
Non-manifold Level Sets: A multivalued implicit surface representation with
applications to self-collision processing

Nathan Mitchell Mridul Aanjaneya Rajsekhar Setaluri Eftychios Sifakis
University of Wisconsin-Madison

Figure 1: (Left) A self-colliding coil. (Middle) The level set of a deformable net (shown colliding with a rigid sphere) is stored in a single
mesh structure. (Right) A partially sliced elastic cube is impacted by a rigid ball to demonstrate robust collision handling of zero-width cuts.

Abstract

Level sets have been established as highly versatile implicit surface
representations, with widespread use in graphics applications in-
cluding modeling and dynamic simulation. Nevertheless, level sets
are often presumed to be limited, compared to explicit meshes, in
their ability to represent domains with thin topological features (e.g.
narrow slits and gaps) or, even worse, material overlap. Geometries
with such features may arise from modeling tools that tolerate oc-
casional self-intersections, fracture modeling algorithms that create
narrow or zero-width cuts by design, or as transient states in colli-
sion processing pipelines for deformable objects. Converting such
models to level sets can alter their topology if thin features are not
resolved by the grid size. We argue that this ostensible limitation
is not an inherent defect of the implicit surface concept, but a col-
lateral consequence of the standard Cartesian lattice used to store
the level set values. We propose storing signed distance values on a
regular hexahedral mesh which can have multiple collocated cubic
elements and non-manifold bifurcation to accommodate non-trivial
topology. We show how such non-manifold level sets can be sys-
tematically generated from convenient alternative geometric rep-
resentations. Finally we demonstrate how this representation can
facilitate fast and robust treatment of self-collision in simulations
of volumetric elastic deformable bodies.

CR Categories: I.3.7 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: level sets, collision processing, deformable models

1 Introduction

Modeling of geometric objects is one of the fundamental challenges
of computer graphics and visual computing at large. Nearly three
decades after their introduction [Osher and Sethian 1988], level sets
have evolved into one of the most widely used representations of
geometry, alongside traditional alternatives such as meshes, splines
and subdivision surfaces. A level set implicitly represents a domain
boundary S = ∂Ω as the zero-value isosurface (i.e. zero level set)

S = {~x ∈ Rn | φ(~x) = 0} (1)

of a scalar field φ(~x) measuring signed distances to the boundary
of the object Ω ⊂ Rn. Level sets allow for fast O(1) time point-
object intersection queries or point projections to the object surface.
Model deformation is also possible, including topological split and
merge operations, simply by varying the underlying scalar field.
Level sets are used in a diverse range of applications including sur-
face editing [Museth et al. 2002], tetrahedral meshing [Labelle and
Shewchuk 2007], scattered point interpolation [Zhao et al. 2001],
fluid simulation [Osher and Fedkiw 2002] and collision processing
for deformable solids [Gascuel 1993], rigid bodies [Guendelman
et al. 2003] and skinning animations [Vaillant et al. 2013].

In principle, based on equation (1) a level set could represent any
object Ω ⊂ Rn. In practice, however, the scalar field φ(~x) is never
provided analytically, but sampled instead at discrete points in Rn.
As a consequence, the expressive ability of discrete level sets is lim-
ited by the sampling resolution and the interpolation scheme used.
In the common practice where φ values are sampled on the nodes of
a uniform Cartesian grid, and trilinear interpolation is used to define
a continuous scalar field, models with multiple boundary crossings
per grid edge (near narrow gaps or strips, see Figure 2) cannot be
represented. These issues can be alleviated to some extent by using
adaptive schemes [Losasso et al. 2004; Museth 2013] to concen-
trate resolution near fine features, or hybridizing with point-based
methods [Enright et al. 2002] to capture details at a sub-cell level.
Nevertheless, gratuitously increasing the level set sampling resolu-
tion is a brute-force remedy which quickly becomes impractical if
the thickness of topological gaps approaches zero, as is commonly
the case with geometries arising from cutting and fracture modeling
pipelines (see Figure 8(top)). It is also unfortunate that even though

Figure 2: Scenarios where standard Cartesian grid-based level
sets lack the expressive ability to resolve thin features. For the vec-
tor art hand (top left), the cells highlighted in red show features
that will not be resolved. While many cases can be resolved with
fine enough resolutions, the fractured cube (bottom left) is an in-
stance that cannot be resolved with conventional level sets.

level sets are perfectly capable of localizing the implicit surface to
sub-cell resolution (trilinearly interpolated level sets on Cartesian
grids converge quadratically to surfaces of bounded curvature) they
cannot resolve multiple interface crossings within a single cell.

We argue that these apparent limitations of level sets are not in-
trinsic defects of the implicit representation (equation 1), but con-
sequences of the data structure (e.g. Cartesian grid) conventionally
used to store the signed distance values. Instead of using Rn as
the domain of φ(~x), we propose to define this scalar field over an
explicit quadrilateral (2D) or hexahedral (3D) mesh. We use reg-
ular (square or cube) elements in these meshes, identical in shape
to the cells of a conventional Cartesian grid. However, the explicit
connectivity in our mesh allows us to have multiple overlapping el-
ements associated with geodesically distant regions (see Figure 4).
Furthermore, this enables us to introduce non-manifold connectiv-
ity to capture topological bifurcation at the tip of a crack or incision,
or in the vicinity of highly concave regions (see Figure 5).

The algorithmic interface to an implicit surface data structure is
highly dependent on the application it caters to. A fluid simula-
tion application would likely mandate support for dynamic evolu-
tion of the interface. Geometry processing tasks may be more de-
pendent on contouring or differential properties such as curvature.
The data structure we propose, which is essentially a multivalued
signed distance field, might require a different interface depending
on the end application. For example, applications in multiphase flu-
ids [Losasso et al. 2006], multi-material surface tracking [Da et al.
2014] or volumetric meshing [Sacht et al. 2013] may contribute
their own interpretations to what a non-manifold feature may be and
what algorithmic routines need to be supported. In order to avoid
such ambiguities we focus our scope to a specific driving applica-
tion: collision detection and penalty-based response on volumetric
simulation of elastic solids. In section 3 we review how this specific
application utilizes conventional (manifold) level sets, identify sce-
narios where the limitations of the traditional formulation hinder
the efficacy of collision processing or even make it inapplicable,
and explain how the non-manifold level set concept can alleviate
those obstacles. In summary, our key contributions are as follows:

• We extend level set representations by storing discrete values
on nodes of a non-manifold Cartesian grid, enabling them to

represent domains with thin gaps or slivers, and even encode
boundaries of overlapping material domains.

• We detail a systematic pipeline for converting mesh-based ge-
ometry representations into multivalued level sets, and discuss
how other geometric descriptions could also be used as input.

• We extend a number of algorithmic concepts and geometric
predicates, such as signed distance initialization and closest-
point projection to the non-manifold level set paradigm.

• We show how non-manifold level sets can broaden the scope
of penalty-based self-collision processing for elastic solids.

2 Previous work
Level set methods were first introduced by Osher and
Sethian [1988] for tracking moving interfaces in the context
of Hamilton-Jacobi equations. Subsequently, Adalsteinsson and
Sethian [1994] proposed substantial runtime savings by restricting
computations to a thin band of active voxels near the interface.
Sethian [1998] proposed fast marching methods for monotonically
advancing fronts as well as for redistancing the level set using
values seeded only on the narrow band. Besides fast computation,
a number of methods have also been proposed for efficiently
storing level sets including octrees [Losasso et al. 2004], RLE
representations [Houston et al. 2006; Irving et al. 2006; Chentanez
and Müller 2011], the VDB data structure [Museth 2013] which
evolved from Dynamic Tubular Grids [Nielsen and Museth
2006] and the DB+Grid data structure [Museth 2011], and the
virtual-memory based SPGrid data structure [Setaluri et al. 2014].

Methods have been proposed for computing implicit representa-
tions of non-manifold surfaces [Bloomenthal and Ferguson 1995;
Yuan et al. 2012]. Similar ideas were used for simulating bub-
bles [Zheng et al. 2006] and multiphase fluids [Losasso et al. 2006].
Our work diverges from these approaches as we enhance the expres-
sive capability of a single level set by embedding signed distance
values on an explicit mesh. Our work is related to the practice of
embedding high-resolution geometry in regular meshes, a concept
that was first leveraged by Müller et al. [2004] for deformable body
simulations and fracture. In addition to hexahedral embeddings,
methods such as the virtual node algorithm [Molino et al. 2004]
have been used to create non-manifold tetrahedral lattices that cor-
respond to thin topological features in the embedding geometry.
Virtual node concepts are also similar to XFEM methods which
were used for crack modeling [Moës et al. 1999] and for cutting
and fracturing thin shells [Kaufmann et al. 2009]. This principle
has continued to evolve with many of the topological limitations in
prior approaches being raised by Sifakis et al. [2007] and has been
successfully used in production tools as well [Hellrung et al. 2009].

Our non-manifold level set approach is inspired by these meth-
ods, but it needs to be made cognizant of further topological lim-
itations that the signed distance field imposes on our representa-
tion (see Section 4). Notably, when dealing with collisions near
thin features, all of the aforementioned approaches employed de-
tection and response techniques based on surface meshes [Bridson
et al. 2002] that rely on the availability of good surface meshes,
are computationally expensive, presume collision-free history or
use impulses which makes implicit integration challenging. To
accelerate collision detection and response while allowing for im-
plicit integration, methods have been proposed using implicit sur-
face representations [McAdams et al. 2011] which work even in
near-interactive settings, but require enough level set resolution to
avoid any non-manifold features altogether. Recently, image-based
techniques [Faure et al. 2008; Wang et al. 2012] have been pro-
posed which provide an interesting alternative. Finally, implicit
surfaces have also been recently used in real-time skinning appli-
cations [Vaillant et al. 2013; Vaillant et al. 2014].

e

Figure 3: Illustration of our self-collision pipeline: (a) A triangu-
lated torus model is pictured in its undeformed configuration. Col-
lision proxies on the surface shown in red. (b) The torus is deformed
into a self-colliding state. A bounding box hierarchy yields initial
candidates of triangles colliding with the proxy. (c) After pruning
false positives, the material location that the proxy collided onto is
identified, and mapped back to the undeformed configuration (blue
dot). The level set (stored on the pictured grid) is used to project
to the closest surface point (brown dot). (d) a zero-rest spring is
initialized between the proxy and its surface-projected target. (e)
The deformed torus after the self-collision is resolved.

3 Level set collisions for volumetric solids

We present our new implicit surface formulation in the context of
collision processing for elastic volumetric bodies. Self-collision
processing is paramount in generating visually attractive and realis-
tic shapes, as is evident in character skinning pipelines [McAdams
et al. 2011; Vaillant et al. 2013]. Handling collisions in volumetric
solids can be quite different than the typical cloth collision pipeline.
With volumetric solids there is a clear distinction between an inside
and an outside region, making it possible to process collisions in
a single time instance of a simulated deformation. In contrast, if
collisions are detected in a cloth simulation, we need to rely on
deformation history to determine how the cloth surface is to be un-
tangled (unless global intersection analysis [Baraff et al. 2003] is
performed). While cloth simulations typically strive for a collision-
free state at all times, commonly enforced via impulses in semi-
implicit integration schemes [Bridson et al. 2003], volumetric ob-
jects can tolerate occasional, limited interpenetration, and respond
to collision with penalty forces which are more easily coupled with
explicit integration schemes. In this section, we review a level-set
assisted technique that capitalizes on these opportunities to handle
volumetric object collisions in large time-step implicit integration
schemes, without requiring a collision-free deformation history. In
section 4 we explain when standard level sets are inadequate for
this task, and use this as motivation for our non-manifold variant.

Our collision pipeline consists of two stages: In the detection stage,
discrete material points (labeled collision proxies) are checked for
collision against the object interior. In the response stage, we use a
spring-like penalty force to push each colliding proxy to the object
surface [Teran et al. 2005b; McAdams et al. 2011]. Since simu-
lated solids are typically endowed with elastic material models that
prevent (or discourage) inversion, in all our examples we chose to

only seed collision proxies on the object surface, as internal non-
inversion combined with boundary non-collision would imply a
globally non-intersecting state. Interior collision proxies can also
be used, if desired, with no algorithmic change. Figure 3 illus-
trates the detection and response process on an elastic torus model
squished into self-collision. For any colliding proxy, we identify the
offending (internal) material location that the proxy collided with.
The closest surface point to that material location is calculated, and
a zero rest-length spring is introduced between that surface location
and the original proxy. This spring remains active just until the col-
lision detection phase is repeated; typically for one step of the time
integration method employed, or for just a single Newton iteration
in an implicit scheme. The most costly predicates in this process
are (i) detecting whether a proxy intersects the object interior, and
(ii) projecting the offending location to the model surface. Both
predicates could be answered in O(1) if a level set representation
of the model was available; unfortunately, the continuous deforma-
tion makes updating an implicit representation impractical. Hence,
we opt for an approximate algorithm [McAdams et al. 2011] that
only relies on a level set representation of the undeformed model.

For simplicity, let us assume that the deformable volumetric solids
are tetrahedralized. LetEi denote the i-th simulation element in the
undeformed configuration and ei denote the same element in the
deformed configuration. Similarly, let Pi denote the location of the
i-th collision proxy in the undeformed configuration and pi denote
its deformed counterpart. Let φ denote the level set function for the
simulated volume in the undeformed configuration. The collision
handling routine performs the following steps for each proxy pi :

Step 1 The set of (deformed) elements E = {ei1 , ei2 , . . . , eik} are
checked against pi for intersection. This is performed as follows:
(a) We use an axis-aligned bounding box hierarchy, defined over

all deformed elements, to identify all elements whose bounding
box intersects pi, i.e. Eint = {ek ∈ E|Box(ek) ∩ pi 6= ∅}.

(b) We identify the elementEi that contains the proxy Pi in the un-
deformed configuration. This may be more than one element,
e.g. if Pi was a mesh vertex. We trivially have that ei ∈ Eint, as
pi is embedded in it. We prune ei along with all of its imme-
diate topological neighbors from Eint, as false positives (we do
not collide a proxy with itself, or its immediate neighborhood).

(c) We perform an exact intersection test between any elements et
that have not been already pruned. We do so by computing the
barycentric coordinates of pi with respect to et, and discard
elements if those coordinates are out of bounds.

Step 2 For every colliding proxy, we identify the locationXt in the
undeformed configuration of the material point the proxy impacted.
We do so using the barycentric coordinates computed in step 1(c)
to interpolate Xt from the undeformed colliding element Et.
Step 3 Elements Et with φ(Xt)>0 are dismissed as non-colliding
(this could be due to discretization discrepancy between mesh and
level set, or if an embedded simulation approach is used where ele-
ments in E reach beyond the extent of the simulated model).
Step 4 Using the level set, pointXt is projected to the surface point
Yt = Xt−φ(Xt)∇φ(Xt), for all elements Et, where et ∈ Eint.
Step 5 In the deformed configuration, a zero rest-length spring is
initialized between points pi and yt to resolve the collision.

In step 5, yt corresponds to the point Yt in the deformed configura-
tion. Note that our algorithm, in steps 3 and 4, relied upon a level
set representation of the undeformed shape of the simulated model.
The cost paid for this convenience is that the surface location yt
(the collision target) is only an approximate surface projection in
the deformed configuration; nevertheless, this disparity vanishes as
the effect of the collision springs progressively brings the penetra-
tion depth closer to zero. Figure 3 illustrates the individual steps of
the algorithm on a torus in two spatial dimensions.

a
c

b

Figure 4: (A) A self-overlapping 2D model with template mesh
overlaid. (B) Duplicate elements created during non-manifold em-
bedded mesh generation, along with their associated material frag-
ments. (C) Final non-manifold embedding mesh.

4 Non-manifold level sets

The self-collision algorithm outlined in Section 3 works well when
a good quality level set can be computed from the model’s unde-
formed configuration. In such cases, it provides the opportunity
for excellent performance, even allowing interactive simulation for
highly detailed models [McAdams et al. 2011], as it allows very
aggressive integration time steps (tolerating occasional mild inter-
penetration) and exploits the fast intersection/projection level set
queries. The approach breaks down, however, in cases where the
object contains narrow gaps that cannot be resolved by the level set
resolution (see Figure 2). As a brute-force remedy, it might be pos-
sible to pose a model in a reference configuration that avoids thin
features (e.g. modeling a hand such that the fingers are generously
separated [McAdams et al. 2011]). However, this pre-processing
can be tedious (e.g. for faces with narrow clearance between the
lips), unnatural (if the “reference pose” is not really a rest pose, see
the elastic coil in Figure 2), or impossible to perform a priori if the
thin features arise during simulation (e.g. cracks and cuts). We pro-
pose a principled remedy, designing a new implicit geometry data
structure that fully supports the necessary geometric predicates, but
accommodates models with narrow gaps or even material overlap.

4.1 Basic non-manifold embedding

Models such as the ones illustrated in Figure 2 have been known to
pose challenges not just for level set generation, but also for certain
dynamic simulation techniques even in the absence of collision pro-
cessing. Of course, simulation of elastic deformation is a straight-
forward proposition, e.g. using the Finite Element Method [Sifakis
and Barbic 2012], if an explicit tetrahedral mesh representation of
the model is available. However, performance-optimized deforma-
tion techniques [Rivers and James 2007; McAdams et al. 2011]
often choose to simulate a regular mesh that merely embeds the
model geometry, rather than strictly conforming to it. Such tech-
niques would run the risk of “tying” together disconnected material
regions if they are separated by a distance smaller than the embed-
ding mesh resolution (e.g. adjacent helices of the coil, or the two
lips of the face model pictured in Figure 2). Fortunately, a class of
embedding approaches have successfully addressed this very chal-
lenge [Molino et al. 2004; Teran et al. 2005a; Sifakis et al. 2007;
Nesme et al. 2009]. These methods add non-manifold connectivity
to the embedding mesh, duplicating elements and degrees of free-
dom as necessary to best capture the embedded model topology.

Figure 5: (Left) An example where material bifurcates at an edge in
a non-manifold Cartesian embedding. (Right) Level sets can only
store a single interface transition at an edge. In the non-manifold
level set bifurcations are explicitly recorded in transition faces that
record a connectivity graph between all cells on the left and right.

Since our non-manifold level set structure is inspired by the same
principles, we review a common formalism of the non-manifold
embedding process [Sifakis et al. 2007] before discussing our level
set-specific modifications. The algorithm is illustrated in Figure 4.

Input: (a) A geometric description of the shape to be embedded
(the green-shaded area in Figure 4). For simplicity, we may assume
the geometry is given as a triangulated model, which allows us to
express the self-overlap in our specific example. (b) A mesh which
will be used as a template for our embedding process. In Figure 4(a)
this is the regular quadrilateral mesh pictured in the foreground.
Step 1 [Element separation] We separate each element of the tem-
plate (quadrilateral) mesh, keeping track of the subset of our mate-
rial model that is contained in each such element (e.g. taking note
of all material triangles that intersected each quadrilateral).
Step 2 [Element duplication for disconnected components] For
each embedding element, we identify all disjoint connected compo-
nents of material contained therein (e.g. by checking connectivity
of the respective material triangles). We generate a duplicate em-
bedding (quadrilateral) element for each material component. Note
that, at this point, all embedding elements are still disconnected.
Step 3 [Restoring connectivity] For any pair of geometrically ad-
jacent embedding elements, we check if there is material continuity
across their common face (e.g. by checking if they both intersect
the same material triangle on that face). If such continuity exists,
we collapse all vertices along their common face. This collapse is
transitive; in the example of Figure 5(left) all three elements near
a convex material region have acquired a common face (with non-
manifold connectivity) due to transitive pair-wise vertex collapses.

The result is shown in Figure 4(c); after discarding embedding ele-
ments with no material content, the final embedding mesh has been
fully assembled, with overlapping duplicates of elements properly
connected, respecting the topology of the embedded material.

4.2 Mesh bifurcation and transition faces

The intent of our proposed level set data structure would be to store
signed distance values on the nodes of the embedding mesh pro-
duced by the algorithm just described (to our knowledge, these
non-manifold embedding meshes have only been previously used
to store deformation data, not level set values). Of course, such
signed distances would be computed geodesically, along the em-
bedding mesh, rather than in the Euclidean sense. Subsequently, a
continuous signed distance field would be computed on the embed-
ding mesh via standard bilinear (2D) or trilinear (3D) interpolation.
We note that in “simple” cases such as the example of Figure 4
(where we have element overlap, but no non-manifold connectiv-
ity) this approach would have been fully sufficient. Unfortunately,
scenarios such as the one illustrated in Figure 5(left) reveal a new-
found challenge: Elements hinged in a non-manifold configuration

Algorithm 1 Non-Manifold Level Set Mesh Construction

Require: Template Embedding Mesh T , Material DescriptionM
1: procedure CONSTRUCT NONMANIFOLD LEVELSET MESH
2: . Phase 1: Duplicate elements by connected components
3: for all Elements in T : Ei do
4: C ← CONNECTED COMPONENTS(M∩ Ei)
5: for all Components in C : mj do
6: Di,j ← CREATE DUPLICATE(Ti , mj)
7: . Phase 2: Reconnect or build transition faces
8: for all Geometrically adjacent element pairs: (Ek, El) do
9: G← INITIALIZE BIPARTITE GRAPH(Dk,Dl, {})

10: for all Duplicates from Ek and El: (D(k,q), D(l,r)) do
11: if MATERIAL CONTINUOUS(D(k,q),D(l,r)) then
12: INSERT EDGE(G, D(k,q), D(l,r))
13: for all Connected subgraphs of G: Ci do
14: if #EDGES(Ci) = 1 then . Face is Manifold
15: COLLAPSE(Vertices on common face)
16: if #EDGES(Ci) > 1 then . Face is Non-Manifold
17: REGISTER TRANSITION FACE(Ci)

on a common face may disagree on the sign of the signed distance
value stored on one of their common vertices. In Figure 5(left), el-
ements A1 and B2 record the vertex in orange as being inside the
material domain (hence carrying a negative level set value), while
the same vertex is outside the embedded domain (with a positive
level set value) as far as element B1 is concerned. At this point, we
should emphasize that any discrete level set is an inherently approx-
imate representation of geometry, as it depends on interpolation of
signed distance value samples. The severity of this phenomenon,
however, is much greater as it carries the risk of eliminating parts
of the model boundary, or forcing it to spuriously appear in parts
of the embedding mesh that it did not originally traverse. Note that
this behavior does not affect non-manifold embedding for simula-
tion purposes, since such techniques explicitly track the material
embedded in each element, rather than using interpolated vertex.

We posit that, for the proper resolution of non-manifold connectiv-
ity, the algorithm of Section 4.1 cannot be allowed to indiscrimi-
nately collapse vertices (in Step 3) based solely on material conti-
nuity, if this yields a contradiction in the nodal signed distance val-
ues across connected elements. Thus, we introduce the concept of
a transition face which encodes connectivity between incompatible
(in terms of the signs of nodal distance values) materially connected
elements. This construct is illustrated in Figure 5(right). The tran-
sition face is envisioned as an infinitesimally thin connective strip
between between elements A1, B1 and B2 with the appropriate in-
ternal structure as to connect the material of each element as re-
constructed from their nodal values via bilinear interpolation. For
example, we see that element A1 is considered to be fully interior
to the domain, once described by the signed distance values stored
at its nodes. We explicitly store a transition face as a connected bi-
partite graph as seen in Figure 5, which records pairwise material
continuity of elements on either side, which would normally be lost
once only nodal level set values are retained for each element.

4.3 Non-manifold level set mesh algorithm

Using the transition face mechanism, we can now describe our new
algorithm for generating the embedded mesh whose nodes will be
used to store the signed distance values of our non-manifold level
set. The entire process is outlined in Algorithm 1. The first phase
of the algorithm is identical to steps 1-2 of the stock embedding al-
gorithm outlined in section 4.1. As before, given a geometric mate-
rial descriptionM (e.g. a tessellation of the model) we identify the

material regionM∩ Ei contained within the embedding element
Ei from an embedding “template” mesh T . We identify connected
components {mj}j in this set, and create a duplicate embedding el-
ementDi,j associated with each material component. As before, all
duplicate elements Di,j are completely disconnected at this point.

Subsequently, we analyze material continuity on adjacent embed-
ding elements, with the goal of reconnecting the previously sepa-
rated elements into the final embedding mesh. For any two elements
Ek, El that were adjacent in the template mesh T , we identify the
sets Dk = {Dk,q}q and Dl = {Dl,r}r of duplicate elements that
were respectively spawned from them. We examine each possi-
ble pair (Dk,q, Dl,r) drawn from these sets for material continuity
across their common face. At this point, however, instead of col-
lapsing vertices on the common face of such pairs that are found
to be materially connected, we simply record this connectivity with
an edge in a bipartite graph G defined over the sets Dk and Dl.
Once all pairs from Dk and Dl have been processed, we proceed to
split the graph G into its connected components (in terms of graph
connectivity, not material connectivity as in Phase 1). For every
connected component (subgraph) of G, we proceed as follows:
• If a connected subgraph contains exactly one edge, the du-

plicate elements Dk,q and Dl,r connected by that edge are
guaranteed to be compatible relative to the sign of the dis-
tance value stored on their nodes, since they agree exactly on
the material intersecting their (geometrically) common face.
This is a consequence of this edge being a connected compo-
nent of G, indicating that no other element is independently
connected to either Dk,q or Dl,r . In this case, we are free to
collapse the vertices of the two duplicate elements across their
common face, exactly as we did in section 4.1.

• If a connected subgraph contains two or more edges (see Fig-
ure 5(right)), we cannot collapse all vertices on the duplicate
elements’ common face, since some of these elements may
disagree on the sign of the distance field stored on their nodes.
In this case, we simply generate a transition face, which is en-
coded using the same connected subgraph, allowing the du-
plicate elements that are juxtaposed on that transition face to
retain independent signed distance values on their nodes. As
we will see in the next sections, a transition face is seman-
tically equivalent to a “hard” topological connection (a col-
lapsed face) for operations that traverse the final embedding
mesh, with the exception of its ability to allow separate signed
distance values on each duplicate element it connects.

Implementation notes For simplicity of exposition we have thus
far assumed that the description of the material modelM is given
in the form of an explicitly meshed object (e.g. a tetrahedralized
volume in 3D). However, this is not strictly necessary and any ma-
terial description that can answer the predicates of Algorithm 1,
lines 4 (connectivity within an element) and 11 (material continuity
across elements) can be trivially used in the same framework.

For example, we demonstrate cut-
ting of volumetric elastic models
(Figure 10), where a user-specified
fracture surface is used to explicitly
subdivide each element of the tem-
plate mesh T into disjoint polyhe-
dra. This polyhedral decomposition
[Sifakis et al. 2007] natively pro-
vides connected component informa-
tion, and can easily detect material
continuity across adjacent embedding elements by checking if their
polyhedral material regions share a face on their common boundary,
as seen in the insert image above. Finally, the transitive Collapse
operation (line 15) is implemented in practice using a Union-Find
structure which records transitive equivalences of vertex identifiers.

Figure 6: (Top) A volumetric coil self-collides under user manipulation. (Bottom) A coil is compressed against two walls. Subsequently,
collision handling is disabled and the geometry self-intersects (third frame in row). Self-collisions are turned back on and the coil recovers.

4.4 Level Set operations on nonmanifold meshes

Initialization of signed distances Once the topology of the em-
bedding mesh has been constructed, including the creation of the
necessary transition faces, the embedding mesh nodes must be pop-
ulated with the proper signed distance values. We start by explic-
itly computing such distances on embedding elements that intersect
the object boundary. Since we possess an explicit description of the
material contained in each element, for each of their nodes we com-
pute the minimum (absolute) distance from all material contained in
that element. We also compute the sign depending on whether the
node is inside or outside the embedded material component. Ad-
joining elements that have had common vertices collapsed (topo-
logically; not connected via transition faces) will agree on the sign
of the signed distance field at shared nodes, but not necessarily the
magnitude. We retain the distance value with the minimum magni-
tude, across all elements incident to this node. Of course, no such
reduction is performed on nodes connected via transition faces.
Subsequently, we propagate the signed distance field in the interior
of the object using the O(n logn) Fast Marching Method [Sethian
1998], with the only modification that this Dijkstra-type algorithm
is allowed to propagate through transition faces in exactly the same
fashion as through explicitly connected nodes. While we only com-
pute a scalar signed distance field, it would be straightforward to
also compute a normal field [Kobbelt et al. 2001] to support higher
quality reconstructions.

Distance queries and surface projection The basic level set
predicates required in the collision pipeline of section 3 include a
lookup of the signed distance value φ(~x) at an arbitrary location ~x
in space, and the projection of a material point to the closest loca-
tion Proj(~x; Γ) on the model surface Γ. Since our embedding mesh
may contain several overlapping elements, it is no longer sufficient
to define such predicates as functions of just the spatial location
~x being queried; we also need to identify the appropriate branch of
material being referred to. Thus, we reformulate these predicates as
φ(~x,Di) and Proj({~x,Di}; Γ), where the element Di embeds the
material point ~x in the non-manifold level set mesh. Subsequently,
the result of the projection operator is also a tuple (~x?, Dj) denot-
ing a material point ~x? and its respective embedding element Dj .

Given an embedding element Dl and a location ~x embedded in it,

level set value and gradient are computed via trilinear interpolation:

φ(~x,Dl) =

1∑
i,j,k=0

Nijk(~x)φijk, ∇φ(~x,Dl) =

1∑
i,j,k=0

∇Nijk(~x)φijk

where Nijk denotes the trilinear basis functions and φijk are the
signed distance values at the nodes of Dl. It is known that the
gradient of the level set function, i.e. the steepest ascent direction
of the distance field, is a unit normal which points in the direction
of the closest point on the surface. Thus, the closest point to ~x on
the model surface is to be found in the direction of ~n = ∇φ(~x,Dl),
at a distance of |φ(~x,Dl)|. Thus, analytically:

Proj({~x,Dl}) = ~x− φ(~x,Dl)∇φ(~x,Dl)

Figure 7: Different scenarios of surface projection. (a) Backtrac-
ing terminates after covering a distance of φ without intersecting
the interface. (b) Backtracing terminates at the location of the first
interface crossing. (c) Backtracing hits a transition face and con-
tinues into a connected neighbor with the largest negative φ value.

Figure 8: (Top) Surgical simulation of a z-plasty procedure, with self-collision processing. (Bottom) A net is stretched out, twisted to a saddle
configuration and a ball is subsequently dropped on it. A single level set is used for the entire net during self-collision processing.

To compute the projection Proj({~x,Dl}; Γ) we topologically back-
trace the non-manifold level set mesh along ~n element-by-element,
to ensure that we follow a geodesic path along the embedding mesh,
as shown in Figure 7. If while traversing a distance φ(~x,Dl) along
~n we land in an element Dm that is crossed by the interface, then
we use bisection search to compute the interface point ~x? and return
the tuple (~x?, Dm) (Figure 7(b)). If we have traversed a distance
equal to φ(~x,Dl) without crossing any interface, we stop the back-
trace operation and report the location reached after the requisite
distance has been traveled (Figure 7(a)); we do so to avoid grazing
by a nearby interface without actually stopping there. Finally, if
the backtracing process crosses a transition face f , then we com-
pute the point ~xf where the ray from ~x along ~n crosses f . We then
compute the value of φ at ~xf for all elements on the other side (con-
nected through the transition face) and choose the one that gives the
largest negative value. If no such element is present, then we as-
sume that the interface lies exactly at ~xf and return this point along
with the cell from which we entered the transition face as the result
of the projection. We note that although this projection is approx-
imate, the error is comparable with conventional, grid-based level
sets, and perfectly acceptable for our collision handling scheme.

5 Examples

We simulated a number of examples to demonstrate the efficacy of
our method in several challenging scenarios. Figure 6(top) shows
a user pulling a three dimensional volumetric coil at the red handle
creating complex self-collisions. Figure 6(bottom) shows the same
coil being compressed against two moving walls. Self-collisions
are turned off at some point to make the geometry self-intersecting,
and subsequently turned back on again resulting in the coil bulging
outwards. This example shows that our method does not require
any history information for resolving self-collisions. Figure 8(top)
shows a simulation of a common maneuver in plastic surgery, called
a Z-plasty, while Figure 8(bottom) shows a ball dropping on a net
that has been stretched outwards and twisted into a saddle configu-
ration. Our method uses a single level set for the entire net during
self-collision processing, obviating the need for multiple collision
level sets and circumventing the complexity in bookkeeping associ-
ated with such scenarios. Figure 9(b) shows an example where the
lower jaw of a face model is pulled down and subsequently pushed
back up, opening and closing the mouth in the process. Note the
slight bulge in the cheeks due to self-collisions at the lips when the
mouth is closed because the jaw is pushed further up compared to

the rest state. Figure 9(c) shows a user moving around two points on
the lips (shown in orange) to demonstrate complex self-collisions
that our method can resolve. Finally, Figure 10 shows an exam-
ple where a cube is partially sliced by six planes using the method
of [Sifakis et al. 2007]. This results in sixteen fingers which are
pushed apart when squashed by a ball from the top. Note that a
standard Cartesian grid-based level set cannot be used for resolving
this structure irrespective of its resolution.

Model Level set
Gen (s) Solve (s) Collision

Proc. (s)
Backtrace
Total (ms)

Proxy
Count

Z-plasty 222.6 1.961 0.0671 0.0479 7121

Coil 580.5 13.22 0.4651 14.8 31126

Net 524.0 23.47 0.4123 5.38 48042

Face 271.0 24.46 0.2977 0.620 48851

The table below captures the performance impact of our collision
handling methodology. The first column lists the computation times
for generating the non-manifold level set mesh; we emphasize that
this is a one-time precomputation cost, before dynamic simulation
even starts. The following columns list the cost for each step of our
Backward Euler implicit integration scheme, divided into the solu-
tion of the linearized equations, the cost of collision processing, and
specifically the aggregate cost of all backtracing operations for pro-
jecting proxies to the object surface. It can easily be seen that the
cost of collision processing is a minute fraction of the overall sim-
ulation. This is a consequence of our scheme not requiring a his-
tory of collision free states, and thus being able to take significantly
more aggressive steps than semi-implicit schemes that strictly dis-
allow interpenetration [Bridson et al. 2002].

6 Limitations and future work

Our pipeline for non-manifold level sets has been specifically
created for self-collision processing in deformable body simula-
tions. There are several diverse applications of the standard (man-
ifold) level set concept such as representing geometry, tracking
dynamically evolving interfaces, as a geometric query structure,
etc. However, we believe that the current methodology may re-
quire application-specific embellishments to cater to broader tasks
in modeling and simulation, beyond what was needed for our
collision-oriented proof of concept. For example, when two dy-
namically evolving interfaces are brought together, they may either

Figure 9: (a) Cutaway view of the non-manifold level set generated on a face model, (b) The lower jaw is displaced vertically, opening and
closing the mouth. Note the small bulges in the cheek due to self-collisions at the lips because the jaw is pushed further up compared to the
rest state. (c) A user moves around two points on the lips (orange) to demonstrate the robustness of our method in resolving self-collisions.

be allowed to merge (as is typical in fluid simulations) or overtake
one another (e.g. the two separate branches of the lips during self-
collision). Thus, application-specific semantics might be needed to
use non-manifold level sets for dynamic interfaces.

Currently, we do not extend the non-manifold level set values into
a narrow band outside the interface because we used the same grid
both for simulation and for storing level set values. If the extent is
predetermined, then we could generate a coarse non-manifold level
set mesh first and refine it as a post-process. Alternatively, one
could also “grow” the non-manifold level set by following charac-
teristics, but as mentioned above, one may or may not wish to merge
overlapping characteristics depending on the context. This issue is
also related to the question of “evolving” a non-manifold level set.
In future work, we wish to address these questions targeting the
specific applications of multiphase flow and crack propagation.

For standard Cartesian grid-based level sets, there exists an estab-
lished theoretical foundation for accurately computing high order
gradients even in the vicinity of singularities. For non-manifold
level sets, an extra level of complexity is introduced because there
can be a topological bifurcation in addition to a singularity. To ob-
tain valid values in such complex situations, our current scheme re-
verts to first order element-wise trilinear interpolation. It would be
interesting to explore in future work if there can be a more accurate
representation for the interface in these cases. Our current represen-
tation is still discrete in the sense that the expressive ability of the
non-manifold level set mesh only gets discretely modified when we
allow to separate a cell or bifurcate a cell. This is contrast to XFEM
methods which can include discontinuities that continuously evolve
through material, and as a consequence, it can create a continuous
path of deformation or topological change as an evolving front or a
crack propagates through material elements.

Finally, our current implementation used Cartesian grids as tem-
plate meshes for generating the non-manifold level set. In future
work, we would like to explore different representations such as
octrees [Losasso et al. 2004], RLE representations [Houston et al.
2006; Irving et al. 2006; Chentanez and Müller 2011], the VDB
data structure [Museth 2013] and SPGrid [Setaluri et al. 2014].

Acknowledgements

The authors are grateful to the SIGGRAPH & SIGGRAPH Asia
anonymous reviewers for their insightful feedback. We would also
like to thank Ronald Fedkiw and Matthew Cong for valuable early
discussions that contributed to the motivation for this method. This
work was supported in part by National Science Foundation Grants

IIS-1253598, CNS-1218432, CCF-1423064 and CCF-1438992.

References

ADALSTEINSSON, D., AND SETHIAN, J. A. 1994. A fast level set
method for propagating interfaces. JCP 118, 269–277.

BARAFF, D., WITKIN, A., AND KASS, M. 2003. Untangling
cloth. ACM Trans. Graph. 22, 3, 862–870.

BLOOMENTHAL, J., AND FERGUSON, K. 1995. Polygonization
of non-manifold implicit surfaces. SIGGRAPH ’95, 309–316.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. 21, 3, 594–603.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simulation
of clothing with folds and wrinkles. SCA ’03, 28–36.

CHENTANEZ, N., AND MÜLLER, M. 2011. Real-time eulerian
water simulation using a restricted tall cell grid. SIGGRAPH
’11, 82:1–82:10.

DA, F., BATTY, C., AND GRINSPUN, E. 2014. Multimaterial
mesh-based surface tracking. ACM TOG 33, 4, 112:1–112:11.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. ACM Trans.
Graph. 21, 3, 736–744.

FAURE, F., BARBIER, S., ALLARD, J., AND FALIPOU, F. 2008.
Image-based collision detection and response between arbitrary
volume objects. SCA ’08, 155–162.

GASCUEL, M.-P. 1993. An implicit formulation for precise contact
modeling between flexible solids. In SIGGRAPH ’93, 313–320.

GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. 2003. Non-
convex rigid bodies with stacking. ACM TOG 22, 3, 871–878.

HELLRUNG, J., SELLE, A., SHEK, A., SIFAKIS, E., AND TERAN,
J. 2009. Geometric fracture modeling in bolt. In SIGGRAPH
2009: Talks, SIGGRAPH ’09, 7:1–7:1.

HOUSTON, B., NIELSEN, M. B., BATTY, C., NILSSON, O., AND
MUSETH, K. 2006. Hierarchical RLE level set: A compact and
versatile deformable surface representation. ACM Trans. Graph.
25, 1, 151–175.

Figure 10: A cube is partially sliced by 6 planes and a ball subsequently squashes it to push the resulting 16 fingers apart. Our non-manifold
level set can robustly resolve zero width cuts which could not be resolved with standard Cartesian grid-based level sets.

IRVING, G., GUENDELMAN, E., LOSASSO, F., AND FEDKIW, R.
2006. Efficient simulation of large bodies of water by coupling
two and three dimensional techniques. SIGGRAPH, 805–811.

KAUFMANN, P., MARTIN, S., BOTSCH, M., GRINSPUN, E., AND
GROSS, M. 2009. Enrichment textures for detailed cutting of
shells. ACM Trans. Graph. 28, 3, 50:1–50:10.

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL,
H.-P. 2001. Feature sensitive surface extraction from volume
data. SIGGRAPH ’01, 57–66.

LABELLE, F., AND SHEWCHUK, J. 2007. Isosurface stuffing: Fast
tetrahedral meshes with good dihedral angles. ACM TOG 26, 3.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating
water and smoke with an octree data structure. SIGGRAPH ’04,
457–462.

LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R. 2006.
Multiple interacting liquids. ACM TOG 25, 3, 812–819.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30, 4, 37:1–37:12.

MOËS, N., DOLBOW, J., AND BELYTSCHKO, T. 1999. A finite
element method for crack growth without remeshing. IJNME 46,
131–150.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node
algorithm for changing mesh topology during simulation. ACM
Trans. Graph. 23, 3, 385–392.

MULLER, M., TESCHNER, M., AND GROSS, M. 2004.
Physically-based simulation of objects represented by surface
meshes. CGI ’04, 26–33.

MUSETH, K., BREEN, D., WHITAKER, R., AND BARR, A. 2002.
Level set surface editing operators. In ACM TOG, 330–338.

MUSETH, K. 2011. DB+Grid: A novel dynamic blocked grid for
sparse high-resolution volumes and level sets. SIGGRAPH ’11.

MUSETH, K. 2013. VDB: High-resolution sparse volumes with
dynamic topology. ACM Trans. Graph. 32, 3 (July), 27:1–27:22.

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009.
Preserving topology and elasticity for embedded deformable
models. ACM Trans. Graph. 28, 3, 52:1–52:9.

NIELSEN, M. B., AND MUSETH, K. 2006. Dynamic tubular
grid: An efficient data structure and algorithms for high reso-
lution level sets. J. Sci. Comput. 26, 3 (Mar.), 261–299.

OSHER, S., AND FEDKIW, R. 2002. Level Set Methods and Dy-
namic Implicit Surfaces. Springer.

OSHER, S., AND SETHIAN, J. 1988. Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton-
Jacobi formulations. J. Comput. Phys. 79, 12–49.

RIVERS, A., AND JAMES, D. 2007. FastLSM: Fast lattice shape
matching for robust real-time deformation. ACM TOG 26, 3.

SACHT, L., JACOBSON, A., PANOZZO, D., SCHÜLLER, C., AND
SORKINE-HORNUNG, O. 2013. Consistent volumetric dis-
cretizations inside self-intersecting surfaces. Computer Graphics
Forum 32, 5, 147–156.

SETALURI, R., AANJANEYA, M., BAUER, S., AND SIFAKIS, E.
2014. SPGrid: A sparse paged grid structure applied to adaptive
smoke simulation. ACM Trans. Graph. 33, 6, 205:1–205:12.

SETHIAN, J. A. 1998. Fast marching methods. SIAM Review 41,
199–235.

SIFAKIS, E., AND BARBIC, J. 2012. Fem simulation of 3d de-
formable solids: A practitioner’s guide to theory, discretization
and model reduction. In ACM SIGGRAPH 2012 Courses, SIG-
GRAPH ’12.

SIFAKIS, E., DER, K. G., AND FEDKIW, R. 2007. Arbitrary
cutting of deformable tetrahedralized objects. SCA ’07, 73–80.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V.,
LAU, C., AND FEDKIW, R. 2005. Creating and simulating
skeletal muscle from the visible human data set. IEEE Transac-
tions on Visualization and Computer Graphics 11, 3, 317–328.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005.
Robust quasistatic finite elements and flesh simulation. SCA ’05,
181–190.

VAILLANT, R., BARTHE, L., GUENNEBAUD, G., CANI, M.-P.,
ROHMER, D., WYVILL, B., GOURMEL, O., AND PAULIN, M.
2013. Implicit skinning: Real-time skin deformation with con-
tact modeling. ACM Trans. Graph. 32, 4, 125:1–125:12.

VAILLANT, R., GUENNEBAUD, G., BARTHE, L., WYVILL, B.,
AND CANI, M.-P. 2014. Robust iso-surface tracking for inter-
active character skinning. ACM TOG 33, 6, 189:1–189:11.

WANG, B., FAURE, F., AND PAI, D. K. 2012. Adaptive image-
based intersection volume. ACM Trans. Graph. 31, 4, 97:1–97:9.

YUAN, Z., YU, Y., AND WANG, W. 2012. Object-space multi-
phase implicit functions. ACM TOG 31, 4, 114:1–114:10.

ZHAO, H.-K., OSHER, S., AND FEDKIW, R. 2001. Fast surface
reconstruction using the level set method. VLSM ’01, 194–202.

ZHENG, W., YONG, J.-H., AND PAUL, J.-C. 2006. Simulation of
bubbles. SCA ’06, 325–333.

