Fast and Flexible
Containerization with Pipsqueak

Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter*,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

* Microsoft Gray Systems Lab

OpenLambda

WISCONSIN
UNIVERSITY OF WISCONSIN–MADISON
Containers in the Cloud

(1) Traditional Server Containers
- Runtime & server deployed as a container
- Flexible runtime, but **slow** startup

(2) Serverless Computing
- Containers/customers **share** a host server
- Fast startup, but **inflexible** runtime
Containers in the Cloud

(1) Traditional Server Containers
- Runtime & server deployed as a container
- Flexible runtime, but slow startup

(2) Serverless Computing
- Containers/customers share a host server
- Fast startup, but inflexible runtime

(2’) Pipsqueak - Flexible Serverless
- Secure, built-in package support
- 9-2000x speedups for single-package workloads
Containers in the Cloud

(1) Traditional Server Containers
- Runtime & server deployed as a container
- Flexible runtime, but slow startup

(2) Serverless Computing
- Containers/customers share a host server
- Fast startup, but inflexible runtime

(2‘) Pipsqueak - Flexible Serverless
- Secure, built-in package support
- 9-2000x speedups for single-package workloads
Microservices

- Applications are decoupled into modular pieces, or “services”
- Services are lightweight, making deployment and scaling less painful
Microservices

- Applications are decoupled into modular pieces, or “services”
- Services are lightweight, making deployment and scaling less painful
 - Or are they?
Microservices

- Applications are decoupled into modular pieces, or “services”
- Services are lightweight, making deployment and scaling less painful
 - Or are they?
 - *Problem*: developers depend on many userspace libraries
Microservices

- Applications are decoupled into modular pieces, or “services”
- Services are lightweight, making deployment and scaling less painful
 - Or are they?
 - *Problem*: developers depend on many userspace libraries

Matplotlib installation:
- **4.37s** to download
- **5.24s** to install
- **0.21s** to import
Microservices - MicroMonoliths

- Applications are decoupled into modular pieces, or “services”
- Services are lightweight, making deployment and scaling less painful
 - Or are they?
 - Problem: developers depend on many userspace libraries

Matplotlib installation:
- 4.37s to download
- 5.24s to install
- 0.21s to import

MicroMonolith - a conceptually small service that is inflated by large userspace libraries
Outline

Motivation

Python Packages
● Anatomy
● Analysis

Pipsqueak
● Handler cache
● Import cache

Evaluation

Conclusion
Installation Workflow

Download

numpy.tar.gz
requests.tar.gz
matplotlib.tar.gz
...

pip mirror

Install

Unpack archive
Run setup.py

Import

Run __init__.py
Installation Workflow

Download

- numpy.tar.gz
- requests.tar.gz
- matplotlib.tar.gz
- ...

pip mirror

Install

- Unpack archive
- Run setup.py

Import

- Run __init__.py
Install

archive

main.py
other.py
ext.c
setup.py

unpack

gcc

main.py
other.py
ext.so

install dir

run

setup.py

run
Install

archive

main.py
other.py
ext.c
setup.py

unpack

gcc

run

main.py
other.py
ext.so

install dir

run

setup.py

write

other dir

!!!

archive

main.py
other.py
ext.c
setup.py

unpack

gcc

run

setup.py

write

other dir

!!!
Installing pip packages must be considered **unsafe**
Installation Workflow

Download

numpy.tar.gz
requests.tar.gz
matplotlib.tar.gz
...

pip mirror

Install

Unpack archive
Run setup.py

Import

Run __init__.py
Import

1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run __init__.py for the module and its dependencies
Import

1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run `__init__.py` for the module and its dependencies

Run arbitrary Python code, C code, etc
Import

1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run `__init__.py` for the module and its dependencies

Run arbitrary Python code, C code, etc

Would you trust these packages?
Import

1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run `__init__.py` for the module and its dependencies

Run arbitrary Python code, C code, etc

Would you trust these packages?
- “itsdangerous”
- “bugs-everywhere”
- “cocaine-tools”
Import

1. Search for the named module
2. Bind the module’s metadata to the symbol table
3. Run `__init__.py` for the module and its dependencies

Run arbitrary Python code, C code, etc

Would you trust these packages?
- “itsdangerous”
- “bugs-everywhere”
- “cocaine-tools”

Importing pip packages must be considered **unsafe**
Outline

Motivation

Python Packages
 ● Anatomy
 ● Analysis

Pipsqueak
 ● Handler cache
 ● Import cache

Evaluation

Conclusion
Python Package Analysis

Analysis Questions

● What startup costs are associated with popular packages?
● How large are pip packages?
Python Package Analysis

Analysis Questions

● What startup costs are associated with popular packages?
● How large are pip packages?

Methodology

● Scraped 876K GitHub Python repositories and parsed import statements from all included .py files
● Setup mirror of pip repository (834K total packages)
Python Package Analysis

Analysis Questions
● What startup costs are associated with popular packages?
● How large are pip packages?

Methodology
● Scraped 876K GitHub Python repositories and parsed import statements from all included .py files
● Setup mirror of pip repository (834K total packages)
Startup Costs

![Bar chart showing startup costs for various packages. The y-axis represents time in seconds, ranging from 0 to 14. Packages like pandas, twisted, scipy, matplotlib, sqlalchemy, and others are listed on the x-axis. Each package has a bar that is divided into segments representing import, install, and download times.]
Startup Costs

Average Times:
- Download: 1.6s
- Install: 2.3s
- Import: 107ms
Python Package Analysis

Analysis Questions
● What costs are associated with popular packages?
● How large are pip packages?

Methodology
● Scraped 876k GitHub Python repositories and parsed import statements from all included .py files
● Setup mirror of pip repository (834k total packages)
Pip Repository

Average Sizes:
- Uncompressed: 1.8 MB
- Compressed: 630 KB
Outline

Motivation

Python Packages
- Anatomy
- Analysis

Pipsqueak
- Handler cache
- Import cache

Evaluation

Conclusion
Pipsqueak

Package sharing serverless compute platform

- Extension of OpenLambda
- Pre-initialize download, install, and import steps

Cache pre-initialized packages/interpreters across 3 tiers:

- **Unshared memory**: paused handler containers
- **Shared memory**: interpreter prototypes with pre-imported packages
- **Shared SSD**: pre-installed packages
Three Levels of Caching

Handler Cache
- Reuse initialized containers *within* a customer

Import Cache
- Reuse initialized interpreters *between* customers

Install Cache
- Reuse installed packages *between* customers
Three Levels of Caching

Handler Cache
- Reuse initialized containers *within* a customer

Import Cache
- Reuse initialized interpreters *between* customers

Install Cache
- Reuse installed packages *between* customers

Small & Fast

Large & Slow

Pipsqueak Contribution
Three Levels of Caching

Small & Fast

Handler Cache
- Reuse initialized containers *within* a customer

Import Cache
- Reuse initialized interpreters *between* customers

Install Cache
- Reuse installed packages *between* customers

Large & Slow
Outline

Motivation

Python Packages
 ● Anatomy
 ● Analysis

Pipsqueak
 ● Handler cache
 ● Import cache

Evaluation

Conclusion
Handler Cache

- Each customer’s handlers need to be sandboxed in a container, but we can reuse containers for multiple requests
 - Keep recently used containers in a “paused” state
 - Inspired by AWS Lambda mechanism

- Simple LRU policy
 - Evict on memory pressure
Outline

Motivation

Python Packages
- Anatomy
- Analysis

Pipsqueak
- Handler cache
- Import cache

Evaluation

Conclusion
Import Cache

- Maintain a set of Python interpreters with packages pre-imported in a sleeping state
Import Cache

- Maintain a set of Python interpreters with packages pre-imported in a sleeping state

- Using a cache entry:
 a. Wake up & fork a sleeping Python interpreter
 b. Relocate child process into handler container
 c. Handle requests
Import Cache

- Maintain a set of Python interpreters with packages pre-imported in a sleeping state

- Using a cache entry:
 a. Wake up & fork a sleeping Python interpreter
 b. Relocate child process into handler container
 c. Handle requests

- Creating a cache entry:
 a. Wake up & fork a sleeping Python interpreter
 b. Relocate child process into cache container
 c. Import Python packages & sleep
$H_1(A)$

Import Cache

Handler Cache
Import Cache

H_1(A) → \{A\}

Handler Cache
The diagram shows an Import Cache on the left and a Handler Cache on the right. An arrow labeled $H_1(A)$ points from the Import Cache to the Handler Cache. The Import Cache contains a set $\{A\}$ and an empty set $\{}$. The Handler Cache contains an element $H_1(A)$. The dashed arrows represent the flow of information between the two caches.
$H_2(A,B)$

Import Cache

- $\{A\}$
- $\{A,B\}$

Handler Cache

- $H_1(A)$
- $H_2(A,B)$
Import Cache

{A} → {} → {A,B}

Handler Cache

\[H_1(A) \]
\[H_2(A,B) \]
Import Cache

$H_3(\{B\})$

Handler Cache

$H_1(A)$

$H_2(A,B)$
What if package ‘A’ is malicious?
What if package ‘A’ is malicious?
- “Subset only” rule
Outline

Motivation

Python Packages
- Anatomy
- Analysis

Pipsqueak
- Handler cache
- Import cache

Evaluation

Conclusion
Evaluation Questions

1. How much does package sharing improve latency?
2. How do the caching layers interact?
Microbenchmark

Not a stress test, want to examine differences in caching

Experimental Setup:

- 1 OpenLambda worker machine
- 2 random requests per second
- 100 distinct handlers, all importing the same pip package
Evaluation Questions

1. How much does package sharing improve latency?
2. How do the caching layers interact?
Microbenchmark

Latency (s)

<table>
<thead>
<tr>
<th>Package</th>
<th>Baseline</th>
<th>Import+Install</th>
</tr>
</thead>
<tbody>
<tr>
<td>matplotlib</td>
<td>72ms</td>
<td></td>
</tr>
<tr>
<td>twisted</td>
<td>10.8s</td>
<td></td>
</tr>
<tr>
<td>numpy</td>
<td>4.2s</td>
<td></td>
</tr>
<tr>
<td>flask</td>
<td>1.1s</td>
<td></td>
</tr>
<tr>
<td>simplejson</td>
<td>54ms</td>
<td>0.5s</td>
</tr>
</tbody>
</table>
Evaluation Questions

1. How much does package sharing improve latency?

2. How do the caching layers interact?
Cache Interaction

- handler hits
- import hits
- misses
- handler hits (no import cache)
Cache Interaction

handler cache

working set

= numpy memory

= handler-specific memory
Cache Interaction

- handler cache
- working set
- numpy cache entry

- = numpy memory
- = handler-specific memory
Cache Interaction

- Numpy memory
- Handler-specific memory

Handler cache

Working set

Numpy cache entry
Cache Interaction

Handler cache misses are:
- Rarer

_ = numpy memory
_ = handler-specific memory

Diagram:
- Handler cache
- Working set
- Numpy cache entry
Cache Interaction

Handler cache misses are:
- Rarer
- Faster

-(numpy memory)
- (handler-specific memory)

Diagram:
- handler cache
- working set
- numpy cache entry
Outline

Motivation

Python Packages
- Anatomy
- Analysis

Pipsqueak
- Handler cache
- Import cache

Evaluation

Conclusion
Conclusion

Problem:
- Lambda handlers are supposed to be small, but developers’ reliance on user-space libraries inflates them

Our Solution:
- Share pre-initialized packages among handlers in multi-level cache

Results:
- 9-2000x speedups for single-package workloads
Questions?