
14    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS

Serverless Computation with OpenLambda
S C O T T H E N D R I C K S O N , S T E P H E N S T U R D E V A N T , E D W A R D O A K E S ,
T Y L E R H A R T E R , V E N K A T E S H W A R A N V E N K A T A R A M A N I ,
A N D R E A C . A R P A C I - D U S S E A U , A N D R E M Z I H . A R P A C I - D U S S E A U

R apid innovation in the datacenter is once again set to transform how
we build, deploy, and manage Web applications. New applications are
often built as a composition of microservices, but, as we will show,

traditional containers are a poor fit for running these microservices. We
argue that new serverless compute platforms, such as AWS Lambda, provide
better elasticity. We also introduce OpenLambda, an open-source implemen-
tation of the Lambda model, and describe several new research challenges in
the area of serverless computing.

In the preconsolidated datacenter, each application often ran on its own physical machine.
The high costs of buying and maintaining large numbers of machines, and the fact that each
was often underutilized, led to a great leap forward: virtualization. Virtualization enables
tremendous consolidation of services onto servers, thus greatly reducing costs and improv-
ing manageability.

However, hardware-based virtualization is not a panacea, and lighter-weight technologies
have arisen to address its fundamental issues. One leading solution in this space is contain-
ers, a server-oriented repackaging of UNIX-style processes with additional namespace
virtualization. Combined with distribution tools such as Docker [8], containers enable devel-
opers to readily spin up new services without the slow provisioning and runtime overheads of
virtual machines.

Common to both hardware-based and container-based virtualization is the central notion of
a server. Servers have long been used to back online applications, but new cloud-computing
platforms foreshadow the end of the traditional backend server. Servers are notoriously dif-
ficult to configure and manage [3], and server startup time severely limits elasticity.

As a result, a new model called serverless computation is poised to transform the construc-
tion of modern scalable applications. Instead of thinking of applications as collections of
servers, developers define applications as a set of functions with access to a common datas-
tore. An excellent example of this microservice-based platform is found in Amazon’s Lambda
[1]; we thus generically refer to this style of service construction as the Lambda model.

The Lambda model has many benefits as compared to traditional server-based approaches.
Lambda handlers from different customers share common pools of servers managed by
the cloud provider, so developers need not worry about server management. Handlers are
typically written in languages such as JavaScript or Python; by sharing the runtime environ-
ment across functions, the code specific to a particular application will typically be small
and easily deployable on any worker in a Lambda cluster. Finally, applications can scale up
rapidly without needing to start new servers. The Lambda model represents the logical con-
clusion of the evolution of sharing between applications, from hardware to operating systems
to (finally) the runtime environments themselves (Figure 1).

Scott Hendrickson is a Software
Engineer at Google, working on
the future of wireless Internet
infrastructure. Formerly, he was
a student at the University of

Wisconsin-Madison where he participated in
the OpenLambda project while working on his
Bachelor of Science in computer engineering
and computer science.
research@shendrickson.com

Stephen Sturdevant is a student
at the University of Wisconsin-
Madison, where he has received
his bachelor’s degree and is
currently pursuing a computer

science PhD. Professors Andrea and Remzi
Arpaci-Dusseau are his advisers. Stephen has
recently participated in Google Summer of
Code and is a contributor to the OpenLambda
project. stephensturdevant@gmail.com

Edward Oakes is a student at
the University of Wisconsin-
Madison, where he is pursuing
an undergraduate degree
in computer science and

mathematics. He is advised by Professor
Remzi Arpaci-Dusseau. This fall, Edward will
be continuing his work on OpenLambda at the
Microsoft Gray Systems Lab in Madison, WI.
oakes@cs.wisc.edu

Tyler Harter is a recent PhD
graduate from the University
of Wisconsin-Madison, where
he was co-advised by Andrea
Arpaci-Dusseau and Remzi

Arpaci-Dusseau. He has published several
storage papers at FAST and SOSP, including an
SOSP ‘11 Best Paper. He is joining the Microsoft
Gray Systems Lab soon, where he will continue
contributing to OpenLambda (https://github
.com/open-lambda). tylerharter@gmail.com

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  15

SYSTEMS
Serverless Computation with OpenLambda

There are many new research challenges in the context of serverless computing, with respect
to efficient sandboxing, cluster scheduling, storage, package management, and many other
areas. In order to explore these problems, we are currently building OpenLambda, a base
upon which researchers can evaluate new approaches to serverless computing. More details
can be found in Hendrickson et al. [5]. Furthermore, while research is a primary motivation
for building OpenLambda, we plan to build a production-quality platform that could be rea-
sonably deployed by cloud providers.

AWS Lambda Background
AWS Lambda allows developers to specify functions that run in response to various events.
We focus on the case where the event is an RPC call from a Web application and the func-
tion is an RPC handler. A developer selects a runtime environment (for example, Python 2.7),
uploads the handler code, and associates the handler with a URL endpoint. Clients can issue
RPC calls by issuing requests to the URL.

Handlers can execute on any worker; in AWS, start-up time on a new worker is approxi-
mately one to two seconds. Upon a load burst, a load balancer can start a Lambda handler on
a new worker to service a queued RPC call without incurring excessive latencies. However,
calls to a particular Lambda are typically sent to the same worker(s) to avoid sandbox reini-
tialization costs [10]. Developers can specify resource limits on time and memory. In AWS,
the cost of an invocation is proportional to the memory cap multiplied by the actual execu-
tion time, as rounded up to the nearest 100 ms.

Lambda functions are essentially stateless; if the same handler is invoked on the same
worker, common state may be visible between invocations, but no guarantees are provided.
Thus, Lambda applications are often used alongside a cloud database.

Motivation for Serverless Compute
A primary advantage of the Lambda model is its ability to quickly and automatically scale
the number of workers when load suddenly increases. To demonstrate this, we compare AWS
Lambda to a container-based server platform, AWS Elastic Beanstalk (hereafter Elastic BS).
On both platforms we run the same benchmark for one minute: the workload maintains 100
outstanding RPC requests and each RPC handler spins for 200 ms.

Figure 2 shows the result: an RPC using AWS Lambda has a median response time of only
1.6 sec, whereas an RPC in Elastic BS often takes 20 sec. While AWS Lambda was able
to start 100 unique worker instances within 1.6 sec to serve the requests, all Elastic BS
requests were served by the same instance; as a result, each request in Elastic BS had to wait
behind 99 other 200 ms requests.

Venkat Venkataramani is
the CEO and co-founder of
Rockset, an infrastructure
startup based in Menlo Park
building a high performance

cloud-first data service. Prior to Rockset, he
was an Engineering Director in the Facebook
infrastructure team responsible for all online
data services that stored and served Facebook
user data. Before Facebook, he worked at
Oracle on the RDBMS for 5+ years after
receiving his master’s degree at UW-Madison.
venkat@rockset.io

Andrea Arpaci-Dusseau is a
Full Professor of Computer
Sciences at the University
of Wisconsin-Madison.
She is an expert in file and

storage systems, having published more
than 80 papers in this area, co-advised 19
PhD students, and received nine Best Paper
awards; for her research contributions, she was
recognized as a UW-Madison Vilas Associate.
She also created a service-learning course
in which UW-Madison students teach CS to
more than 200 elementary-school children
each semester. dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Full Professor in the Computer
Sciences Department at the
University of Wisconsin-
Madison. He co-leads a

group with his wife, Professor Andrea
Arpaci-Dusseau. They have graduated 19
PhD students in their time at Wisconsin, won
nine Best Paper awards, and some of their
innovations now ship in commercial systems
and are used daily by millions of people. Remzi
has won the SACM Student Choice Professor
of the Year award four times, the Carolyn
Rosner “Excellent Educator” award, and the
UW-Madison Chancellor’s Distinguished
Teaching award. Chapters from a freely
available OS book he and Andrea co-wrote,
found at http://www.ostep.org, have been
downloaded millions of times in the past few
years. remzi@cs.wisc.edu

Figure 1: Evolution of sharing. Gray layers are shared.

16    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Serverless Computation with OpenLambda

AWS Lambda also has the advantage of not requiring configura-
tion for scaling. In contrast, Elastic BS configuration is complex,
involving 20 different settings for scaling alone. Even though we
tuned Elastic BS to scale as fast as possible (disregarding mone-
tary cost), it still failed to spin up new workers for several minutes.

OpenLambda Overview
We now introduce OpenLambda, our open-source implemen-
tation of the Lambda model. Figure 3 illustrates how various
servers and users interact in an OpenLambda cluster during the
upload of a Lambda function F and a first call to that function.
First, a developer uploads the Lambda code to the Lambda ser-
vice, which stores it in a code store. Second, a client may issue an
RPC to the service, via AJAX, gRPC, or some other protocol. A
load balancer must decide which worker machine should service
the request. In order to implement certain locality heuristics,
the balancer may need to request the RPC schema from the code
store in order to perform deep inspection on the RPC fields.

The OpenLambda worker that receives the request will then
fetch the RPC handling code from the code store if it is not
already cached locally. The worker will initialize a sandbox in
which to run the handler. The handler may issue queries to a dis-
tributed database; if the balancer and database are integrated,
this will hopefully involve I/O to a local shard.

There are different ways to implement worker sandboxes, but
OpenLambda, like AWS Lambda, currently uses containers. Fig-
ure 4 shows how the Lambda model avoids common overheads
faced by standard container use cases. Normally, each applica-
tion runs inside a container, with its own server and runtime
environment. Thus, application startup often involves deploying
runtime engines to new machines and starting new servers. In
contrast, servers run outside the containers with the Lambda
model, so there is no server spinup overhead. Furthermore, many
applications will share a small number of standard runtime
engines. Although multiple instances of those runtime engines
will run in each sandbox, the runtime engine code will already
be on every worker, typically in memory.

Tutorial: Running OpenLambda in development mode (with
only a worker and no load balancer or code store) is relatively
simple in our current pre-release:

build and run standalone OL worker

curl -L -O https://github.com/open-lambda/open-lambda/archive

/v0.1.1.tar.gz

tar -xf v0.1.1.tar.gz

cd open-lambda-0.1.1

./quickstart/deps.sh

make

./bin/worker quickstart/quickstart.json

from another shell, issue AJAX w/ curl

curl -X POST localhost:8080/runLambda/hello -d

‘{“name”:”alice”}’

Code for new handlers can be written in the ./quickstart

/handlers directory, but the worker must be restarted upon a
handler update. RPC calls can be issued via AJAX curl POSTs,
with the URL updated to reflect the handler name. Directions
for running a full OpenLambda cluster are available online:
https://www.open-lambda.org.

Research Agenda
We now explore a few of the new research problems in the
serverless-computing space.

Lambda Workloads
Characterizing typical Lambda workloads will be key to the
design of OpenLambda and other serverless compute platforms.
Unfortunately, the Lambda model is relatively new, so there are
not yet many applications to study. However, we can anticipate
how future workloads may stress Lambda services by analyzing
the RPC patterns of existing applications.

In this section, we take Google Gmail as an example and study
its RPC calls during inbox load. Gmail uses AJAX calls (an RPC
protocol based on HTTP requests that uses JSON to marshal
arguments) to fetch dynamic content.

Figure 5 shows Gmail’s network I/O over time, divided between
GETs and POSTs. Gmail mostly uses POSTs for RPC calls
and GETs for other requests; the RPC calls represent 32% of
all requests and tend to take longer (92 ms median) than other
requests (18 ms median).

Figure 2: Response time. This CDF shows measured response times from
a simulated load burst to an Elastic BS application and to an AWS Lambda
application.

Figure 3: OpenLambda architecture. A new Lambda handler is uploaded,
then called.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  17

SYSTEMS
Serverless Computation with OpenLambda

The average time for short RPCs (those under 100 ms) is only
27 ms. Since we only trace latency on the client side, we cannot
know how long the requests were queued at various stages; thus,
our measurements represent an upper bound on the actual time
for the RPC handler. On AWS Lambda, charges are in incre-
ments of 100 ms, so these requests will cost at least 3.7x more
than if charges were more fine-grained.

We also see a very long request that takes 231 seconds, cor-
responding to 93% of the cumulative time for all requests. Web
applications often issue such long-lived RPC calls as a part of a
long polling technique. When the server wishes to send a mes-
sage to the client, it simply returns from the long RPC [2]. Unless
Lambda services provide special support for these calls, idle
handlers will easily dominate monetary costs.

Execution Engine
In the motivation section, we saw that Lambdas are far more
elastic than containers. Unfortunately, under steady load,
containers tend to be faster. In our experiments [5], Elastic BS
request latencies are an order of magnitude shorter that AWS
Lambda latencies. If Lambdas are to compete with VM and con-
tainer platforms, base execution time must be improved.

Optimizing sandbox initialization and management is key to
improving Lambda latencies. For example, AWS Lambda reuses
the same sandbox for different calls when possible to amortize
startup costs; between requests, containers are maintained in a
paused state [10].

Unfortunately, there are difficult tradeoffs regarding when to
garbage-collect paused containers. Resuming a paused con-
tainer is over 100x faster than starting a new container, but
keeping a container paused imposes the same memory overheads
as an active container [5]. Reducing the time cost of fresh starts
and reducing memory overheads of paused containers are both
interesting challenges.

Interpreted Languages
Most Lambdas are written in interpreted languages. For perfor-
mance, the runtimes corresponding to these languages typically
have just-in-time compilers. JIT compilers have been built for
Java, JavaScript, and Python that optimize compiled code based
on dynamic profiling or tracing.

Applying these techniques with Lambdas is challenging
because a single handler may run many times over a long period
in a Lambda cluster, but it may not run long enough on any
one machine to provide sufficient profiling feedback. Making
dynamic optimization effective for Lambdas may require shar-
ing profiling data between different Lambda workers.

Package Support
Lambdas can rapidly spin up because customers are encouraged
to use one of a few runtime environments; runtime binaries will
already be resident in memory before a handler starts. Of course,
this benefit disappears if users bundle large third-party libraries
inside their handlers, as the libraries need to be copied over the net-
work upon a handler invocation on a new Lambda worker. Lazily
copying packages could partially ameliorate this problem [4].

Alternatively, the Lambda platform could be package aware [7]
and provide special support for certain popular package reposi-
tories, such as npm for Node.js or pip for Python. Of course, it
would not be feasible to keep such large (and growing) reposito-
ries in memory on a single Lambda worker, so package aware-
ness would entail new code locality challenges for scheduling.

Cookies and Sessions
Lambdas are inherently short-lived and stateless, but users typi-
cally expect to have many different but related interactions with
a Web application. Thus, a Lambda platform should provide a
shared view of cookie state across calls originating from a com-
mon user.

Furthermore, during a single session, there is often a two-way
exchange of data between clients and servers; this exchange
is typically facilitated by WebSockets or by long polls. These
protocols are challenging for Lambdas because they are based on
long-lived TCP connections. If the TCP connections are main-
tained within a Lambda handler, and a handler is idle between
communication, charges to the customer should reflect the

Figure 4: Container usage. The dashed lines represent container boundaries.

Figure 5: Google Gmail. Black bars represent RPC messages; gray bars
represent other messages. The bar ends represent request and response
times. The bars are grouped as POSTs and GETs; vertical positioning is
otherwise arbitrary.

18    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Serverless Computation with OpenLambda

fact that the handler incurs a memory overhead, but consumes
no CPU. Alternatively, if the platform provides management of
TCP connections outside of the handlers, care must be taken to
provide a new Lambda invocation with the connections it needs
that were initiated by past invocations.

Databases
There are many opportunities for integrating Lambdas with
databases. Most databases support user-defined functions
(UDFs) for providing a custom view of the data. Lambdas that
transform data from a cloud database could be viewed as UDFs
that are used by client-side code. Current integration with S3
and DynamoDB also allows Lambdas to act as trigger handlers
upon inserts.

A new change feed abstraction is now supported by RethinkDB
and CouchDB; when an iterator reaches the end of a feed, it
blocks until there is more data, rather than returning. Sup-
porting change feeds with Lambdas entails many of the same
challenges that arise with long-lived sessions; a handler that
is blocked waiting for a database update should probably not
be charged the same as an active handler. Change-feed batch-
ing should also be integrated with Lambda state transitions;
it makes sense to batch changes for longer when a Lambda is
paused than when it is running.

Relaxed consistency models should also be re-evaluated in the
context of RPC handlers. The Lambda compute model intro-
duces new potential consistency boundaries, based not on what
data is accessed, but on which actor accesses the data. For
example, an application may require that all RPC calls from the
same client have a read-after-write guarantee, but weaker guar-
antees may be acceptable between different clients, even when
those clients read from the same entity group.

Data Aggregators
Many applications (search, news feeds, and analytics) involve
search queries over large datasets. Parallelism over different
data shards is key to efficiently supporting these applications.
For example, with search, one may want to scan many inverted
indexes in parallel and then gather and aggregate the results.

Building these search applications will likely require special
Lambda support. In particular, in order to support the scatter/
gather pattern, multiple Lambdas will need to coordinate in a
tree structure. Each leaf Lambda will filter and process data
locally, and a front-end Lambda will combine the results.

When Lambda leaves are filtering and transforming large
shards, it will be important to co-locate the Lambdas with the
data. One solution would be to build custom datastores that
coordinate with Lambdas. However, the diversity of aggregator

applications may drive developers to use variety of platforms for
preprocessing the data (for example, MapReduce, Dryad, or Pre-
gel). Thus, defining general locality APIs for coordination with a
variety of backends may be necessary.

Load Balancers
Previous low-latency cluster schedulers (such as Sparrow [9])
target tasks in the 100 ms range. Lambda schedulers need to
schedule work that is an order of magnitude shorter, while
taking several types of locality into account. First, schedulers
must consider session locality: if a Lambda invocation is part
of a long-running session with open TCP connections, it will
be beneficial to run the handler on the machine where the TCP
connections are maintained so that traffic will not need to be
diverted through a proxy.

Second, code locality becomes more difficult. A scheduler that
is aware that two different handlers rely heavily on the same
packages can make better placement decisions. Furthermore,
a scheduler may wish to direct requests based on the varying
degrees of dynamic optimization achieved on various workers.

Third, data locality will be important for running Lambdas
alongside either databases or large datasets and indexes. The
scheduler will need to anticipate what queries a particular
Lambda invocation will issue, or what data it will read. Even
once the scheduler knows what data a Lambda will access
and where the replicas of the data reside, further communica-
tion with the database may be beneficial for choosing the best
replica. Many new databases (such as Cassandra or MongoDB)
store replicas as LSM trees. Read amplifications for range reads
can range from 1x to 50x [6] on different replicas; an integrated
scheduler could potentially coordinate with database shards to
track these varying costs.

Cost Debugging
Prior platforms cannot provide a cost-per-request for any
service. For example, applications that use virtual machine
instances are often billed on an hourly basis, and it is not obvi-
ous how to divide that cost across the individual requests over
an hour. In contrast, it is possible to tell exactly how much each
individual RPC call to a Lambda handler costs the cloud cus-
tomer. This knowledge will enable new types of debugging.

Currently, browser-based developer tools enable performance
debugging: tools measure page latency and identify problems by
breaking down time by resource. New Lambda-integrated tools
could similarly help developers debug monetary cost: the exact
cost of visiting a page could be reported, and breakdowns could
be provided detailing the cost of each RPC issued by the page as
well as the cost of each database operation performed by each
Lambda handler.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  19

SYSTEMS
Serverless Computation with OpenLambda

Legacy Decomposition
Breaking systems and applications into small, manageable sub-
components is a common approach to building robust, parallel
software. Decomposition has been applied to operating systems,
Web browsers, Web servers, and other applications. In order to
save developer effort, there have been many attempts to auto-
mate some or all of the modularization process.

Decomposing monolithic Web applications into Lambda-based
microservices presents similar challenges and opportunities.
There are, however, new opportunities for framework-aware
tools to automate the modularization process. Many Web-appli-
cation frameworks (for example, Flask and Django) use language
annotations to associate URLs with handler functions. Such
annotations would provide an excellent hint to automatic split-
ting tools that port legacy applications to the Lambda model.

Conclusion
We have seen that the Lambda model is far more elastic and
scalable than previous platforms, including container-based ser-
vices that autoscale. We have also seen that this new paradigm
presents interesting challenges for execution engines, databases,
schedulers, and other systems. We believe OpenLambda will
create new opportunities for exploring these areas. Further-
more, we hope to make OpenLambda a platform that is suitable
for actual cloud developers to deploy their serverless applica-
tions. The OpenLambda project is online at https://www
.open-lambda.org.

Acknowledgments
Feedback from the anonymous reviewers has significantly
improved this work. We also thank the members of the ADSL
research group for their helpful suggestions and comments on
this work at various stages.

This material was supported by funding from NSF grants CNS-
1421033, CNS-1319405, CNS-1218405, CNS-1419199 as well
as generous donations from EMC, Facebook, Google, Huawei,
Microsoft, NetApp, Seagate, Samsung, Veritas, and VMware.
Tyler Harter is supported by an NSF Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the views of
the NSF or other institutions.

References
[1] “AWS Lambda”: https://aws.amazon.com/lambda/, May 2016.

[2] A. Russell, Infrequently Noted (blog), “Comet: Low Latency
Data for the Browser” (blog entry), March 2006: https://
infrequently.org/2006/03/comet-low-latency-data-for-the
-browser/.

[3] J. Gray, “Why Do Computers Stop and What Can We Do
About It?” in Proceedings of the 6th International Conference
on Reliability and Distributed Databases, June 1987: http://
www.hpl.hp.com/techreports/tandem/TR-85.7.pdf.

[4] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Slacker: Fast Distribution with Lazy
Docker Containers,” in Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST 16),
pp. 181–195: https://www.usenix.org/system/files/conference
/fast16/fast16-papers-harter.pdf.

[5] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataram-
ani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Server-
less Computation with OpenLambda,” in Proceedings of the
8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’16): https://www.usenix.org/system/files
/conference/hotcloud16/hotcloud16_hendrickson.pdf.

[6] L. Lu, T. Sankaranarayana Pillai, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “WiscKey: Separating Keys from
Values in SSD-Conscious Storage,” in Proceedings of the
14th USENIX Conference on File and Storage Technologies
(FAST ’16), pp. 133–148: https://www.usenix.org/system/files
/conference/fast16/fast16-papers-lu.pdf.

[7] M. Boyd, “Amazon Debuts Flourish, a Runtime Appliction
Model for Serverless Computing”: http://thenewstack.io
/amazon-debuts-flourish-runtime-application-model
-serverless-computing/, May 2016.

[8] D. Merkel, “Docker: Lightweight Linux Containers for
Consistent Development and Deployment,” Linux Journal,
2014, no. 239: https://www.linuxjournal.com/content
/docker-lightweight-linux-containers-consistent-
development-and-deployment.

[9] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Spar-
row: Distributed, Low Latency Scheduling,” in Proceedings of
the 24th ACM Symposium on Operating Systems Principles
(ACM, 2013): https://people.csail.mit.edu/matei/papers/2013
/sosp_sparrow.pdf.

[10] T. Wagner, AWS Compute Blog, “Understanding Con-
tainer Reuse in AWS Lambda,” December 2014: https://aws
.amazon.com/blogs/compute/container-reuse-in-lambda/.

