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ABSTRACT

Multi-tenancy is a common practice that is employed to max-

imize server’s resources and reduce the total cloud opera-

tion costs. The focus of this work is on multi-tenancy for

OLTP workloads. Several designs for OLTP multi-tenancy

have been proposed that vary the trade-offs made between

between performance and isolation. However, existing stud-

ies have not considered the impact of OLTP multi-tenancy

designs when using an SSD-based I/O subsystem. The fo-

cus of this work is on examining and comparing a range of

multi-tenancy designs for OLTP workloads on an SSD-based

I/O subsystem.

We compare three designs using both open-source and

proprietary DBMSs. Our study reveals that in contrast to

the case of an HDD-based I/O subsystem, VM-based designs

have fairly competitive performance to the non-virtualized

designs (generally within 1.3–2X of the best performing case)

on SSD-based I/O subsystems. Whereas previous studies

were based on traditional hard disk-based environments, our

results indicate that switching to a pure SSD-based I/O sub-

system requires rethinking the trade-offs for multi-tenancy

for OLTP workloads.

1. INTRODUCTION

Today, it is common to consolidate multiple database work-

loads onto a single server to reduce the total operating cost.

This practice is called “multi-tenancy.” Several multi-tenancy

designs are available for online transaction processing (OLTP)

workloads, such as, the “share-everything” design [9, 14],

where a single database management system (DBMS) in-

stance is used to process the requests on behalf of multiple

database workloads. Another design is to install multiple

DBMS instances on the same machine, with each DBMS

instance dedicated to serve the requests from one database

client [9]. We call this design as the “dedicated” design. The

∗The work was done while the author was at the NEC Laboratories
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third design employs a virtual machine monitor (VMM) to

create multiple virtual machine (VM) instances, and an in-

dependent DBMS instance is run in each VM [16].

As a motivating scenario, consider the provisioning of pri-

vate clouds for multi-tenant OLTP applications. The cloud

designers usually face a critical design choice: Although

they tend to prefer the VM-based design for better manage-

ment and isolation, they are concerned about potential per-

formance penalties associated with running a database ser-

vice in a VM, especially since previous work has pointed

out that the VM-based design leads to a severe performance

penalty [9]. Our key motivation in this paper is to conduct

a performance study to help engineers make well-informed

decision regarding multi-tenancy DBMS designs.

Our work aims to fill two research needs in this area. First,

while there is existing work studying various multi-tenancy

OLTP designs (e.g. [9,14,16]), a comprehensive direct com-

parison of these designs is missing. Second, there is a critical

move in the industry towards servers with pure SSD-based

storage [5], and most previous works have examined multi-

tenant OLTP designs using hard disk drives (HDD) based

I/O subsystems. Hence, it is not clear if these previous re-

sults hold with I/O subsystems that use SSDs.

In this paper, we identify key factors that are crucial to

the performance of three multi-tenant OLTP designs (share-

everything, dedicated, and VM-based) on a modern SSD-

based I/O subsystem. We also compare these designs with

each other on both HDD and SSD-based environments, and

show that switching to a pure SSD-based I/O subsystem pro-

duces different results than what previous studies have found

when using an HDD-based I/O subsystem.

To the best of our knowledge, this is the first paper that

presents results from a sophisticated evaluation of three dom-

inant multi-tenant OLTP designs on a modern SSD-based

I/O subsystem. In this work, we use both open-source and

proprietary VMMs and DBMSs.
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Figure 1: Overview of the different multi-tenant OLTP designs

The key contributions of this paper are as follows:

1. We show that the VM-based designs show fairly com-

petitive performance to the non-virtualization based de-

signs (from 1.3X to 2X performance degradation) on a

modern SSD-based I/O subsystem. While Curino et

al. [9] reported that the shared-everything design out-

performed the VMware-based design by 6-12X, we

show that when switching to an pure SSD-based sys-

tems, the performance penalty that holds for traditional

HDD-based systems does not hold on a modern SSD-

based I/O subsystem.

2. Our experiments show that the shared design still main-

tains a performance advantage over the VM-based de-

signs on an SSD-based I/O subsystem, as long as it can

minimize the contention on the shared resources, such

as locks on internal DBMS data structures.

3. The dedicated design with PostgreSQL generally presents

the best performance compared to the other designs, in

our settings. This is primarily because it can avoid the

resources contention problem in the shared designs [11,

14], and the performance penalties associated with the

VM-based designs [9]. Various factors prevented us

from running the dedicated design with the commer-

cial DBMS, likely indicative of a broader trend that

actual production deployment of this setting is chal-

lenging.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the multi-tenant OLTP designs that we con-

sider in this paper. The experimental setup and results are re-

ported in Section 3. Related work is presented in Section 4,

and Section 5 contains our conclusions for this paper, and

points to some directions for future work.

2. MULTI-TENANT OLTP SOLUTIONS

In this section, we describe the multi-tenant OLTP designs

that we consider in this paper.

2.1 Shared Design

The shared design, which is also called as the “share-

everything” technique in [9, 14], is to install a single DBMS

instance on a physical server to process the transactions on

behalf of all the tenants. Figure 1(a) illustrates the shared

design. Most DBMS internal structures are shared across

the tenants; for example, one Write-Ahead-Logging (WAL)

writer process and one background writer process is shared

across all the tenants when writing the DB logs, and when

flushing dirty pages from the buffer pool.

2.2 Dedicated Design

The dedicated design, as introduced in [9], installs multi-

ple DBMS instances on a single physical server, and each

tenant only interacts with its own DBMS instance. Fig-

ure 1(b) shows the dedicated design. The internal structures

for each instance are not shared across the tenants. For ex-

ample, there is a dedicated WAL writer process, and a ded-

icated background writer process for each DBMS instance.

However, from the log and data I/O device’s perspectives,

multiple concurrent log and dirty page I/Os are issued.

2.3 Virtual Machine Design

The Virtual Machine (VM) based design, as shown in Fig-

ure 1(c), shares the underlying hardware resources by cre-

ating multiple VMs. Here, each tenant is associated with

a DBMS instance that is installed in an independent VM.

Different VM implementations have different characteristics

about how they virtualize the resources (CPU, memory, net-

work and IO resources), and here we consider the two lead-

ing VM systems: Xen [1] and VMWare [2].

3. EXPERIMENTAL RESULTS

In this section, we experimentally compare the three multi-

tenant OLTP designs presented above. For our evaluation,

we used an open-source implementation of the TPC-C bench-

mark [6], which has been used before in an number of stud-

ies in this area, including [12, 13].
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IOPS H-SSD SSD RAID

Sequential Read 20,863 6,062

Random Read 13,692 3,084

Sequential Write 17,085 6,118

Random Write 12,623 2,701

Table 1: IOPS of the H-SSD and the SSD RAID devices

for four different I/O patterns. These IOPS numbers are ob-

served in CentOS 6.3, and generated by issuing synchronous

8KB I/Os against a 20GB file.

3.1 Hardware and Software Specifications

3.1.1 Hardware Configuration

Our experimental platform is a server with a 2.26GHz In-

tel(R) Xeon CPU E5520 with 8 physical cores, 64 GB ECC

memory, a SATA 7200 RPM hard disk drive (HDD) to hold

the OS, a SSD RAID 0 system (SSD RAID), and a high-

end (H-SSD). The SSD RAID subsystem consists of three

identical Intel Series 320 SSD 120 GB in a RAID 0 con-

figuration, and the H-SSD subsystem consists of one 80GB

Fusion IO ioDrive. Their raw I/O performance of these de-

vices is shown in Table 1. As discussed below, the data and

log placements across these two subsystems are optimized

for each design.

In keeping with the key theme of this paper – i.e. focus-

ing on impact of SSD-based I/O subsystem for OLTP multi-

tenancy – all the results presented in this paper, except for

those in Section 3.7, place both the data and the log files on

the SSD devices. To close the loop with previous work [9]

that used only HDDs, in Section 3.7 we consider the case

when both the data and the log files are placed on HDDs.

3.1.2 Multi-tenancy Design Settings

The server described above is used as the hardware for

each design. For the DBMS software, we use an open-source

DBMS and a popular commercial DBMS. The open-source

DBMS is PostgreSQL 9.2.4 (referred to as PostgreSQL).

The proprietary DBMS is called DBX. (The proprietary DBMS

name has been anonymized to respect the licensing terms.)

The software setting for each design is discussed below.

The dedicated design is implemented on a CentOS 6.3

server with multiple independent DBMS instances running

concurrently. Each tenant stores its data and runs its queries

within a dedicated DBMS instance.

The shared design runs on a CentOS 6.3 server with only

one DBMS instance. All tenants run their queries and store

their data within this shared DBMS instance.

The VMware design employs VMware ESXi 5.1.0 as the

VMM and we set it up by following the standard best prac-

tices guideline [7]. Each guest OS (CentOS 6.3) has three

virtual disks: one HDD holds the OS and the DBMS bina-

ries, one for the SSD RAID, and the last one for the H-SSD.

Each VM runs one dedicated DBMS instance.

The Xen design runs Xen 4.1.2, and is set up by following

its best practices guide [4]. Each guest OS (CentOS 5.9)

is installed with para-virtualization and runs one dedicated

DBMS instance. We note that para-virtualization has been

used in a similar context before [10] to consolidate and run

database workloads. As in the VMware design, each guest

OS has three attached virtual disks: one HDD to hold the OS

and the DBMS binaries, one SSD RAID, and one H-SSD.

3.1.3 Data and Workload Settings

Each tenant generates TPC-C workload exclusively against

one TPC-C database, and with no think time. The actual

size of the TPC-C database varies depending on the specific

experiment. Each tenant runs on a separate server, which

is connected to the experimental platform via a 1Gbps net-

work. All tenants run simultaneously, and the first 10 min-

utes are used to ramp up their databases. Then, we collect

and report the average aggregate performance over the next

60-minute measurement window.

Note that in OLTP environments (and in other database

environments [15]), tenants are often consolidated so that

their working sets mostly fit in the main memory, so that the

extra data-related I/O does not degrade performance signifi-

cantly. For example, one of the key contributions of [9] is a

profiling method to identify the effective size of the working

sets (hence the optimal degree of multi-tenancy). In this pa-

per, we largely focus on the case when the working sets of

all tenants reside in the main memory, but we also conduct

additional experiments (see Section 3.6) to consider the case

when the working set is larger than the main memory. We

recognize that dealing with workload fluctuations is an im-

portant and related aspect to multi-tenancy design, but it is

also an active area of work. To keep this paper focused, we

only consider the scenario described above.

Finally, we note that even when the working sets fit in

the main memory, there is still significant write I/O traffic

because of the continual checkpointing process(es) and log

writes.

We place the log files and the data files for the tenant

databases on separate disks (or virtual disks), using either the

SSD RAID to save the log files and the H-SSD to save the

data files, or vice versa, in order to find highest-performing

disk assignment for each design. For simplicity, we call the

disk that saves the log files as the log disk and the disk saves

the data files as the data disk.

3.1.4 Database Parameter Settings

In our experiments, we use the optimized configuration

parameters published at [3] for PostgreSQL, and the default

parameters for DBX.
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Design Log Disk Data Disk

Dedicated design with PostgreSQL H-SSD SSD RAID

Shared design with DBX SSD RAID H-SSD

Xen design with PostgreSQL H-SSD SSD RAID

Xen design with DBX H-SSD SSD RAID

VMWare design with PostgreSQL H-SSD SSD RAID

VMWare design with DBX H-SSD SSD RAID

Shared design with PostgreSQL SSD RAID H-SSD

Table 2: Best location of the data and the log for each design

3.2 Key Result: Overview of the Evaluation

Based on the three multi-tenancy designs introduced in

Section 2, we compare the seven designs listed in the first

column of Table 2. Note that we could not get the “Dedi-

cated design with DBX” to work reliably as it involves de-

ploying multiple DBX instances in the same server. This

configuration is not supported by the vendor, and there are

various stability issues with running this configuration. Li-

censing costs further complicate this scenario. Hence, we do

not report any results for this configuration.

Before we analyze each design, we first present a direct

comparison of these seven designs based on the configura-

tion (the location of the data and the log files) that produce

their individual best performance. Table 2 shows the optimal

configurations for each design.

In Figure 2, we present a direct comparison of these seven

designs. The comparison is based on the aggregate through-

put performance metric, i.e. the New-Order transactions per

minute (tpmC), over 1, 2, 4, 8, 16 or 32 homogeneous ten-

ants. These tenants all share the same physical machine

based on the specific multi-tenancy design. Each tenant has

15 warehouses (1.5 GB database) and creates 15 concurrent

threads to generate the TPC-C workload.

From Figure 2, we observe that the dedicated design with

PostgreSQL (black bars in the figure) outperforms all other

designs, and in all cases. The reason for this behavior is

as follows: (1) Using the SSD-based I/O subsystem signif-

icantly speeds up the transaction log I/O and checkpointing

(dirty page) I/O processing, which in turn pushes up the

transaction commit rate significantly. (2) Compared to the

VM-based designs, the dedicated design has no virtualization-

related overheads (CPU, cache, memory, I/O). Thus it can

utilize all the hardware resources in the server more effec-

tively. (3) The dedicated design isolates the tenants at the

DBMS-level by using multiple PostgreSQL instances, so that

it can eliminate potential contentions that are incurred when

sharing the same DBMS instance across different tenants.

Note that given the nature of TPC-C, which is a very parti-

tionable workload, the contention is usually for shared inter-

nal data structures and metadata (as opposed to actual data

contention.)

Surprisingly, the four VM-based designs (Xen with Post-

greSQL, Xen with DBX, VMware with PostgreSQL, VMware

with DBX) are not significantly slower than the dedicated

design. For example, Xen with PostgreSQL is only 1.3X

slower than the dedicated design at their best performance

point (i.e., when the number of tenants is 8). This is an in-

teresting result as it shows that an SSD-based system has

different tradeoffs (for multi-tenant OLTP workloads) com-

pared to an HDD-based I/O subsystem. In [9], the authors

showed that the shared design has 6X-12X better (tpmC)

performance than the VMware design, mostly because the

guest OSs in the VMware design generate multiple indepen-

dent and random I/Os for the log and the data file-related

writes (on the HDD), while the shared design sequentially

writes to one log file and coordinates data writes on the

HDD. However, SSDs have far better I/O performance (than

HDDs) especially for random I/Os, and as a result, using a

VM-based design with SSDs is fairly competitive.

In addition, as seen in Figure 2, the shared design gen-

erates significantly different results when using the open-

source versus using the proprietary DBMSs. With the pro-

prietary DBX, the shared design outperforms all other de-

signs except the dedicated design. However, when using the

shared design with PostgreSQL, we observed the worst per-
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Figure 3: Dedicated Design with PostgreSQL: Distribution

of distance (in LBNs) between two successive log I/Os (“M”

denotes Million in x-axis

formance (as seen in Figure 2) when more than 4 tenants

(e.g. 8, 16, 32) are consolidated. This is because when all the

tenants run on one shared PostgreSQL, lightweight locks are

needed to serialize the accesses to the shared PostgreSQL re-

sources (e.g. WAL buffer pool). When the I/O subsystem is

fast (because of SSDs), the contention on these lightweight

locks becomes very prominent. However, with DBX, we ob-

served that the lock contention problem is not significant, so

the shared design yields good performance. In other words,

the internal locking overhead has been better optimized in

DBX compared to PostgreSQL, making DBX a better can-

didate to exploit the higher I/O performance associated with

SSD-based I/O subsystems, in the shared design.

Having presented the main results above, in the following

sections, we describe the configuration for each design that

results in its best performance (as shown in Figure 2), and

present the challenges associated with each design.

3.3 Dedicated Design

In this section, we first describe how we achieved the best

performance on the dedicated design with PostgreSQL.

Recall that the dedicated design isolates the tenants at the

DBMS-level by using multiple PostgreSQL instances. Now,

since the performance of the TPC-C workload is mainly de-

termined by the speed of log I/O processing, having multiple

PostgreSQL instances inevitably leads to multiple log files

co-existing on the same log disk. Logically, each log file

is written in a sequential manner. But, from the log disk’s

point of view, in this case, the physical I/O pattern is close

to a random I/O pattern, which can potentially degrade the

overall performance.

To verify this hypothesis, we plot the distribution of the

distance between two successive log I/Os; here the distance

is the spread in the logical block numbers (LBNs) of the

blocks. This result is shown in Figure 3. From this figure,

we see that most of the log I/Os are far apart (in terms of

0
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Figure 4: Dedicated Design with PostgreSQL: Comparing

the two different disk assignments

Parameter Definition

svctm The average service time (in milliseconds,

excluding the queuing time) for I/O requests

util% The disk bandwidth utilization (disk saturation

occurs when this parameter is 100%)

Table 3: Disk I/O statistics

the logical block layout on disk) from the previous log I/Os.

For example, about 32% of log I/Os are more than 200 and

less than 400 million logical blocks away from the previous

I/Os. So, as observed from Figure 3, many concurrent (inde-

pendent and sequential) log I/Os generate a physical random

I/O pattern on the log device.

Given the random I/O pattern on the log disk, now we

consider the impact of assigning the log file to either the

SSD RAID or the H-SSD devices, and vice versa for the

data file(s). As can be seen in Figure 4, performance is

higher when using the H-SSD device as the log disk, across

all multi-tenancy levels. The reason for this behavior is that

the log I/O speed is an important factor that impacts the per-

formance of TPC-C workload, and the H-SSD is far more

efficient than the SSD RAID in handling the log I/O requests

that are random and synchronous. To better understand this

behavior, we used the Linux “sar” command to gather the

disk statistics described in Table 3.

Now we can compare the disk statistics between these two

disk assignments. In Table 4, we notice that when the SSD

RAID device is used as the log disk, the average service time

for the log disk (svctm) and the disk utilization (util%) is

much higher than the case when the log disk is on the H-

SSD device. For example, when there are 4 tenants, the disk

utilization (util%) for the log disk (H-SSD) is only 47.8%,

compared to 91.95% when using the SSD RAID device as

the log disk. Essentially, using the H-SSD device as the log

disk results in better performance, as in this case, the log disk

performance is the dominant factor in determining overall

performance.

As can be observed in Figure 2, the performance of the
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Log disk (H-SSD) Data disk (SSD RAID)

# tenants 1 2 4 8 16 32 1 2 4 8 16 32

svctm 0.12 0.09 0.10 0.19 0.38 0.41 0.15 0.13 0.11 0.07 0.06 0.18

util% 29.6 39.4 47.8 75.6 88.9 95.9 2.7 6.4 8.5 14.2 18.8 88.5

(a) Disk I/O statistics when using H-SSD as the log disk

Log disk (H-SSD) Data disk (SSD RAID)

# tenants 1 2 4 8 16 32 1 2 4 8 16 32

svctm 0.25 0.28 0.24 0.35 0.45 0.47 0.04 0.03 0.03 0.04 0.02 0.11

util% 57.2 85.3 91.95 99.5 99.7 100 1.1 1.9 3.35 7.96 15.2 70.5

(b) Disk statistics when using SSD RAID as the log disk

Table 4: Dedicated Design with PostgreSQL: Disk statistics observed from the Linux OS
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dedicated design is relatively stable from 4 to 16 tenants,

and decreases when the number of tenants is 32. To explain

this behavior, we choose to analyze the PostgreSQL server

threads, which are created to execute the requests for each

tenant. We broke down the execution time of each server

thread into the components that are listed in Table 5.

The two crucial variables in Table 5 are the two pre-defined

lightweight locks in PostgreSQL, namely the WAL Insert-

Lock and the WAL WriteLock. For the WAL InsertLock,

its wait time depends on the number of active threads that

are concurrently inserting WAL records into the WAL buffer.

While for the WAL WriteLock, its wait time is dependent

on the time it takes to flush/write the WAL records from the

WAL buffer to the log disk.

The time-breakdown analysis in the dedicated design is

shown in Figure 5, across all the multi-tenancy levels. Since

all the tenants are homogeneous, we randomly select a ten-

ant for the time-breakdown analysis, and show these results

in Figure 5. (But we have looked at the time-breakdown for

all the tenants individually, and, as expected, these charac-

teristics are similar across all the server threads.)

In Figure 5, we notice that when there are 8 and 16 con-

current tenants, the CPU wait time component appears in

the time-breakdown, which means the workload is largely

CPU-bound. This is because in this case, the I/O device has

sufficient resources to “keep up” with the workload that is

generated. As can be seen in Table 4 (a) the disk utilization

(util%) for both the log and the data disk is below 90%.

Thus, with 8 and 16 concurrent tenants, the overall through-

put is largely determined by the speed with which the CPU

can process the workload.

Then, in Figure 5, we notice that at 32 concurrent ten-

ants, the CPU wait time component of the breakdown is

now no longer the dominant portion (the CPU run and the

CPU wait times are less than 30% of the total time). At this

point, the system is slowed down by the log and data disk.

As can be seen in Table 4 (a), at 32 tenants, the data disk

utilization is 88.5%. However, it is only 18.8% when there

are 16 tenants. Similarly, the log disk is also close to 100%

busy (95.9%) when there are 32 tenants.

Finally, in Figure 5, we note that the WAL WriteLock

wait time component is relatively small (compared to the

other components). This is because when the log is on the H-

SSD device, it can effectively handle the random concurrent

log writes to the log disk. This behavior can be observed in

Table 4 (a) that shows the log disk utilization (util%) is al-

ways below 90% when the degree of concurrency increases

from 1 to 16. Thus, when the log is on the H-SSD device,

the WAL WriteLock wait time component is a small frac-

tion of the total runtime. In other words, the log disk is not

a bottleneck in most cases.

To summarize, for this design: (1) Because concurrent log

I/O requests can generate large amounts of random and syn-

chronous writes to the log disk, choosing the H-SSD as the

log disk produces a higher performance configuration. (2)

The checkpointing (dirty page) I/Os (sent to the data disk)

are asynchronous, which means that the dirty page write re-

quests are not as critical as the log writes. So using SSD
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Components Definition

CPU run time The time spent when a server thread is executing code on a CPU core.

CPU wait time The time spent when a server thread waits in some CPU wait queue.

I/O time The time spent when a tenant workload waits for an I/O to complete.

WAL InsertLock wait The time spent when a server thread wants to acquire a WAL InsertLock to insert a WAL record

into the WAL buffer, but needs to wait for another thread to release the WAL InsertLock first.

WAL WriteLock wait The time spent when a server thread wants to acquire a WAL WriteLock to dump the WAL records

in the WAL buffer to the log disk when a transaction commits (or the WAL buffer is full),

but needs to wait for another thread to release the WAL WriteLock first.

Other The time spent when the server thread is in a state other than the above states.

Table 5: Components measured in the time-breakdown of a server thread
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Figure 6: Shared Design with PostgreSQL: Distribution of

distance (in LBNs) between two successive log I/Os (“M”

denotes Million in x-axis)

RAID as the data disk and H-SSD as the log disk results in

the best performing configuration.

3.4 Shared Design

For the shared design, we first analyze the case when it is

deployed with PostgreSQL.

3.4.1 Shared Design with PostgreSQL

Similar to the method described in Section 3.3, we first

look at the log I/O pattern, which is shown in Figure 6.

We compare this pattern to the log I/O pattern in the dedi-

cated design (shown in Figure 3). We notice that the log I/O

pattern in the shared design is far more sequential than the

dedicated design, since the shared design only installs one

DBMS (one log writer) in the system.

Next, we compare the performance when assigning the

log file to either the SSD RAID or the H-SSD devices, and

vice versa for the data file(s). These results are shown in

Figure 7. As can be seen from this figure, the performance

of these two configurations is similar, which implies that the

disk I/O devices are not the key performance bottlenecks.
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Figure 7: Shared Design with PostgreSQL: Comparing the

two different disk assignments

More importantly, as seen in Figure 2, the shared design

performs the worst when the number of tenants is larger than

4. To explain this behavior, we did a time-breakdown anal-

ysis of the execution time for this design, which is shown in

Figure 8. From this figure, we observe that when the number

of tenants is larger than 4, the WAL InsertLock wait time

component, as shown by the dotted white bar, starts to dom-

inate the total runtime. The reason for this behavior is as fol-

lows: the shared design has only one PostgreSQL instance

and all the tenants (workload generators) concurrently try to

insert the WAL records into the shared WAL buffer pool.

Now, the WAL InsertLock, which protects shared access

to the WAL buffer pool, becomes a key source of contention

and a bottleneck. When the number of tenant is 8 or more,

the performance starts to decline (as can be seen in Figure 2),

as the contention for the WAL InsertLock is very high.

3.4.2 Shared Design with DBX

Compared to the result generated by the shared design

with PostgreSQL, the shared design with DBX is the overall

second highest-performing design (recall Figure 2).

First, we study the impact of assigning the log file to either

the SSD RAID or the H-SSD devices, and vice versa for the
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Figure 8: Shared Design with PostgreSQL: Time-

breakdown of a server thread
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Figure 9: Shared Design with DBX: Comparing the two dif-

ferent disk assignments

data file(s).

The performance with these two disk assignments is shown

in Figure 9. Notice that using the SSD RAID device as the

log disk outperforms the case when using the H-SSD device

as the log disk. (This is the opposite of the best disk assign-

ment in the dedicated PostgreSQL design.) The reason for

this behavior is that the shared design does not generate a

very random log I/O pattern (as seen in Figure 6), allowing

the SSD RAID device to keep up with the log I/O traffic.

In addition, in this configuration, using the H-SSD device

as the data disk is more efficient (than using the SSD RAID

device as the data disk) in handling the checkpointing (dirty

page) I/Os.

As one might imagine, it was harder to carry out a de-

tailed time-breakdown analysis of the lock waits in this case

(since DBX is a closed-source product). Instead, in Fig-

ure 10, we use “Locks” to denote the time that is spent wait-

ing for all types of locks. Comparing this figure to Fig-

ure 8, the lock time shown in Figure 10 is much smaller than

the shared design with PostgreSQL. For example, when the

number of tenants is 16, the shared design with PostgreSQL

spends 70% of the total time waiting for the WAL Insert-

Lock (shown in Figure 8), while the shared design with DBX

only spends 40% of the total time waiting for locks (shown

in Figure 10). Thus, lock contention is not a key bottleneck
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Figure 10: Shared Design with DBX: Time-breakdown of a

server thread

for the shared design with DBX.

3.5 Virtual Machine Design

For all the designs based on virtual machines, the high-

est performing configuration was always the case when the

H-SSD device was used as the log disk and the SSD RAID

device was used as the data disk, as shown in Table 2. The

reason for this behavior is similar to the dedicated design –

since the physical log I/O pattern produced by the multiple

VMs is random, using the H-SSD device is more effective in

handling the log writes, which improves the overall transac-

tion commit rates.

First, we analyze the VMware design with PostgreSQL.

3.5.1 VMware Design with PostgreSQL

The VMware design with PostgreSQL is similar to the

one used in [9], in which one DBMS instance was installed

in each VM that was supported by VMware ESXi.

As before, we start with a time-breakdown analysis, which

is shown in Figure 11. As the number of tenants increases,

the sum of the WAL WriteLock wait time and the CPU wait

time constitute a bulk of the total runtime. In our previ-

ous analysis (in Section 3.3), we explained that the length

of the WAL WriteLock wait time is determined by the log

disk performance. Here, we present statistics about the log

disk I/O, as observed from the guest OS, to explain the re-

lationship between the WAL WriteLock wait time and the

log disk performance. Table 6 shows the log disk statistics.

In this table, we notice that both the average service time

(svctm) and disk utilization (util%) keeps increasing as the

degree of multi-tenancy increases from 1 to 32. This means

that the log disk gets busier and its performance gradually

degrades as the number of tenants increases, which also ex-

plains why the WAL WriteLock wait time component grows

as a fraction of the total runtime (as seen in Figure 11).

Meanwhile, starting from a degree of multi-tenancy of 8,

the CPU wait time component in Figure 11 starts becom-

ing significant. We speculate that the appearance of the CPU

wait is partially due to the performance penalty associated
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Figure 11: VMware Design with PostgreSQL: Time-

Breakdown of a server thread

# tenants 1 2 4 8 16 32

svctm 0.14 0.32 0.39 1.95 3.35 5.83

util% 29.7 46.2 67.7 83.3 98.6 99.4

Table 6: VMware Design with PostgreSQL: Log disk I/O

statistics as observed from the guest OS

with virtualizing the CPU resources by VMware. To quan-

tify this penalty, we conducted two benchmarks: (1) a CPU

benchmark, and (2) a cache benchmark, which we describe

next.

First, we benchmark the CPU by executing the prime num-

bers test from SysBench [8]. This test is a single-threaded

workload that simply computes prime numbers up to 30,000.

In this test, we vary the degree of multi-tenancy by concur-

rently running 1, 2, 4, 8 or 16 instances of this benchmark in

the following three configurations: (1) a standard Linux OS

with no virtualization, (2) each benchmark instance runs in a

VM that is supported by VMware, and (3) each benchmark

instance runs in a VM that is supported by Xen.

To quantify the performance penalty associated with this

CPU computation, we measured the average time to run this

benchmark for each configuration described above (the vari-

ance was close to zero, so using the average is a good mea-

sure for this test). The results for this experiment are pre-

sented in Figure 12. We note that when the number of bench-

mark instances is larger than 4, the VMware setup is the

slowest, and is about 25% slower than the native Linux im-

plementation. In contrast, the Xen method has very low

overhead (less than 5%) over the native Linux implemen-

tation, likely due to the use of para-virtualization, which is

designed to reduce the CPU computation overhead associ-

ated with virtualization.

Next, we run another benchmark to examine the impact of

virtualization on the CPU cache and main memory. This test

is a single-threaded random array-lookup test. It first creates

an integer array, and then randomly reads one integer from

the array at a time. We repeat the “random read” 20,000

times. Since our CPU has a 64 KB L1 cache, a 256 KB L2
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Figure 12: The CPU prime numbers benchmark runs on

standard Linux, VMware, and Xen
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Figure 13: The cache benchmark on standard Linux,

VMware, and Xen

cache, and a 8 MB L3 cache, we want to test the “cache” hi-

erarchies (L1 → L2 → L3 → memory) level by level. This

benchmark uses 4 different array sizes – 60 KB (less than

the L1 cache size), 200 KB (bigger than the L1 cache size,

but less than the L2 cache size), 4MB (bigger than the L2

cache size, but less than the L3 cache size), and 40MB (big-

ger than the L3 cache size, and in-memory array). To fully

load all the 8 CPU cores in the server, we concurrently run

8 instances of this benchmark in the following three config-

urations: (1) a standard Linux OS with no virtualization, (2)

each benchmark instance runs in a VM that is supported by

VMware, and (3) each benchmark instance runs in a VM that

is supported by Xen.

To quantify the performance penalty on the CPU caches

and the main memory, we measured the average number of

reads per microsecond. The results for this benchmark are

shown in Figure 13. Compared to the VMware and naive

Linux, Xen has a large overhead when accessing the L1 and

L2 caches. However, for the L3 cache and the main mem-

ory access cases, Xen is only marginally slower than the

VMware and the native Linux configurations.

Note that the VMware design with PostgreSQL is at most

2X worse than the dedicated design (shown in Figure 2).

This may be a positive message for cloud operators who pre-

fer using VMware to consolidate the database workloads be-

cause of its high isolation between VMs, but are concerned

9
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Figure 14: VMware Design with DBX: Time-breakdown of

a server thread

about the huge virtualization penalty (e.g. the 6X-12X re-

ported in previous studies).

3.5.2 VMware Design with DBX

The VMware design with DBX is a popular deployment

with operators who want to use the proprietary VMM and

DBMS for their advanced features, better manageability, and

higher reliability.

The time-breakdown analysis for this design is shown in

Figure 14. Similar to the behavior as seen in Figure11, with

8 or more tenants, the CPU wait time and the lock time con-

tribute a large portion to the total runtime. The appearance

of the CPU wait time shown in Figure 14 is primarily be-

cause of the CPU virtualization overhead associated with

VMWare, which has been described in Section 3.5.1. When

there are 32 tenants, the bottleneck starts to shift from the

CPU to the I/O, as can be seen in Figure 14.

When considering the performance penalty associated with

this design, Figure 2 shows the VMware design with DBX is

within 2X slower than the shared design with DBX, mostly

because of the CPU virtualization penalties. Previous study [9]

shows 6X-12X performance penalty when running the TPC-

C workloads in VMware on traditional HDD-based subsys-

tems. However, an interesting finding of this work is that

when switching to the SSD-based I/O subsystem, the new

challenge with this VMM design is how to reduce the CPU

virtualization-related penalties.

3.5.3 Xen Design with pgSQL

Contrasting to the VMware design with DBX, the Xen

design with pgSQL is a low upfront-cost deployment which

uses the open-source VMM and DBMS.

As seen in Fig. 2, the Xen design with pgSQL is the best

VM-based design which is only about 1.3X slower than the

dedicated design when the number of tenants is less than

16. To explain this result, we look at the time-breakdown

of a server thread, as shown in Fig.15. In this figure, we

notice that the cpu wait time is much smaller that the case

when using the VMware as the VMM (as seen in Fig.11).
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Figure 15: Xen Design with pgSQL: Time-breakdown of a

server thread

# tenants 1 2 4 8 16 32

svctm 0.15 0.18 0.25 0.35 0.49 0.94

util% 19.3 38.1 57.6 79.7 89.3 99.9

Table 7: Xen Design with pgSQL: Log disk I/O statistics as

observed from the host OS

In Fig. 12, we have compared the CPU virtualization over-

head of Xen and VMware with the Linux, and our conclu-

sion is: Xen only has very low overhead over the Linux on

CPU computation, primarily because the host OS uses the

para-virtualization technology.

As seen in Fig.15, when there are more than 4 tenants,

the WAL WriteLock takes most of the runtime and this is

mostly caused by the degraded log I/O performance. As the

CPU virtualization overhead is relatively smaller (compared

to the VMware designs), the workloads begin to stress the

log disk (H-SSD), which is critical to the performance. To

better understand the log disk performance degradation in

the Xen design, we show the log disk statistics from the host

OS level in Table 7, which are comparable to the log disk

statistics observed from the dedicated design (shown in Ta-

ble.4(a)).

Compared to the log disk statistics (in Table 4(a)) ob-

served from the dedicated design, the log disk in the Xen

design shows higher average service time (svctm) and disk

utilization (util%) in most cases. For example, when there

are 4 tenants, the log disk utilization in the Xen design is

57.6%. While for the dedicated design, it is 47.8%. When

consolidating 32 tenants, the average service time (svctm)

of the log disk in the Xen design is 0.94, which increases

about 2X from the 16 tenants (0.49).

In conclusion, since Xen has low CPU virtualization penalty,

it shows very competitive performance (1.3X overhead) to

the dedicated design. Now a new challenge for the Xen de-

sign is how to efficiently virtualize the (fast) I/O device (H-

SSD), when it is ported as many virtual disks to handle the

random and synchronous log I/Os..

3.6 Increasing the Database Size
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So far we have considered the case when the database

working sets across the tenants fits in server memory, which

is generally the case with high-performance OLTP work-

loads. In this section, we relax this assumption and consider

the impact of disk-resident data access.

We consolidate 8 tenants on the same server (because most

designs show their best performance with 8 tenants, as shown

in Figure 2), and the data size for each tenant is varied from

1.5 GB with 15 threads to 24 GB with 240 threads. The size

of each warehouse remains the same at 100MB (as in the

experiments above).

Here we use four best-performing designs as example, and

show their performance in Figure 16. These four designs

are: the dedicated design with PostgreSQL, the shared de-

sign with DBX, the Xen design with PostgreSQL, and the

VMware design with PostgreSQL.

In Figure 16, we show the performance of the four designs

with different tenant database sizes. When the database grows

from 15 to 30 warehouses, the main memory is still larger

than the working set, and we observe that the performance

of each design is not strongly affected by this data growth.

As the data size (i.e. # warehouses) continues to grow

beyond 60 warehouses, the working set size becomes larger

than the main memory size, and query execution now needs

to read data from the disks. As can be seen in Figure 16, the

performance of each design starts to drop at 60 warehouses.

At 120 and 240 warehouses, the data disk I/O (including the

read I/O) becomes the bottleneck in each design. In Table 8,

we present both the log and data disk I/O statistics for the

dedicated design with PostgreSQL and the Xen design with

PostgreSQL (as representative results).

As seen in Table 8, at 120 and 240 warehouses, the uti-

lization (util%) of data disk is almost 100%, indicating that

the system is bottlenecked at the data disk. Since the data

disk is now the bottleneck, the log disk is less busier. For

example, as can be seen in Table 8(b), with Xen, the log disk

utilization (util%) decreases from 84.7% to 41.8% when

the number of warehouses increases from 60 to 240. Thus,
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Figure 17: Comparing the shared and the dedicate designs

with an HDD-based I/O subsystem

in this setting, when the working set is not main memory

resident, the data disk is prone to becoming the bottleneck

(because of the large amount of read I/Os).

Additionally, when the number of warehouses is 120 or

240, as seen in Figure 16, the shared design with DBX out-

performs all other designs. We infer that this is because

when the (checkpointing and read) I/O traffic to the data disk

I/Os becomes the dominant performance factor, the DBMS

buffer management becomes very important for overall per-

formance. The shared design with DBX manages a single

uniform buffer pool, so that it can better utilize it to cache

the most important data, to minimize the I/O traffic, and to

generate a better pattern of write to the I/O device. While

for the other designs (e.g. dedicated and VM-based), each

DBMS manages its own buffer pool and potentially loses

this global view.

3.7 Shared and Dedicated Designs with Post-
greSQL and HDD-based I/O subsystem

To connect with the previous study [9], we compare the

shared and dedicated designs with PostgreSQL when using

an HDD-based I/O subsystem. We use two identical SATA-

based HDDs (1TB 7200 RPM WD Caliver Black disks), and

put the log and the data files separately on each drive. Here

the tenant has 1.5 GB data with 15 server threads.
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Log disk (H-SSD) Data disk (SSD RAID)

# warehouses 15 30 60 120 240 15 30 60 120 240

svctm 0.19 0.21 0.43 0.60 0.67 0.07 0.08 0.12 0.10 0.07

util% 75.6 91.8 98.6 83.4 61.2 14.2 31.3 69.1 96.5 100

(a) Dedicated design with PostgreSQL: Log and disk I/O statistics as observed from Linux

Log disk (H-SSD) Data disk (SSD RAID)

# warehouses 15 30 60 120 240 15 30 60 120 240

svctm 0.35 0.47 0.68 0.59 0.45 0.05 0.09 0.13 0.08 0.07

util% 79.7 83.4 84.7 68.2 41.8 10.4 35.8 77.2 98.9 100

(b) Xen design with PostgreSQL: Log and disk I/O statistics as observed from host OS

Table 8: Increasing the database size: Disk I/O statistics

From Figure 17, we notice that when using an HDD-based

I/O subsystem, the shared design performs better than the

dedicated design. By observing and comparing the I/O statis-

tics collected from the two designs, we reached similar con-

clusion as [9], namely that the shared design can reduce the

I/O loads on both the log and the data disks by coordinating

the I/O requests across all tenants. On the other hand, since

each tenant in the dedicated design makes independent deci-

sions on when to flush the dirty pages, and the I/O pattern to

the log disk is random, the dedicated design performs poorly

with an HDD-based I/O subsystem.

Recall that when analyzing the shared design in Section 3.4,

we found that the lock contention becomes a significant prob-

lem when the I/O subsystem is not the bottleneck (because of

the SSDs). However, for the HDD-based I/O subsystem, we

did not observe serious lock contention because the “new”

performance bottleneck is now the I/O subsystem.

In [9], the authors observed that the shared design has

6X-12X higher throughput than the VMware design with

MySQL. We draw similar conclusions with PostgreSQL, and

believe that this behavior is true with HDD-based I/O sub-

system, especially since the VMware design introduces ad-

ditional overheads due to virtualization.

4. RELATED WORK

There has been a flurry of recent work on examining vari-

ous aspects of multi-tenancy for database workload, in large

part driven by the move towards cloud database services. For

example, Soror et al. [16] proposed to use VMs to consoli-

date mixed workloads and provided a virtualization design

advisor to split the physical computing resources, and pro-

vision each VM in order to achieve the best aggregate per-

formance. However, that work does not consider the per-

formance overheads associated with using VMs, or compare

the performance of their VM-based solution to the solutions

that do not use a VM.

There are two leading work that are closely related to

this paper. Curino et al. [9] proposed to consolidate mul-

tiple DB workloads using a “share-everything” solution (a

single DBMS instance) without virtualization. They pro-

posed a consolidation technique, called Kairos, to measure

the hardware requirements of the workloads and predict the

combined resource utilization of all workloads. The authors

compared Kairos with a VMware-based solution, and con-

cluded that Kairos has a factor of 6X-12X higher through-

put than the VMware-based solution when using traditional

HDDs. Their reason for this performance gap was the over-

head of using multiple VMs for log and data writes, as well

as the frequent and expensive context switches. In this pa-

per, our results match their conclusion when the I/O subsys-

tem uses traditional HDDs. However, a big motivation of

our work is to revisit this issue when considering pure SSD-

based I/O subsystems.

The other work [14] performed a detailed performance

analysis of OLTP deployments in servers with multiple cores

per CPU (multicore) and multiple CPUs per server (multi-

socket). They compared different database deployment strate-

gies where they varied the number and size of independent

database instances running on a single server, from a single

shared-everything instance to fine-grained shared-nothing con-

figurations. Similar to their work, we systematically com-

pare and evaluate OLTP deployments on a single server. How-

ever, their work focused on optimizing OLTP deployments

on different CPU architecture designs, while our work fo-

cuses on comparing the popular multi-tenant OLTP deploy-

ments on an SSD-based I/O subsystem.

Recent work has also examined the impact of running

database workloads in a VM. Minhas et al. [10] conducted

an experimental study to examine the overhead of running a

single-tenant TPC-H workload in a VM supported by Xen,

and showed that the average overhead was less than 10%,

compared to the case without virtualization. Our work is

complementary to their work since we focus on the multi-

tenant OTLP workloads instead of single-tenant OLAP work-

load.

To our best knowledge, there isn’t a comprehensive previ-
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ous study on evaluating popular multi-tenant OLTP designs

on SSD-based I/O subsystems.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have examined various multi-tenancy de-

signs for OLTP workloads on a modern SSD-based I/O sub-

system. We make the following key observations: (1) The

VM-based design shows fairly competitive performance to

the non-virtualization based design (from 1.3X to 2X per-

formance degradation) on a modern SSD-based I/O subsys-

tem, which is far lower than shown in previous studies that

considered traditional HDD-based I/O subsystems. Thus,

when switching to an pure SSD-based I/O systems, the per-

formance penalty that holds for traditional HDD-based I/O

systems may not hold. (2) The shared design has a perfor-

mance advantage over the VM-based designs on an SSD-

based I/O subsystem, as long as it can minimize the con-

tention on the shared resources among the workload threads.

(3) The dedicated design with PostgreSQL presents the best

performance compared to all other designs, for the TPC-C

like workload that we considered in this paper (which is eas-

ily partitionable). This is mostly because it can avoid the

resources contention problem in the shared design [11, 14],

and the performance penalties associated with the VM-based

design [9].

There are a number of directions for future work, includ-

ing dealing with dynamic workloads, expanding to more com-

plex and mixed workloads, examining mixed devices (HDDs

and SSDs), and extending this study to conduct a full price

v/s performance analysis of various solutions that includes

aspects such as amortized hardware costs and software li-

censing costs.
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