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Abstract—Microservices are usually fast to deploy because each

microservice is small, and thus each can be installed and

started quickly. Unfortunately, lean microservices that depend

on large libraries will start slowly and harm elasticity. In this

paper, we explore the challenges of lean microservices that rely

on large libraries in the context of Python packages and the

OpenLambda serverless computing platform. We analyze the

package types and compressibility of libraries distributed via

the Python Package Index and propose PipBench, a new tool

for evaluating package support. We also propose Pipsqueak, a

package-aware compute platform based on OpenLambda.

1. Introduction

Cloud computing has democratized scalability: individ-
ual developers can now create applications that leverage
thousands of machines to serve millions of users. Beyond
simple scalability, though, many modern web applications
also require elasticity, the ability to scale quickly. Highly
elastic applications can rapidly respond to load changes,
both saving money under light traffic and taking advantage
of flash crowds and other opportunities [6, 11].

Elasticity depends on fast deployment. An application
will not be able to gracefully serve a sharp load burst if
it must first provision new virtual machines and perform
lengthy software installations.

Deployment stresses every type of resource: code pack-
ages are copied over the network, packages are decom-
pressed by the CPU, the decompressed files are written to
disk, and application code and state must be loaded into
cold memory. All of these costs directly correlate with the
size of the deployment bundle; a smaller bundle will require
less network and disk I/O, will be faster to decompress, and
will require less space when loaded into memory, resulting
in a more elastic application.

Developers are partly responsible for creating small de-
ployment bundles, but there is much that cloud providers
can do to facilitate the development of lean applications.
In particular, platforms can encourage sharing and the de-
composition of applications into smaller components. For
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Figure 1. Compute Models. A cloud service based on virtual
machines (left) is compared to a serverless platform based on
Lambdas (right).

example, Figure 1 contrasts a traditional cloud platform
based on virtual machines with a serverless platform, such
as OpenLambda [10]. Deployment of new instances of the
application on virtual machines will be slow because the
application logic is tied to the runtime and operating system.
Starting a new instance will require copying the virtual-
machine image to a new physical machine, booting the
operating system, and loading the execution runtime (e.g., a
language virtual machine, such as the JVM) into memory.

In contrast, Figure 1b shows how a Lambda-based plat-
form encourages developers to shrink their deployment bun-
dles along two dimensions. First, developers are encouraged
to reduce the vertical size of their application by building
on top of standard shared components (e.g., specific Linux
kernels and runtime environments) which can then be pre-
initialized, ready to be used by any application. Second, the
Lambda model forces developers to write their application
as a set of handlers that run in response to events. Thus,
even though the whole application may be large, individual
handler bundles will be smaller and faster to deploy.

Unfortunately, Figure 1b shows a simplistic use case



where the Lambda handlers do not depend on user-space
packages. In practice, developers rely on an assortment of
libraries to avoid implementing everything from scratch.
If a handler is distributed along with its dependencies, a
conceptually lean function will have to be deployed in a
large bundle. Executing the function on a new machine may
require copying said bundle, decompressing it, writing the
contents to local disk, and loading it into memory. It is
easy to see how such costs could dominate the latency of a
Lambda invocation. Of course, asking developers to eschew
the use of popular packages is not acceptable. Such require-
ments will surely deter adoption of serverless computing.

In response to the problem that large libraries pose for
serverless microservices, we propose Pipsqueak, a package-
aware serverless platform based on OpenLambda [10]. Pip-
squeak will cache packages from the Python Package Index
(PyPI), the primary Python repository, by maintaining a pool
of Python interpreter processes as cache entries, each of
which has a set of packages installed and already interpreted.
Each process will act as a template from which to clone
new, pre-initialized interpreters to serve requests. We explore
several new policy factors that must be considered in this
new type of cache. For example, potentially unsafe packages
impose new constraints on cache-entry selection, and the use
of copy-on-write memory between processes means that an
evictor will need to consider state shared between processes.

The rest of the paper is organized as follows. First,
we further motivate the need for a package-aware Lambda
platform (§2). Next, we describe the PyPI repository as well
as its associated package management tool, pip. (§3). We
then propose Pipsqueak, a package-aware platform based
on OpenLambda (§4). Finally, we suggest PipBench, a new
tool for evaluating performance of handlers with external
dependencies (§5) and conclude (§6).

2. Motivation: The Library Challenge

Decoupling an application from its operating system in
order to increase sharing can reduce deployment sizes by
an order of magnitude [14]. Unfortunately, modern applica-
tions rely heavily on large libraries [8] and other userspace
dependencies [9]. Bundling these dependencies with each
Lambda handler leads to bloated deployment packages and
very slow response times [1].

Figure 2a illustrates the problem. Even though the devel-
oper split the application into small functions (F1 to FN ),
dependencies on large third-party libraries such as numpy
and scipy dominate the handler sizes. During a load burst,
these packages will need to be copied and installed to many
worker machines.

One solution would be to rewrite old packages, splitting
the functionality of these large dependencies into many
smaller bundles. For example, perhaps the numerical numpy
package could be refactored as a set of Lambda handlers
(i.e., one for fast Fourier transform, one for matrices, etc.)
and used via inter-Lambda REST calls. Mass deployment of
these monolithic libraries could be replaced with on-demand
deployment of only the features that are actually used.
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Figure 2. Library Support. Without special library support, pack-
ages will need to be installed in each Lambda handler (left),
creating large deployment bundles. With package support (right),
a common repository of packages can be shared between different
handlers. The shaded boxes represent packages.

Unfortunately, refactoring the packages of all the popular
language repositories would be no small task, and relying
on Lambda-specific implementations limits the flexibility
afforded to developers.

Instead, we propose building package support as part
of the serverless platform, as shown in Figure 2b. In this
design, the platform would support a set of language-specific
libraries (e.g., the PyPI repository) and track which are
required by each handler. This type of dependency aware-
ness would allow the serverless platform to share packages
between handlers belonging to different customers. It would
also allow a subset of requests to be handled by workers with
required packages in a hot state (i.e., already installed, and
possibly in memory) for increased performance. In a later
section, we describe our plans to implement support for the
PyPI repository in OpenLambda (§4).

3. A Study of Python Packages

Most modern scripting languages now have large repos-
itories of popular packages and tools for easily installing
packages and their dependencies [17]. Ruby has RubyGems,
NodeJS has npm, and Python has PyPI. In order to under-
stand common package characteristics and usage patterns,
we plan to analyze the Python packages distributed via the
PyPI repository. Toward this end, we have set up a PyPI
mirror, downloading a copy of the entire repository.

Figure 3 shows the total size of the PyPI packages (as of
March 19, 2017); simply downloading the packages requires
466 GB. However, most packages are compressed as .tar.gz

files or with a zip based format (.whl, .egg, or .zip). In
uncompressed form, the cumulative size of the packages is
1.3 TB. We observe that the simple .tar.gz packages are more
popular than the Python-specific .egg and .whl files. Across
the bars, the number of compressed subfiles is about 100×
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Figure 3. PyPI Mirror. The logical size of a PyPI mirror (excluding
directory entries) is shown, compressed and uncompressed. The
sizes are broken down by file type. The number of files in a category
are shown at the bar ends. Data was collected on March 19, 2017.

greater than the number of files, indicating that a typical
packages will contain about 100 files.

Implications: The PyPI repository is too large to cache
in memory on every worker machine in a serverless cluster.
Uncompressed, the packages are over 1 TB, which is also
too large to store on SSDs on every worker at low cost.

4. Pipsqueak: Package-Aware Lambdas

In this section, we propose Pipsqueak: a new package
caching mechanism in OpenLambda [10]. We first describe
the different levels of caching that are possible (§4.1) and
discuss security requirements (§4.2). We then describe the
basic mechanism for caching (§4.3) as well as new policy
decisions to be made at the local and cluster levels (§4.4).

4.1. Startup Costs

If a package is being used by a handler for the first time
(i.e., there is no cached state to rely on), the following steps
will be necessary:

Download: Fetching the compressed packages from a
repository mirror in the cluster may be necessary. This will
consume both network bandwidth and SSD resources on
the worker. It is conceivable that all the packages could be
stored locally on every worker compressed (466 GB), but
using that amount of SSD capacity would be costly.

Install: Packages are normally compressed, so they will
need to be decompressed and written to disk before they
can be used. Furthermore, some packages (e.g., numpy)
have extensions written in C, so installation may require a
compile phase. Installation is guided by a setup.py script
that the developer provides, and this script may execute
arbitrary code, so there may be other steps we do not
describe here that are specific to individual packages.

Import: Importing a module within a package involves
executing the __init__.py script in the root of the
directory, often involving defining functions and importing
other modules. Thus, there will be a CPU cost to gener-
ating Python bytecode. Furthermore, __init__.py may

execute arbitrary code, including calls into other languages
such as C.

In order to be able to quickly execute a new handler, we
would like to have its necessary packages already down-
loaded, installed, and imported. Our measurements (§3)
suggest it is not practical to have every package initialized
in this way on every worker machine, so a caching policy
will dictate which packages are pre-initialized.

4.2. Security Assumptions

We assume that handler code may be malicious. We
further assume that PyPI packages may be malicious. In
practice, Tschacher [17] showed that it is easy to upload ma-
licious packages to the most popular repositories for Python
(PyPI), NodeJS (npm), and Ruby (RubyGems). While one
could imagine vetting packages that are included in such a
repository, doing so on such a large and rapidly growing
body of code would be nontrivial.

With respect to the steps described earlier (§4.1), we
assume downloading packages is safe since it only involves
copying files. We assume installation and importing, how-
ever, may be malicious, as these steps may involve executing
arbitrary code submitted by a malicious user. These assump-
tions lead to three design decisions:

1) Package installation and importation must always
be performed in a sandboxed (e.g., containerized)
environment in order to protect the host worker.

2) In order to protect users from malicious packages,
a handler H must never be allowed to run in an
environment where package P has been imported
or installed, unless handler H depends on P .

3) We provide no protection guarantees to a handler
that chooses to import a malicious package. For
example, it is acceptable for information to leak
between the handlers belonging to different cus-
tomers if the handlers import the same malicious
package. Note that this problem is not unique to a
serverless computing environment [17].

4.3. Cache Mechanism: Interpreter Forking

Our goal is to able to quickly provision a new Python
interpreter for a handler, pre-initialized with the packages
the handler needs downloaded, installed, and imported into
memory. More generally, we need to acquire a mostly
initialized process without paying the cost of starting a new
interpreter and loading a variety of dependencies. Thus, we
plan to build our interpreter cache as a collection of paused
Python processes, each with a different set of packages
already imported. Using a cache entry will simply involve
calling fork from a cache entry to allocate a new, pre-
initialized interpreter process to run the handler code.

This basic design is complicated by security concerns.
First, user code may be malicious, so when the engine forks
a new process from a cache entry, that new process will have
to join a new container. Second, packages are also assumed
to be malicious, so cache entries will also need to be isolated



in containers. Thus, a newly forked interpreter will need to
be horizontally relocated from one container to another. The
steps to provision a pre-initialized interpreter and use it to
run handler code in service of an event E will be as follows:

1) Select a cache entry; let Pparent and Ccache be
process and container corresponding to the entry

2) Wake up the Pparent process and signal it to fork
a new child interpreter process, Pchild

3) Allocate a container Chandler

4) Map the handler-specific code into Chandler

5) Relocate Pchild from Ccache to Chandler

6) Forward the event E to process Pchild

We plan to implement the above logic using containers
in a Linux environment. In Linux, a container consists of
a set resource limits (applied to sets of processes called
cgroups) and namespaces. The APIs for moving a process
to a namespace or cgroup in Linux resemble the following:

// set up namespaces:

setns(namespace_fd, ...);

// set up resource limits:

write(cgroup_fd, <PID>, ...);

In the above code, both the namespace_fd and
cgroup_fd descriptors are obtainable with open() calls
to various paths in a pseudo file system.

One advantage of the cgroup interface is that it can
be applied to an arbitrary process. Thus, the OpenLambda
engine running on the host can move any process to any
cgroup, without cooperation from the process being moved.

In contrast, the setns (set namespace) call moves the
calling process to the specified namespace, so the engine
cannot call setns on behalf of another process. Thus, the
newly forked process will be in a container, so it will not
be able to obtain descriptors to another container without
assistance. We plan to work around this by implementing a
capability-passing mechanism that allows the OpenLambda
engine to provide a newly forked process in a caching
container with a descriptor, which it can then use to move
itself to a handler container.

Figure 4 illustrates how our design works as it provisions
a handler H that relies on packages A and B. The engine
first provisions a container for the new handler, and obtains
file descriptor references to the namespaces and cgroups for
that container. It then selects a cache entry that already has
packages A and B imported. It sends a “move” signal to the
cache-entry process, which will fork a child, and use the file
descriptors from the engine to move the child to the newly
provisioned container. Observe that some cache entries (e.g.,
the “A,B” entry) may have been provisioned from parent
cache entries that had a subset of packages already imported
(e.g., the “A” entry).

Security: We assume packages may be malicious. The
cache-entry interpreter may have already imported one or
more packages, and those packages may have modified our
in-container wrappers to retain references to the cache-entry
container. Such behavior would undermine data isolation
between different customers initialized from the same cache
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Figure 4. Interpreter Caching Mechanism. Circles represent pro-
cesses, solid rectangles represent containers, and dashed rect-
angles represent collections of containers. A ”join” operation
consists of entering the namespaces and cgroups of the destination
container, and it is assumed that the “A,B” entry has already been
created via the dashed arrow operations.

entry. This outcome is acceptable, though, as we make no
guarantees in the case that a customer chooses to import a
malicious package. This means that it is only safe to use a
cache entry if the packages imported by the entry are known
to be safe or the handler chooses to use them.

4.4. Cache Policy: Tree Management

In the previous section, we described a mechanism for
caching initialized modules in sleeping Python interpreters.
In this section, we discuss the broad issues that must be
considered when implementing a corresponding policy.

Tree Cache: The engine will fork a cached process
in order to obtain an initialized Python interpreter with
certain packages already imported. Sometimes a cache entry
may be forked from another cache entry; in this case, the
child is able to import further packages in addition to those
imported by its parent. The use of fork creates parent/child
relationships between cache entries. Within the kernel, this
means that copy-on-write will enable sharing of physical
pages between processes, reducing memory costs [4, Ch 23].
The use of processes as cache entries in this way means that
the cache will resemble a tree, mirroring the process tree,
as shown in Figure 5. This structure has implications for
candidate selection and eviction.

Candidate Selection: Suppose (in the context of Fig-
ure 5) that a handler is invoked that requires packages A and
B. It is tempting to select Entry 4 to use as the template
for our new interpreter; this would be fastest because all
the requisite packages are already imported. However, what
happens if package C is malicious? In this case, we expose
the handler to code that it did not voluntarily import. Unless
packages are vetted for safety, we must select a cache entry
that has imported a subset of the packages needed by a
handler. Note that partial performance benefits could be
achieved by partial vetting: if a cloud provider vetted some
packages (in this case C) but not others (e.g., X), it would
be possible to use Entry 4 in our example.
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Figure 5. Tree Cache. Circles represent cache entries, which are
sleeping processes. Sets of letters indicate the packages imported
by a process; parenthetical numbers are used to identify an entry.
Arrows represent the parent-child relationships between processes
that result from our use of forking.

If we suppose that packages are not vetted, cache Entries
2 and 3 are still reasonable candidates. Choosing between
multiple viable options could be guided by performance
metadata that describes typical install and import times for
each package. This would allow the engine to select the
interpreter template that has already completed the most
initialization work.

Eviction: Eviction policies typically select entries to
evict as needed to reclaim resources on an individual basis.
Unfortunately, such local decision making will often be
insufficient in the context of a tree cache. Suppose (again
in the context of Figure 5) that the engine is considering
entries 3, 5, and 6 for eviction. Further suppose that Package
B is very large, but Packages X and Y are both small. The
memory consumed by B is shared between the three entries,
so evicting only one or two of the entries will not com-
pletely reclaim that space. This leads to a scenario where
the amount of space that would be reclaimed by evicting
all three entries together will be greater than the sum of
the reclaimed space from evicting each entry individually.
We expect similar situations to arise frequently in practice,
rendering greedy eviction algorithms ineffective.

Global Scheduling: Our discussion so far has focused
on the cache tree of a single worker machine. Of course,
in a real cluster deployment, there will be many worker
machines, each of which will have its own tree cache. A
global load balancer will need to decide which workers
should handle which requests. To do so effectively, an effec-
tive balancer must consider the local cache state of worker
machines in addition to monitoring load distribution [13].

Maintaining such knowledge at the balancer level is non-
trivial. In addition to knowing which packages have recently
been required by a given worker, a balancer would benefit
from awareness of local caching decisions. For example,
if a worker has recently used package X , did the cached
interpreter import other packages at the same time? If so, the
subset-only security rule means that certain handlers using
X will not be able to benefit from the cache entry. Deciding
what cache information should be shared between workers
and balancers will be a key research challenge for package-
aware platforms.
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Figure 6. Pip Workflows. The flow of packages from the web, to
a local mirror, and finally to a client is shown. Dashed lines
represent network boundaries. The shaded box represents our
planned contribution.

5. Evaluation: PipBench

In order to evaluate library support in Pipsqueak and
other package-aware microservice platforms, new bench-
marking tools are required. Towards that end, we propose
PipBench, a new tool for generating artificial packages and
workloads that utilize said packages. PipBench will consist
of two pieces: a server and a client. The server will act as a
PyPI package mirror [2] containing artificial packages, and
the client will generate requests to Lambda handlers which
import the artificial packages in the mirror.

Figure 6 illustrates a typical flow of packages from
the web to a client that is performing an install. First, a
pip mirroring utility called bandersnatch executes regularly,
fetching packages from the web, and storing them in com-
pressed form to a directory in the local file system. The
directory tree populated by bandersnatch may then be hosted
by a generic HTTP server. Pip clients pull packages from
the server, decompress them, and write them to the local file
system of the client.

One option in designing the server piece of PipBench
would be to take a snapshot of an actual PyPI mirror.
Unfortunately, such snapshots are unwieldy (hundreds of
gigabytes), and their static nature limits benchmarkers to
characteristics already observed in the repository.

PipBench will instead populate a PyPI mirror directory
with artificial, automatically-generated packages. As such,
PipBench will be a file system image generation tool. The
images generated will include compressed package archives,
each containing executable Python files (including install
scripts) and other assets. Benchmarking tools for gener-



ating images must consider which file characteristics are
important and should resemble real file system images; for
example, Impressions [3] reproduces aged file systems, and
SDGen reproduces compressibility patterns [7].

Files in each package of the image will vary in size
and quantity. Their characteristics will be specifiable via
configurable distributions, but choosing configurations that
meaningfully resemble real packages will be challenging.
Thus, we will make it possible to templatize real packages to
emulate their directory structure, file sizes, and dependencies
on other packages. PipBench will then be able to create a
realistic testing environment by populating the image with
new, artificial packages stamped from such templates.

We also plan to inform the design of PipBench by
studying how packages are used in practice. In particular,
we hope to understand the dependency structure between
packages by analyzing the PyPI repository and package
popularity by analyzing Python projects on GitHub.

6. Conclusion

“Speed wins in the marketplace.”

– Adrian Cockcroft [5]

Services that can be rapidly designed, implemented, and
deployed have an important competitive advantage over their
slower counterparts. Many different software engineering
methodologies ultimately suggest the same approach to
achieving higher velocity: to be fast, one must be small.
The lean-startup approach dictates that in order to quickly
iterate on product ideas, one must build and evaluate a
series of minimum-viable products [15], the Agile devel-
opment methodology dictates that in order to efficiently
develop software, one must deliver minimal improvements
frequently [16], and the microservice model dictates that
in order to deploy software rapidly, one must decompose
applications into minimal, easily deployable services [12].

This paper explores a dilemma in which minimizing
work in one area creates more in another. In particular,
engineers often minimize development time by leveraging
existing libraries instead of writing everything from scratch.
Unfortunately, this dependence can make a software bun-
dle large and slow to deploy; in this case, increasing the
development velocity decreases deployment performance.

We explore this problem in the context of Python pack-
ages used by OpenLambda handlers. We propose building
support for the PyPI repository directly into the Open-
Lambda platform. Making the system aware of packages
will make it possible to share libraries between different
handlers. Containers have already enabled the sharing of
kernel-space subsystems between containers (e.g., file sys-
tems and networking stacks); sharing of more user-space
resources is the next logical step towards greater efficiency.
We believe Pipsqueak will afford developers the conve-
nience of large libraries without sacrificing the performance
of fast, lean Lambda handlers.
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