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Abstract. We present an approach to inferring probabilistic models of gene-
regulatory networks that is intended to provide a more mechanistic representation
of transcriptional regulation than previous methods. Our approach involves learn-
ing Bayesian network models using both gene-expression and genomic-sequence
data. One key aspect of our approach is that our models represent states of regula-
tors in addition to their expression levels. For example, the state of a transcription
factor may be determined by whether a particular small molecule is bound to it
or not. Our models represent these states using hidden nodes in the Bayesian net-
works. A second key aspect of our approach is that we use known and predicted
transcription start sites to determine whether a given transcription factor is more
likely to act as an activator or a repressor for a given gene. We refer to this dis-
tinction as the role of a regulator with respect to a gene. Determining the roles
of a regulator provides a helpful bias in learning accurate representations of reg-
ulator states. We evaluate our approach using sequence and expression data for
E. coli K-12. Our experiments show that our models are comparable to, or better
than, several baselines in terms of predictive accuracy. Moreover, they have more
explanatory power than either baseline.

1 Introduction

A significant, central challenge in computational biology is to develop methods that can
elucidate biological networks from high-throughput data sources. In recent years, nu-
merous research groups have developed methods that address the tasks of inferring reg-
ulatory [1] and metabolic networks [2] from data. Such models of biological networks
can have both predictive and explanatory value. To achieve a high level of explanatory
value, a model should represent the mechanisms of the network in as much detail as
possible. In this paper, we describe an approach to inferring regulatory networks from
gene-expression and genomic sequence data. Our approach incorporates several inno-
vations that attempt to provide a more mechanistic representation than those used in
previous work in this area. Our research has focused on prokaryotic genomes, and thus
we empirically evaluate our method using sequence and expression data for E. coli K-12
[3]. Our experiments show that our models are able to provide expression predictions
which are almost as accurate, and sometimes more accurate than several baselines with
less explanatory value.
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There are numerous factors that make the task of inferring networks from high-
throughput data sources a difficult one. First, the available data characterizing states of
cells, such as microarray data, are incomplete; they characterize the states of cells un-
der a range of conditions that is usually quite limited. Second, there are typically high
levels of noise in some of the available data sources, such as microarray and protein-
protein interaction data. Third, measurements are not available for important aspects
of the biological networks under study. For example, most efforts at network infer-
ence have employed only gene-expression measurements of protein-coding genes and
genomic sequence data. However, in many cases gene regulation, even at the level of
transcription regulation, is controlled in part by small molecules (e.g. IPTG inactivates
the lac repressor), changes in protein states such as phosphorylation (e.g. arcA is acti-
vated through phosphorylation), or expression of small RNAs (e.g. 6S RNA associates
with and regulates RNA polymerase).

Probabilistic models of gene regulation [4-13] are appealing because they can, in
part, account for the uncertainty inherent in available data, and the non-deterministic
nature of many interactions in a cell. The method that we present here builds on recent
work in learning probabilistic graphical models to characterize transcriptional regula-
tion.

Our approach, which involves learning Bayesian networks [14] using both gene-
expression data from microarrays and genomic sequence data, incorporates several in-
novations. First, our models include hidden nodes that can represent the states of tran-
scription factors. It is often the case that expression levels of transcription factors alone
are not sufficient to predict the expression levels of genes they regulate. Transcription
factors may not bind to a particular DNA site unless (or except when) they have bound a
specific small molecule or undergone some post-translational modification. Given only
microarray and genomic sequence data, we cannot directly measure theses states. How-
ever, we can think of these states as latent variables and represent them using hidden
nodes in our Bayesian networks.

A second significant innovation in our approach is that we use known and predicted
transcription start sites to determine whether a given transcription factor is more likely
to act as an activator or a repressor for a given gene. We refer to this distinction as the
role of a regulator with respect to a gene. To do this, we take advantage of a detailed
probabilistic model of transcription units that we have developed in previous work [15].
Depending on the relative positions of a transcription factor binding site and a known
or predicted promoter, we get an indication as to whether the transcription factor is
acting as an activator or a repressor in a given case. We use this information to guide
the initialization of parameters associated with the hidden nodes discussed above.

2 Approach

In this section, we first describe how we use Bayesian networks to represent various as-
pects of transcriptional regulation networks. A Bayesian network consists of two com-
ponents: a qualitative one (the structure) in the form of a directed acyclic graph whose
nodes correspond to the random variables, and a quantitative component consisting of a
set of conditional probability distributions (CPDs). We then discuss how we learn both
the structure and the parameters of our networks.
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Fig. 1. (a) An example network with three regulators (purR, metR, and met]J), two cellular con-
dition variables (Growth Medium and Growth Phase), and four regulated gene variables (glyA,
hmpA, metA, and metE). (b) A possible CPD-Tree for the hidden node metJ-state. (c) A pos-
sible CPT for the regulatee node, metE, whose expression states are defined by a two-Gaussian
mixture.

2.1 Network Architecture

Our models contain four distinct types of variables on three distinct levels. An example
is shown in Fig. 1 (a). On the top level, there are nodes that represent the expression
of regulators (genes whose products regulate other genes), and also nodes that repre-
sent the cellular conditions under which various gene-expression measurements were
collected. On the bottom level, there are nodes representing the expression of genes
known or predicted to be influenced by the regulators on the top level (we refer to these
genes as regulatees). On the middle level, there are hidden nodes, one paired with each
regulator node. These hidden nodes represent the “states” of the corresponding regula-
tors. The parents of each hidden node are selected from a set of candidates that includes
both the corresponding regulator expression node and the cellular condition nodes. The
parents of each regulatee node are the hidden nodes corresponding to the regulators
known or predicted to have a regulatory influence over that gene.

Each hidden node has two possible values, which can be interpreted as “activated”
and “inactivated.” As discussed in Section 1, regulators, such as transcription factors,
are often activated or inactivated by effectors, such as small molecules. Although we do
not have data that will allow us to directly detect the effectors for specific regulators,
the network-learning algorithm can use cellular condition nodes as surrogates for these
effectors. Consider for example, the transcription factor CAP which is activated by the
small molecule cAMP. Our data do not contain cAMP measurements, but our method
may learn that the absence of glucose in the growth medium is predictive of when CAP
is activated. Thus the method has learned that glucose absence is a good surrogate for
cAMP.
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2.2 Representing Gene Expression States

We represent the expression levels of genes using a Gaussian mixture model [16]. We
assume that most genes have multimodal expression-level distributions, with each mode
corresponding to an “expression state” of the gene. Each Gaussian in the mixture repre-
sents the range of expression values for one state of the gene. Fig. 2 shows the mixture
model inferred by our method for the metE gene.

0.45

0.4

0.35

0.3

0.25

0.2

Probability

0.15

0.1

0.05

6 6.5 7 7.5 8 85 9 9.5 10 105 11 115
Expression Measurements

Fig. 2. Expression measurements for the gene metE, and a two-Gaussian mixture which describes
its states. Expression measurements are plotted near the x-axis.

We use cross validation to choose the number of Gaussians in each mixture. Let
x be the set of expression values for a given gene. For each fold, ¢, of cross valida-
tion, we divide x into two subsets, training data x; and held-aside data x;/. We use an
expectation-maximization (EM) algorithm to optimize the parameters, ®; (the mean,
variance and weight of each Gaussian in the mixture). However, we constrain the pa-
rameters so that the Gaussians are sufficiently far apart to ensure they each cover a
separate range of expression values. Specifically, each Gaussian must have the highest
probability density at each expression level within two standard deviations of its mean.
The EM algorithm will attempt to optimize &; as argmazg, P(x;|®;), but only a local
optimum is guaranteed. We then use the held-aside data to calculate the score for this
fold as score; = P(x;/ |®;). We repeat this process for one, two, or three Gaussians
in a mixture. We choose the number of Gaussians associated with the highest score,
>, score;, provided that a pairwise, two-tailed #-test determines the improvement to be
statistically significant over the scores obtained from mixtures with fewer Gaussians.
Once the number of Gaussians has been settled, we use the EM algorithm to optimize
the final parameters ¢ as argmazg P(x|®), and consider each individual Gaussian to
represent an expression state for that gene. If our method selects a mixture model with
only one Gaussian for a given gene (i.e. there is only one expression state of this gene in
the training set), then the gene is not included in the network model. In our experiments,
this is the case for roughly half of the genes considered. About 90% of the remaining
genes have two expression states, and 10% have three.
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In order for our network to learn from data, we must express these data in terms of
values of the variables in our network. For the regulator and regulatee nodes, these are
expression states of the genes, but our evidence consists of expression measurements.
Since the expression states are described by Gaussians over the expression values, it
is straightforward to calculate a probability distribution over the expression states for
each gene, given an expression measurement. These probability distributions are what
we use as the evidence concerning the states of genes. Because of the constraints on the
distance between Gaussians and the fact that they are positioned using the data, most
such distributions will clearly favor a single Gaussian (gene expression state) over any
other.

2.3 Representing Conditional Probability Distributions

As shown in Fig. 1 (b), we use trees to represent the conditional probability distribu-
tions for the hidden nodes in our networks. Each tree represents the distribution over
values (i.e. states) of the corresponding hidden node, conditioned on the values of the
node’s parents. Recall that the candidate parents for each hidden node consist of the
regulator expression level as well as the complete set of cellular condition nodes. We
use trees to represent these CPDs for three key reasons. First, we assume that only a few
of the candidate parents are relevant to modeling the regulator state, and thus we want
the model to be able to select a small number of parents from a fairly large candidate
pool. Second, trees provide descriptions of regulator states that are readily comprehen-
sible and thus they can lend insight into the mechanisms which determine a regulator’s
behavior. Third, the trees can account for cases in which there is context-sensitive in-
dependence in determining a hidden node’s probability distribution. In the sample tree
shown in Fig. 1 (b), note how “Growth Phase” is only relevant if the regulator metJ has
expression “HIGH.” Note also how “Growth Medium” is not chosen as a parent at all.

Using our current data set, each regulatee in the network has a relatively small
number of parents (between one and four), and we expect each parent to be relevant, so
we use conventional conditional probability tables (CPTs) for the regulatee nodes, as
shown in Figure 1 (c). The CPT for each regulatee node represents the distribution over
the possible expression states of the particular gene, conditioned on the possible states
of its parents.

2.4 Learning Network Parameters

Recall that each hidden variable is binary, and we refer to the possible values as “ac-
tivated” and “inactivated”. Since these states are unobserved, we cannot calculate the
CPD:s for the hidden and regulatee nodes directly. Instead, we set their parameters with
an EM algorithm wherein we refine the CPDs iteratively until they converge to a local
optimum which is consistent with the observed training data. Let sf, ; represent the ob-
served expression state of the ith regulator in experiment e, and let s7 ; represent the
observed expression state of the 7th regulatee. Similarly, let s¢ ; denote the state of the
ith cellular-condition variable in experiment e. We use © to represent all of the param-
eters of a Bayesian network, including the parameters (and structure) of each CPD tree
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and of each CPT. The EM algorithm adjusts the parameters trying to maximize the joint
probability of the expression states across all experiments, given the cellular conditions:

A e e e e e e
6= argmngP(sRJ, s 8Rms Sp1s e S | Se1sSe gy O)-
e

Here m is the number of regulators in the network, n is the number of regulatees, and k
is the number of cellular-condition variables. We assume that we are always given the
values of the cellular-condition variables, and thus our model represents the probability
of the expression states conditioned on these values. The details of the E-step and M-
step in this context are as follows.

E-Step: Let S}, , represent the (unobserved) state of hidden node 7 in experiment e (we
use uppercase S to denote random variables in the Bayesian network and lowercase s to
denote particular values the variables can take). In the E-Step, we compute the expected
distribution over values of Sy, ; for each e and each ¢, given the observed expression
states of the regulators and regulatees and the observed cellular conditions:

€ € € € € € €
P(S5 il5R.15 5 8Rm> Sr1s - Sroms Sets-Se gy O)-

This is computed as a Bayesian network query using variable elimination [17]. If the
probability that a certain S}, ; takes on the value “activated” is 0.7, then S}, , is treated
as being 70% an actlvated” data value and 30% an “inactivated” data value

M-Step: Once these expected values are calculated, we use our now complete set of
data to recalculate the network parameters. Let O}, ; refer to the CPD parameters for the
ith hidden node and let 6, ; refer to the CPT parameters for the ith regulatee node. In
the M-step, we attempt to maximize:

e (& (& (& € (& e €
HP(8R717“'7SR,m7 Sys s Spns Shils o Shik | Se1y - Seks o).

where sj, , ..., s7, ;. denotes the expectations for the hidden nodes calculated in the E-
step. Each CPD-tree for hidden variable ¢, represented by O}, ;, is re-grown by selecting
a variable to split on (regulator expression state or cellular condition variable) which
separates the set of expected values for the hidden variable, {s;im.}, over all experiments

right

e, into two subsets, S left and S ni »such that the classification error when considering

the values in S}fft and S,’:;ght to be either “activated” or “inactivated” is minimized.
This process recurs on both subsets until no candidate split will further separate the
data. A probability distribution over S}, ; is then calculated for each leaf in the tree
based on {sj, ;} for the experiments e contained in that leaf’s subset. Subtrees with
a common ancestor that have nearly the same probability distributions over Sy, ; are
pruned using an approach based on minimum description length (MDL), similar to one
developed by Mehta et al. [18]. These pruned trees may not maximize the probability
of the hidden states exactly, as do their unpruned counterparts. In practice, however,
pruning speeds up convergence without sacrificing accuracy. Each regulatee CPT, O, ;,
is also recalculated in the standard way during the M-step using {s7;} and {s .},
where 7(7) is the set of parent nodes of regulatee node ¢.



58 Keith Noto and Mark Craven

Transcription
a b .
@ Start Site (b) Low High
Regulator 1~ Regulator 2
= Activator Repressor /\
35 Transcribed DNA ( ) (Rep )
. .
DNA ‘ activated activated 07| 0.3
/ \ activated inactivated 02| 08
P : . : inactivated tivated 09| 0.1
Upstream Binding Site of Binding Site of Downstream ?nactfvate | activa . y
Regulator | Regulator 2 inactivated inactivated 05| 0.5

Fig. 3. (a) An example promoter configuration with one regulator binding site on each side of the
-35 position. (b) A CPT for the gene that has been initialized based on the configuration of these
two regulator binding sites.

2.5 Initializing Network Parameters

The EM algorithm described above will converge to a local optimum. In order to guide
the network to converge to a good solution, we initialize the CPT for each regulatee
based on prior knowledge about the roles of each its regulators. Specifically, for each
regulatee we consider the relative location of the transcription start site, which is ei-
ther known or predicted [15], and the binding sites for the regulators, which are also
either known or predicted. We tentatively designate as activators those regulators that
bind strictly upstream of the regulatee’s promoter (which is estimated to extend 35 nu-
cleotides upstream of its transcription start site), and we tentatively designate all other
regulators as repressors. In the CPT for each regulatee, we assign a higher probability
to the highest expression state when the putative activators are in the “activated” state,
and we assign a higher probability to the lowest expression state when the putative re-
pressors are in the “activated” state. We put more weight on this effect for repressors,
which are believed to have a more stringent control on expression, and we put more
weight on this effect when the regulatee’s transcription start site is known than when it
is only predicted. This initialization process is illustrated in Fig. 3.

3 Empirical Evaluation

In this section we present experiments designed to evaluate our Bayesian networks that
(a) use hidden nodes to represent regulator states, (b) attempt to compensate for missing
regulators, and (c) have the parameters associated with these nodes initialized to reflect
their predicted roles (activator or repressor) with respect to individual genes.

3.1 Experimental Data and Methodology

We initialize the topology of our networks using 64 known and predicted E. coli reg-
ulators and their 296 known and predicted regulatees. The known instances are from
TRANSFAC [19] and EcoCyc [20], and the predicted instances are based on binding
sites predicted from cross-species comparison [21]. Our gene-expression data comes
from a set of 90 Affymetrix microarray experiments [22]. Each array is annotated with
experimental conditions, and the data are normalized using the robust multiarray aver-
aging (RMA) technique [23].
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We divide the microarray experiments into sets for which all of the annotated cel-
lular conditions are identical (we call these replicate sets). From the original 90 ex-
periments, there are 42 of these sets. The largest contains five experiments, and the
others are copied so that each replicate set contains exactly five experiments. To assess
model accuracy, we use leave-one-out cross-validation on each replicate set. That is,
we hold one set of five identical experiments aside, train the model on the remaining
experiments, and then evaluate the network on the held-aside data. For each testing ex-
ample, we provide the network with expression levels of the regulators and the values
of the cellular conditions, and then calculate a probability distribution over the possible
expression states for each regulatee.

We evaluate the accuracy of our models using three measures. First, we calculate
classification error as the extent to which the network predicts the incorrect expression
states for each regulatee and experiment. Instead of calculating this error using “hard
predictions” of the expression state of each regulatee, we take into account our uncer-
tainty in each predicted expression state as well as the uncertainty in the discretization
of each gene. In particular, we calculate classification error as follows:

class error = 100% x (1 - —— Z Z ZP@ )Pé(sf,i = dxiz)) .

e=1 i=1

Here Po(Sy; = d) is shorthand for P(Sy, = d[sk 1, SR s 561, -+ Se i ©)
which is the probability, as predicted by the Bayesian network, that the ith regulatee is
in state d for experiment e, given the expression values of the regulators and the cellular
conditions. ng(Se = d|z¢ i) represents the probability that the regulatee is in state d
given expression measurement xy ;, according to the Gaussian mixture model for this
gene. Second, we compute the average squared error, where the error is the difference
between the actual expression value and the means of the Gaussians representing each
expression state, weighted by the predicted distribution over these states:

ASE——_ZZZP@ )(/J'rzd ei)2‘

e=1 i=1

Here, 5,4 is the mean of the Gaussian for state d in the mixture model for the ith
regulatee. Third, we calculate the joint log probability of all test-set expression val-
ues, again taking into account our uncertainty in each predicted expression state and in
discretization of each gene:

log probability = Z Zlog (Z Po (S5, = d)Ps (S, = d|x¢ )) .

e=1i=1

We apply pairwise, two-tailed #-tests to test the statistical significance of differences
between methods.

3.2 Experiment 1: The Value of Representing Regulator States

In order to test the value of including hidden nodes that represent regulator states, we
compare against two baselines, examples of which are shown in Fig. 4. The first base-
line employs Bayesian networks that have nodes representing the expression levels of
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Fig. 4. Examples of the two baseline networks used in Experiment 1. These are the counterpart
baselines for the network shown in Fig. 1.

regulators and regulatees, but which do not have hidden nodes representing regulator
states. The second baseline augments the first by also incorporating cellular condition
nodes, but it too does not have hidden nodes.

Table 1 shows the totals over all test folds for all three measures. For each of these
measures, our models are more accurate than the baseline models which do not have
hidden or cellular condition nodes. The differences are statistically significant at a con-
fidence of over 99% for classification error and average squared error. The difference
in overall probability is not statistically significant at a confidence of more than 95%.
The baseline networks that include cellular condition nodes provide slightly more ac-
curate predictions than our models with hidden nodes. However, we argue that these
baseline models have a significant limitation in they do not provide a very mechanistic
description of regulatee expression. That is, they do not directly represent the states of
regulators and how these states govern the expression of regulatees. Thus, they have
less explanatory power than our models.

Table 1. Predictive accuracy for the models with hidden nodes and the two baselines.

Classification| Average Log
Model Variant Error Squared Error|Probability
Full Model 16.59% 0.59 -12,066
Without Hidden Nodes 12.42 0.51 -12,193
Without Hidden or Cellular Condition Nodes 22.16 0.75 -13,363

Note also that our models show an improvement in overall log probability when
compared to each of these baselines. Since the overall probability is a product of reg-
ulatee expression probabilities, an incorrect prediction with a probability very close to
zero can have an unbounded effect on the final measurement. We hypothesize that our
models make fewer of these extreme probability predictions because the regulatees are
constrained by binary-valued parents.

3.3 Experiment 2: Discovering Missing Regulators

It is certainly the case that some relevant regulators are not represented in our networks.
In this section, we consider a simple approach that dynamically adds hidden nodes to
the networks. This approach tries to identify sets of regulatees for which a network
makes incorrect predictions on many of the same training examples. After first training
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a network using the EM approach described earlier, we recursively cluster regulatees
that share at least 50% of training examples incorrectly predicted by either regulatee (or
cluster). A new hidden node is created for each cluster and this node becomes a parent
of the regulatees in the cluster. The network is then re-trained using the EM approach.
This procedure may be iterated a number of times.

Table 2 shows the resulting accuracy with up to three iterations of this procedure.
Each iteration decreases the classification error of the models, and each decrease is sta-
tistically significant at a confidence above 97%. For the average squared error measure,
only the decrease in error from the original model to any of the other three is statisti-
cally significant (at a confidence of 95% or greater). The application of this procedure
improves the overall probability, but it does not continue to increase over multiple iter-
ations. The differences in overall probability are not statistically significant.

Table 2. Predictive accuracy for the models with added hidden nodes.

Iterations Classification Error|Average Squared Error|Log Probability
0 (Original model) 16.59% 0.59 -12,066
1 14.23 0.53 -11,586
2 13.65 0.51 -11,987
3 13.34 0.51 -12,004

Notice that this technique improves all three of our measurements, and that the clas-
sification error approaches that of the baseline without hidden nodes shown in Table 1,
yet still provides models that explain relevant regulatory mechanisms.

3.4 Experiment 3: The Value of Initializing Regulator Roles

Recall that, before we train our network, we initialize the CPTs of the regulatee nodes
based on the relative positions of known and predicted regulator binding sites and
known or predicted promoters. We hypothesize that this initialization process will guide
the EM algorithm toward a better solution. To evaluate the effectiveness of this tech-
nique, we compare the accuracy of our approach to a variant in which we initialize the
parameters randomly. We also apply the technique of adding hidden nodes as described
in the previous experiment because this increases the parameter space, and, one would
expect, the importance of a good initialization.

The results of this experiment are shown in Table 3. Our initialization technique im-
proved both the classification error and the average squared error, and the improvement

Table 3. Predictive accuracy for models with promoter-based parameter initialization and random
initialization.

Initialization Classification Error|Average Squared Error|Log Probability
Using Promoter Data 13.34% 0.51 -12,004
Random 14.19 0.54 -11,893
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is statistically significant at a confidence above 96% for both measures. The technique
did not improve the overall probability, however the decrease is not statistically signif-
icant. Repeating the experiment using random initialization many times on the same
fold of cross validation, we estimate the standard deviation of the classification error at
about 0.63% and of the average squared error at about 0.028. Notice that our initializa-
tion technique is an improvement over random initialization of at least this much. The
standard deviation for log probability is estimated at about 25.53.

4 Conclusion

In addressing the problem of inferring models of transcriptional regulation, we have
developed an approach that is able to learn to represent the states of regulators (i.e.
whether a transcription factor is activated or not) as well as their roles (i.e. whether
a transcription factor acts as an activator or repressor for a given gene). We have em-
pirically evaluated our approach using gene-expression and genomic-sequence data for
E. coli K-12. Our experiments show that both of these aspects of our approach result in
models with a high level of predictive accuracy.

There are a number of extensions to our approach that we plan to investigate in
future research. First, in keeping with our goal of learning more mechanistic repre-
sentations, we plan to extend our models to account for additional types of regulatory
mechanisms, such as riboswitches [24]. Second, we plan to adjust our approach so that
we can relax some of the simplifying assumptions we have made in our initial work,
such as the assumptions that genes have only one transcription start site, regulators have
only one binding site in a given promoter region, and genes have distinct modes in their
expression-level distributions. Third, we plan to extend our method so that the process
of adding candidate regulators to a network involves looking for evidence of these reg-
ulators (e.g. transcription factor binding sites) in the genomic sequence. All of these
proposed extensions are aimed at advancing the theme of learning models that exploit
multiple sources of data, and attempt to provide mechanistic descriptions of regulatory
relationships.

Acknowledgments

This research was supported in part by NLM training grant ST15LM005359, NSF grant
I1S-0093016, and NIH grant RO1-LM07050-01. The authors would like to thank Joseph
Bockhorst and Jesse Davis for helpful comments on an earlier draft of this paper.

References

1. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review.
Journal of Computational Biology 9 (2002) 67-103

2. King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., Oliver, S.:
Functional genomic hypothesis generation and experimentation by a robot scientist. Nature
427 (2004) 247-252



10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Learning Regulatory Network Models that Represent Regulator States and Roles 63

Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides,
J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A.,
Goeden, M.A., Rose, D.J., Mau, B., Shao, Y.: The complete genome sequence of Escherichia
coli K-12. Science 277 (1997) 1453-1474

. Friedman, N., Linial, M., Pe’er, D.: Using Bayesian networks to analyze expression data.

Journal of Computational Biology 7 (2000) 601-620

. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic

expression data to statistically validate models of genetic regulatory networks. In: Proceed-
ings of the Fifth Pacific Symposium on Biocomputing, Kohala Coast, HI, World Scientific
Press (2001) 422-433

Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Combining location and expression data
for principled discovery of genetic regulatory networks. In: Proceedings of the Fifth Pacific
Symposium on Biocomputing, Lihue, HI, World Scientific Press (2002) 437-449

Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from peturbed expres-
sion profiles. Bioinformatics 17 (2001) 2155-224S

Segal, E., Yelensky, R., Koller, D.: Genome-wide discovery of transcriptional modules from
DNA sequence and gene expression. Bioinformatics 19 (2003) 1273282

Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module
networks: Identifying regulatory modules and their condition-specific regulators from gene
expression data. Nature Genetics 34 (2003) 166-176

Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Estimat-
ing gene networks from gene expression data by combining Bayesian network model with
promoter element detection. Bioinformatics 19 (2003) ii227-ii236

Yoo, C., Cooper, G.: Discovery of gene-regulation pathways using local causal search. In:
Proceedings of the Annual Fall Symposium of the American Medical Informatics Associa-
tion. (2002) 914-918

Yoo, C., Thorsson, V., Cooper, G.: Discovery of causal relationships in a gene-regulation
pathway from a mixture of experimental and observational DNA microarray data. In: Pro-
ceedings of the Fifth Pacific Symposium on Biocomputing, Lihue, HI, World Scientific Press
(2002) 498-509

Ong, 1., Glasner, J., Page, D.: Modelling regulatory pathways in E. coli from time series
expression profiles. Bioinformatics 18 (2002) S241-S248

Pearl, J.: Probabalistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA (1988)

Bockhorst, J., Qiu, Y., Glasner, J., Liu, M., Blattner, F., Craven, M.: Predicting bacterial
transcription units using sequence and expression data. Bioinformatics 19 (2003) i34-i43
Xing, E., Jordan, M., Karp, R.: Feature selection for high-dimensional genomic microarray
data. In: Proceedings of the Eighteenth International Conference on Machine Learning.
(2001)

D’ Ambrosio, B.: Inference in Bayesian networks. Al Magazine 20 (1999) 21-36

Mehta, M., Rissanen, J., Agrawal, R.: MDL-based decision tree pruning. In: Proceedings of
the First International Conference on Knowledge Discovery and Data Mining, AAAI Press
(1995) 216-221

Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, 1., Krull, M., Matys, V.,
Michael, H., Ohnhiuser, R., Prii}, M., Schacherer, F., Thiele, S., Urbach, S.: The TRANS-
FAC system on gene expression regulation. Nucleic Acids Research 29 (2001) 281-283
Karp, P, Riley, M., Saier, M., Paulsen, 1., Collado-Vides, J., Paley, S., Pellegrini-Toole, A.,
Bonavides, C., Gama-Castro, S.: The EcoCyc database. Nucleic Acids Research 30 (2002)
56-58



64

21.

22.

23.

24.

Keith Noto and Mark Craven

McCue, L.A., Thompson, W., Carmack, C.S., Lawrence, C.: Factors influencing the identi-
fication or transcription factor binding sites by cross-species comparison. Genome Research
12 (2002) 1523-1532

Glasner, J., Liss, P, III, G.P., Darling, A., Prasad, T., Rusch, M., Byrnes, A., Gilson, M.,
Biehl, B., Blattner, F., Perna, N.: ASAP, a systematic annotation package for community
analysis of genomes. Nucleic Acids Research 31 (2003) 147-151

Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K., Scherf, U., Speed, T.:
Exploration, normalization, and summaries of high density oligonucleotide array probe level
data. Biostatistics 4 (2002) 249-264

Nudler, E., Mironov, A.: The riboswitch control of bacterial metabolism. Trends in Bio-
chemical Sciences 29 (2004) 11-17



