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R apid innovation in the datacenter is once again set to transform how 
we build, deploy, and manage Web applications. New applications are 
often built as a composition of microservices, but, as we will show, 

traditional containers are a poor fit for running these microservices. We 
argue that new serverless compute platforms, such as AWS Lambda, provide 
better elasticity. We also introduce OpenLambda, an open-source implemen-
tation of the Lambda model, and describe several new research challenges in 
the area of serverless computing.

In the preconsolidated datacenter, each application often ran on its own physical machine. 
The high costs of buying and maintaining large numbers of machines, and the fact that each 
was often underutilized, led to a great leap forward: virtualization. Virtualization enables 
tremendous consolidation of services onto servers, thus greatly reducing costs and improv-
ing manageability.

However, hardware-based virtualization is not a panacea, and lighter-weight technologies 
have arisen to address its fundamental issues. One leading solution in this space is contain-
ers, a server-oriented repackaging of UNIX-style processes with additional namespace 
virtualization. Combined with distribution tools such as Docker [8], containers enable devel-
opers to readily spin up new services without the slow provisioning and runtime overheads of 
virtual machines.

Common to both hardware-based and container-based virtualization is the central notion of 
a server. Servers have long been used to back online applications, but new cloud-computing 
platforms foreshadow the end of the traditional backend server. Servers are notoriously dif-
ficult to configure and manage [3], and server startup time severely limits elasticity.

As a result, a new model called serverless computation is poised to transform the construc-
tion of modern scalable applications. Instead of thinking of applications as collections of 
servers, developers define applications as a set of functions with access to a common datas-
tore. An excellent example of this microservice-based platform is found in Amazon’s Lambda 
[1]; we thus generically refer to this style of service construction as the Lambda model.

The Lambda model has many benefits as compared to traditional server-based approaches. 
Lambda handlers from different customers share common pools of servers managed by 
the cloud provider, so developers need not worry about server management. Handlers are 
typically written in languages such as JavaScript or Python; by sharing the runtime environ-
ment across functions, the code specific to a particular application will typically be small 
and easily deployable on any worker in a Lambda cluster. Finally, applications can scale up 
rapidly without needing to start new servers. The Lambda model represents the logical con-
clusion of the evolution of sharing between applications, from hardware to operating systems 
to (finally) the runtime environments themselves (Figure 1).

Scott Hendrickson is a Software 
Engineer at Google, working on 
the future of wireless Internet 
infrastructure. Formerly, he was 
a student at the University of 

Wisconsin-Madison where he participated in 
the OpenLambda project while working on his 
Bachelor of Science in computer engineering 
and computer science.  
research@shendrickson.com

Stephen Sturdevant is a student 
at the University of Wisconsin-
Madison, where he has received 
his bachelor’s degree and is 
currently pursuing a computer 

science PhD. Professors Andrea and Remzi 
Arpaci-Dusseau are his advisers. Stephen has 
recently participated in Google Summer of 
Code and is a contributor to the OpenLambda 
project. stephensturdevant@gmail.com

Edward Oakes is a student at 
the University of Wisconsin-
Madison, where he is pursuing 
an undergraduate degree 
in computer science and 

mathematics. He is advised by Professor 
Remzi Arpaci-Dusseau. This fall, Edward will 
be continuing his work on OpenLambda at the 
Microsoft Gray Systems Lab in Madison, WI. 
oakes@cs.wisc.edu

Tyler Harter is a recent PhD 
graduate from the University 
of Wisconsin-Madison, where 
he was co-advised by Andrea 
Arpaci-Dusseau and Remzi 

Arpaci-Dusseau. He has published several 
storage papers at FAST and SOSP, including an 
SOSP ‘11 Best Paper. He is joining the Microsoft 
Gray Systems Lab soon, where he will continue 
contributing to OpenLambda (https://github 
.com/open-lambda). tylerharter@gmail.com



www.usenix.org	   WI N T ER 20 16   VO L .  41 ,  N O.  4  15

SYSTEMS
Serverless Computation with OpenLambda

There are many new research challenges in the context of serverless computing, with respect 
to efficient sandboxing, cluster scheduling, storage, package management, and many other 
areas. In order to explore these problems, we are currently building OpenLambda, a base 
upon which researchers can evaluate new approaches to serverless computing. More details 
can be found in Hendrickson et al. [5]. Furthermore, while research is a primary motivation 
for building OpenLambda, we plan to build a production-quality platform that could be rea-
sonably deployed by cloud providers.

AWS Lambda Background
AWS Lambda allows developers to specify functions that run in response to various events. 
We focus on the case where the event is an RPC call from a Web application and the func-
tion is an RPC handler. A developer selects a runtime environment (for example, Python 2.7), 
uploads the handler code, and associates the handler with a URL endpoint. Clients can issue 
RPC calls by issuing requests to the URL.

Handlers can execute on any worker; in AWS, start-up time on a new worker is approxi-
mately one to two seconds. Upon a load burst, a load balancer can start a Lambda handler on 
a new worker to service a queued RPC call without incurring excessive latencies. However, 
calls to a particular Lambda are typically sent to the same worker(s) to avoid sandbox reini-
tialization costs [10]. Developers can specify resource limits on time and memory. In AWS, 
the cost of an invocation is proportional to the memory cap multiplied by the actual execu-
tion time, as rounded up to the nearest 100 ms.

Lambda functions are essentially stateless; if the same handler is invoked on the same 
worker, common state may be visible between invocations, but no guarantees are provided. 
Thus, Lambda applications are often used alongside a cloud database.

Motivation for Serverless Compute
A primary advantage of the Lambda model is its ability to quickly and automatically scale 
the number of workers when load suddenly increases. To demonstrate this, we compare AWS 
Lambda to a container-based server platform, AWS Elastic Beanstalk (hereafter Elastic BS). 
On both platforms we run the same benchmark for one minute: the workload maintains 100 
outstanding RPC requests and each RPC handler spins for 200 ms.

Figure 2 shows the result: an RPC using AWS Lambda has a median response time of only 
1.6 sec, whereas an RPC in Elastic BS often takes 20 sec. While AWS Lambda was able 
to start 100 unique worker instances within 1.6 sec to serve the requests, all Elastic BS 
requests were served by the same instance; as a result, each request in Elastic BS had to wait 
behind 99 other 200 ms requests.
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Figure 1: Evolution of sharing. Gray layers are shared.
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AWS Lambda also has the advantage of not requiring configura-
tion for scaling. In contrast, Elastic BS configuration is complex, 
involving 20 different settings for scaling alone. Even though we 
tuned Elastic BS to scale as fast as possible (disregarding mone-
tary cost), it still failed to spin up new workers for several minutes.

OpenLambda Overview 
We now introduce OpenLambda, our open-source implemen-
tation of the Lambda model. Figure 3 illustrates how various 
servers and users interact in an OpenLambda cluster during the 
upload of a Lambda function F and a first call to that function. 
First, a developer uploads the Lambda code to the Lambda ser-
vice, which stores it in a code store. Second, a client may issue an 
RPC to the service, via AJAX, gRPC, or some other protocol. A 
load balancer must decide which worker machine should service 
the request. In order to implement certain locality heuristics, 
the balancer may need to request the RPC schema from the code 
store in order to perform deep inspection on the RPC fields.

The OpenLambda worker that receives the request will then 
fetch the RPC handling code from the code store if it is not 
already cached locally. The worker will initialize a sandbox in 
which to run the handler. The handler may issue queries to a dis-
tributed database; if the balancer and database are integrated, 
this will hopefully involve I/O to a local shard.

There are different ways to implement worker sandboxes, but 
OpenLambda, like AWS Lambda, currently uses containers. Fig-
ure 4 shows how the Lambda model avoids common overheads 
faced by standard container use cases. Normally, each applica-
tion runs inside a container, with its own server and runtime 
environment. Thus, application startup often involves deploying 
runtime engines to new machines and starting new servers. In 
contrast, servers run outside the containers with the Lambda 
model, so there is no server spinup overhead. Furthermore, many 
applications will share a small number of standard runtime 
engines. Although multiple instances of those runtime engines 
will run in each sandbox, the runtime engine code will already 
be on every worker, typically in memory.

Tutorial: Running OpenLambda in development mode (with 
only a worker and no load balancer or code store) is relatively 
simple in our current pre-release:

# build and run standalone OL worker

curl -L -O https://github.com/open-lambda/open-lambda/archive 

/v0.1.1.tar.gz

tar -xf v0.1.1.tar.gz

cd open-lambda-0.1.1

./quickstart/deps.sh

make

./bin/worker quickstart/quickstart.json

# from another shell, issue AJAX w/ curl

curl -X POST localhost:8080/runLambda/hello -d 

‘{“name”:”alice”}’

Code for new handlers can be written in the ./quickstart 

/handlers directory, but the worker must be restarted upon a 
handler update. RPC calls can be issued via AJAX curl POSTs, 
with the URL updated to reflect the handler name. Directions 
for running a full OpenLambda cluster are available online: 
https://www.open-lambda.org.

Research Agenda 
We now explore a few of the new research problems in the 
serverless-computing space.

Lambda Workloads 
Characterizing typical Lambda workloads will be key to the 
design of OpenLambda and other serverless compute platforms. 
Unfortunately, the Lambda model is relatively new, so there are 
not yet many applications to study. However, we can anticipate 
how future workloads may stress Lambda services by analyzing 
the RPC patterns of existing applications.

In this section, we take Google Gmail as an example and study 
its RPC calls during inbox load. Gmail uses AJAX calls (an RPC 
protocol based on HTTP requests that uses JSON to marshal 
arguments) to fetch dynamic content.

Figure 5 shows Gmail’s network I/O over time, divided between 
GETs and POSTs. Gmail mostly uses POSTs for RPC calls 
and GETs for other requests; the RPC calls represent 32% of 
all requests and tend to take longer (92 ms median) than other 
requests (18 ms median).

Figure 2: Response time. This CDF shows measured response times from 
a simulated load burst to an Elastic BS application and to an AWS Lambda 
application.

Figure 3: OpenLambda architecture. A new Lambda handler is uploaded, 
then called.
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The average time for short RPCs (those under 100 ms) is only 
27 ms. Since we only trace latency on the client side, we cannot 
know how long the requests were queued at various stages; thus, 
our measurements represent an upper bound on the actual time 
for the RPC handler. On AWS Lambda, charges are in incre-
ments of 100 ms, so these requests will cost at least 3.7x more 
than if charges were more fine-grained.

We also see a very long request that takes 231 seconds, cor-
responding to 93% of the cumulative time for all requests. Web 
applications often issue such long-lived RPC calls as a part of a 
long polling technique. When the server wishes to send a mes-
sage to the client, it simply returns from the long RPC [2]. Unless 
Lambda services provide special support for these calls, idle 
handlers will easily dominate monetary costs.

Execution Engine 
In the motivation section, we saw that Lambdas are far more 
elastic than containers. Unfortunately, under steady load, 
containers tend to be faster. In our experiments [5], Elastic BS 
request latencies are an order of magnitude shorter that AWS 
Lambda latencies. If Lambdas are to compete with VM and con-
tainer platforms, base execution time must be improved.

Optimizing sandbox initialization and management is key to 
improving Lambda latencies. For example, AWS Lambda reuses 
the same sandbox for different calls when possible to amortize 
startup costs; between requests, containers are maintained in a 
paused state [10].

Unfortunately, there are difficult tradeoffs regarding when to 
garbage-collect paused containers. Resuming a paused con-
tainer is over 100x faster than starting a new container, but 
keeping a container paused imposes the same memory overheads 
as an active container [5]. Reducing the time cost of fresh starts 
and reducing memory overheads of paused containers are both 
interesting challenges.

Interpreted Languages
Most Lambdas are written in interpreted languages. For perfor-
mance, the runtimes corresponding to these languages typically 
have just-in-time compilers. JIT compilers have been built for 
Java, JavaScript, and Python that optimize compiled code based 
on dynamic profiling or tracing.

Applying these techniques with Lambdas is challenging 
because a single handler may run many times over a long period 
in a Lambda cluster, but it may not run long enough on any 
one machine to provide sufficient profiling feedback. Making 
dynamic optimization effective for Lambdas may require shar-
ing profiling data between different Lambda workers.

Package Support
Lambdas can rapidly spin up because customers are encouraged 
to use one of a few runtime environments; runtime binaries will 
already be resident in memory before a handler starts. Of course, 
this benefit disappears if users bundle large third-party libraries 
inside their handlers, as the libraries need to be copied over the net-
work upon a handler invocation on a new Lambda worker. Lazily 
copying packages could partially ameliorate this problem [4].

Alternatively, the Lambda platform could be package aware [7] 
and provide special support for certain popular package reposi-
tories, such as npm for Node.js or pip for Python. Of course, it 
would not be feasible to keep such large (and growing) reposito-
ries in memory on a single Lambda worker, so package aware-
ness would entail new code locality challenges for scheduling.

Cookies and Sessions
Lambdas are inherently short-lived and stateless, but users typi-
cally expect to have many different but related interactions with 
a Web application. Thus, a Lambda platform should provide a 
shared view of cookie state across calls originating from a com-
mon user.

Furthermore, during a single session, there is often a two-way 
exchange of data between clients and servers; this exchange 
is typically facilitated by WebSockets or by long polls. These 
protocols are challenging for Lambdas because they are based on 
long-lived TCP connections. If the TCP connections are main-
tained within a Lambda handler, and a handler is idle between 
communication, charges to the customer should reflect the 

Figure 4: Container usage. The dashed lines represent container boundaries. 

Figure 5: Google Gmail. Black bars represent RPC messages; gray bars 
represent other messages. The bar ends represent request and response 
times. The bars are grouped as POSTs and GETs; vertical positioning is 
otherwise arbitrary.
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fact that the handler incurs a memory overhead, but consumes 
no CPU. Alternatively, if the platform provides management of 
TCP connections outside of the handlers, care must be taken to 
provide a new Lambda invocation with the connections it needs 
that were initiated by past invocations.

Databases
There are many opportunities for integrating Lambdas with 
databases. Most databases support user-defined functions 
(UDFs) for providing a custom view of the data. Lambdas that 
transform data from a cloud database could be viewed as UDFs 
that are used by client-side code. Current integration with S3 
and DynamoDB also allows Lambdas to act as trigger handlers 
upon inserts.

A new change feed abstraction is now supported by RethinkDB 
and CouchDB; when an iterator reaches the end of a feed, it 
blocks until there is more data, rather than returning. Sup-
porting change feeds with Lambdas entails many of the same 
challenges that arise with long-lived sessions; a handler that 
is blocked waiting for a database update should probably not 
be charged the same as an active handler. Change-feed batch-
ing should also be integrated with Lambda state transitions; 
it makes sense to batch changes for longer when a Lambda is 
paused than when it is running.

Relaxed consistency models should also be re-evaluated in the 
context of RPC handlers. The Lambda compute model intro-
duces new potential consistency boundaries, based not on what 
data is accessed, but on which actor accesses the data. For 
example, an application may require that all RPC calls from the 
same client have a read-after-write guarantee, but weaker guar-
antees may be acceptable between different clients, even when 
those clients read from the same entity group.

Data Aggregators 
Many applications (search, news feeds, and analytics) involve 
search queries over large datasets. Parallelism over different 
data shards is key to efficiently supporting these applications. 
For example, with search, one may want to scan many inverted 
indexes in parallel and then gather and aggregate the results.

Building these search applications will likely require special 
Lambda support. In particular, in order to support the scatter/
gather pattern, multiple Lambdas will need to coordinate in a 
tree structure. Each leaf Lambda will filter and process data 
locally, and a front-end Lambda will combine the results.

When Lambda leaves are filtering and transforming large 
shards, it will be important to co-locate the Lambdas with the 
data. One solution would be to build custom datastores that 
coordinate with Lambdas. However, the diversity of aggregator 

applications may drive developers to use variety of platforms for 
preprocessing the data (for example, MapReduce, Dryad, or Pre-
gel). Thus, defining general locality APIs for coordination with a 
variety of backends may be necessary.

Load Balancers
Previous low-latency cluster schedulers (such as Sparrow [9]) 
target tasks in the 100 ms range. Lambda schedulers need to 
schedule work that is an order of magnitude shorter, while 
taking several types of locality into account. First, schedulers 
must consider session locality: if a Lambda invocation is part 
of a long-running session with open TCP connections, it will 
be beneficial to run the handler on the machine where the TCP 
connections are maintained so that traffic will not need to be 
diverted through a proxy.

Second, code locality becomes more difficult. A scheduler that 
is aware that two different handlers rely heavily on the same 
packages can make better placement decisions. Furthermore, 
a scheduler may wish to direct requests based on the varying 
degrees of dynamic optimization achieved on various workers.

Third, data locality will be important for running Lambdas 
alongside either databases or large datasets and indexes. The 
scheduler will need to anticipate what queries a particular 
Lambda invocation will issue, or what data it will read. Even 
once the scheduler knows what data a Lambda will access 
and where the replicas of the data reside, further communica-
tion with the database may be beneficial for choosing the best 
replica. Many new databases (such as Cassandra or MongoDB) 
store replicas as LSM trees. Read amplifications for range reads 
can range from 1x to 50x [6] on different replicas; an integrated 
scheduler could potentially coordinate with database shards to 
track these varying costs.

Cost Debugging
Prior platforms cannot provide a cost-per-request for any 
service. For example, applications that use virtual machine 
instances are often billed on an hourly basis, and it is not obvi-
ous how to divide that cost across the individual requests over 
an hour. In contrast, it is possible to tell exactly how much each 
individual RPC call to a Lambda handler costs the cloud cus-
tomer. This knowledge will enable new types of debugging.

Currently, browser-based developer tools enable performance 
debugging: tools measure page latency and identify problems by 
breaking down time by resource. New Lambda-integrated tools 
could similarly help developers debug monetary cost: the exact 
cost of visiting a page could be reported, and breakdowns could 
be provided detailing the cost of each RPC issued by the page as 
well as the cost of each database operation performed by each 
Lambda handler.
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Legacy Decomposition
Breaking systems and applications into small, manageable sub-
components is a common approach to building robust, parallel 
software. Decomposition has been applied to operating systems, 
Web browsers, Web servers, and other applications. In order to 
save developer effort, there have been many attempts to auto-
mate some or all of the modularization process.

Decomposing monolithic Web applications into Lambda-based 
microservices presents similar challenges and opportunities. 
There are, however, new opportunities for framework-aware 
tools to automate the modularization process. Many Web-appli-
cation frameworks (for example, Flask and Django) use language 
annotations to associate URLs with handler functions. Such 
annotations would provide an excellent hint to automatic split-
ting tools that port legacy applications to the Lambda model.

Conclusion
We have seen that the Lambda model is far more elastic and 
scalable than previous platforms, including container-based ser-
vices that autoscale. We have also seen that this new paradigm 
presents interesting challenges for execution engines, databases, 
schedulers, and other systems. We believe OpenLambda will 
create new opportunities for exploring these areas. Further-
more, we hope to make OpenLambda a platform that is suitable 
for actual cloud developers to deploy their serverless applica-
tions. The OpenLambda project is online at https://www 
.open-lambda.org.
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