small degree of application awareness leads to efficient solutions

– Pave the way for robust, deployable solutions in the future

 Storage subsystem on mobile devices needs a fresh look

– We have taken the first steps, plenty of exciting research ahead!

– E.g., poor storage can consume excessive CPU; potential to
improve energy consumption through better storage

43

