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Abstract
Debugging is difficult and costly, especially for failures that
occur after deployment. In prior work, we developed a suite
of instrumentation and analysis tools, collectively titled the
Crash Scene Investigation toolkit (CSI). These tools aid
developers by providing additional information about failing
program executions using latent data in post-failure memory
dumps. While we showed that our technique is effective
in reducing execution ambiguity, it lacked a proper user
interface for developers.

In this paper, we present CSIclipse, a work-in-progress
plugin for the Eclipse integrated development environment
(IDE) that brings our analyses directly to the user. The goal
of our plugin is to ease the burden of debugging production
failures by conveniently presenting CSI trace and analysis
data with intuitive source code overlays and powerful data
exploration mechanisms. While designed for our CSI data,
our plugin is likely general enough to support trace data from
a variety of program analyses.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques—User interfaces;
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.2.6 [Software Engineering]: Program-
ming Environments—Integrated environments

General Terms Algorithms, Languages, Human Factors

Keywords Debugging, postmortem program analysis, soft-
ware development, integrated development environments

1. Introduction
Studies indicate that debugging, testing, and verification
account for at least 50–75% of a software project’s cost
[6, 19]. Nevertheless, production-run failures are inevitable
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in complex software. Detailed crash reports can theoretically
help developers, but present some important issues. First,
gathering extremely detailed run information (at the level of
an execution trace) is infeasible in a deployed scenario due to
both performance and privacy concerns. Thus, we are forced
to be selective about what crash information to record and
report. Second, crash reports must be presented in such a way
as to be comprehensible to developers.

In our prior work [15, 16], we enhanced failure data in
core memory dumps with lightweight, customizable instru-
mentation, suitable for deployed applications. This work also
demonstrated the effectiveness of the tracing with two post-
mortem analyses focused on reducing the failure-relevant
code a developer would need to consider. Collectively, our
instrumentation and analysis framework comprises the Crash
Scene Investigation toolkit (CSI)1. Relevant details of the CSI
system are discussed in section 2.

Our prior work quantitatively demonstrated CSI’s ability
to substantially prune the suspect code a programmer must
consider (relative to unenhanced core dumps). However, CSI
lacked any visual interface to present results to developers.
In addition, prior work by Parnin and Orso [17] indicates that
mere counts of suspect lines are not always indicative of a
tool’s actual impact on debugging performance.

This paper presents CSIclipse2, a plugin for the Eclipse
IDE that is currently under active development. CSIclipse
presents CSI analysis results to developers in a convenient but
thorough manner. Specifically, CSIclipse provides support
for (1) viewing trace data and analysis results, (2) annotating
source code with execution coverage information based on
analysis results, and (3) stepping through execution trace
data. Our ultimate goal (see future work in section 5) is to
extensively evaluate our techniques with a user study; IDE
integration is a first step toward that goal.

The remainder of the paper is organized as follows. Sec-
tion 2 provides necessary background information on our
CSI framework. Section 3 discusses our design and describes
each feature of CSIclipse in more detail. We consider related

1Source code for CSI is available at http://pages.cs.wisc.edu/
~liblit/ase-2013/code/.
2Source code for CSIclipse is available at http://pages.cs.wisc.edu/
~liblit/etx-2015/code/.
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work in section 4. Section 5 details future work plans, and
section 6 concludes.

2. Background
In this section, we describe background information on CSI,
a lightweight instrumentation and analysis toolkit for C/C++

programs that we developed in prior work [15, 16]. In that
work, we augment core dumps with lightweight, tunable
run-time instrumentation. We then propose two postmortem
analyses to take advantage of the enhanced data, in addition to
information readily-available in core dumps. Here, we focus
on the details relevant to analysis presentation. See our prior
papers [15, 16] for full details.

CSI currently uses two instrumentation mechanisms to
enhance readily-available core dump data. Both mechanisms
store their trace data entirely in memory, and each can be en-
abled or disabled at function granularity by post-deployment
binary configuration. The first mechanism, path tracing, is an
extension of an efficient path profiling approach developed
by Ball and Larus [3]. Path tracing records a partial execu-
tion suffix for each traced function. These traces reside in
stack-local storage, and are discarded whenever a function
returns; thus, at the time of a crash, we are able to extract
path trace information only for traced functions in the active
program stack. Each path trace may be partial, meaning that
it represents a suffix of the complete execution path taken
through the function; in other words, each path trace ends
at the crash point (or final call site) in the frame, but may
not begin at function entry. Our second mechanism, program
coverage, complements these dense local path traces with
coarse-grained global information. Coverage is more straight-
forward: we maintain one bit of global information for each
trace point indicating whether or not that point ever executed
during the current program run. The choice of trace points
is customizable, and CSI provides support for a number of
alternatives (e.g., functions, call sites, all statements, etc.).
When used together, our path traces and program coverage
bits provide dense information close to the failure point, and
data that scales gracefully as failure exploration leaves the
active stack.

We previously proposed two analyses to take advantage
of our enhanced core dump data [15, 16], but here we focus
on just the analysis relevant for CSIclipse: execution path
restriction. The goal of our analysis is to extract execution
information for a failure report from a single failing run of
the program. Such a failing run leaves a core dump which
contains some corresponding collection of trace and coverage
data. However, this crash data is incomplete and therefore
ambiguous: multiple failing runs could yield the same data.
Therefore, the data in a core dump matches some subset of
the possible ways that a program may have run before failing.
Execution path restriction analysis partitions the nodes of a
program’s control-flow graph (CFG) into three classes: those
that execute on all runs consistent with the analyzed core

Figure 1. The CSIclipse data view. Screen shots in figures 1
to 3 show a debugging session for a crash in flex.

dump, those that execute on no such runs, and those that
execute on some subset of consistent runs. Informally, we
will often refer to these sets as “yes,” “no,” and “maybe” sets.
Beginning with the conservative approximation that all nodes
may have executed on the failing run, the goal of our analysis,
then, is to reclassify nodes into the yes and no sets (making
the maybe set as small as possible). Note that a complete
program trace would always result in an empty maybe set,
as we would directly observe all CFG nodes that did and did
not execute. CSI, however, intentionally sacrifices complete
information to reduce tracing overhead; thus, the optimal
maybe set is often non-empty.

We perform this analysis both intraprocedurally (for each
frame in the crashing program stack) and interprocedurally
(across the entire program’s execution). The result of running
our analysis on a core dump is: one global record indicating
the yes, no, and maybe sets for the entire program’s execution,
and one local record for each crashing stack frame indicating
the yes, no, and maybe sets for the current call to that function.
To better support consumers of analysis results (particularly
CSIclipse), we output CFG nodes as line numbers, and split
out data by source file; thus, each set contains a (possibly-
overlapping) set of line numbers [15, 16].

3. Design
In this section, we describe the design of CSIclipse, a plugin
for the Eclipse IDE. We have tested CSIclipse on Eclipse
versions 4.3–4.5, on a variety of Linux, OS X, and Windows
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Figure 2. Highlighting and stepping through frame-local analysis data

platforms. Screenshots from this section are taken with
Eclipse version 4.5.0. Throughout this section, we will use
an example crashing run from the program flex, which we
obtained from the Software-artifact Infrastructure Repository
[4, 18]. We analyzed the failure data from this run with our
CSI toolkit, producing result data as detailed in section 2.

The high-level goal of CSIclipse is to encourage develop-
ers to use CSI by reducing the effort required to understand
and utilize CSI trace and analysis data. CSI currently out-
puts sequences of line numbers for execution path restriction
results and each stack frame’s path trace. Developers must
map line numbers to source lines manually: a slow, tedious
process. CSIclipse automates this. First, CSIclipse annotates
source lines based on their “yes,” “no,” or “maybe” classifi-
cation, allowing developers to quickly scan source code to
determine which lines did and did not execute. Second, CSI-
clipse allows developers to directly step through path trace
data in the Eclipse source editor.

The heart of CSIclipse is the CSI Analysis Data view,
shown in figure 1. This view allows the developer to load
crash data, details all analysis data available for the provided
crash, and provides navigation for viewing different aspects
of CSI trace and analysis results. The toolbar at the top of the
view has buttons for loading crash data , toggling local
and global source code annotations, and stepping forward

and backward through path trace data (respectively). We
describe each of these functions in more detail throughout
the remainder of this section.

CSIclipse loads analysis result data in a simple comma-
separated value (CSV) format, with one record for each file
in the program’s source, and one record for each frame in the
stack trace for the crash. Each record consists of:
• a source file, f
• a “yes” set containing lines of f (optional)
• a “no” set containing lines of f (optional)
• a “maybe” set containing lines of f (optional)
• a function name (frame only)
• a path trace containing lines of f (optional; frame only)

Note that CSIclipse only maintains data for a single crash
report, corresponding to a single failing run of the program.
Upon loading a new crash report, the old data is overwritten.
After loading a crash report, the CSIclipse view displays
global and stack-local analysis results as shown in figure 1.
The Global Data section displays one entry for each source
file in the project, indicating the number of lines in that
file that definitely executed, did not execute, or may have
executed for the provided crash data. In this example, we
loaded our analysis result data from the crashing run of
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Figure 3. Annotations for global execution data

flex, which has three files in the project: lex.yy.c, which was
completely unexecuted (and is therefore marked with a red
square ); flex.c, which had at least one line execute on
the crashing run (and is marked with a green circle ); and
hashfunct.c, for which our analysis was unable to determine
if any lines executed on the crashing run (and is marked
with a yellow diamond ). Clicking on an entry brings the
user to a scratch read-only version of the file for debugging.
This behavior is configurable; we choose to create a read-
only copy of the file by default to maintain correspondences
among instrumentation metadata, analysis results, and source
code line numbers. CSIclipse creates this copy the first time
a user selects a particular file.

The Stack Data section displays the crashing program
stack. For our example, the program crashed at line 13784 of
flex.c, in function yy_load_buffer_state. Clicking on an entry
here again opens a buffer (read-only by default), centered on
the function corresponding to the selected frame. In addition,
selecting a frame enables additional frame-local debugging
functionality if the local annotations button (in the toolbar) is
toggled to the “on” position. Figure 2 shows these features.
First, CSIclipse highlights each source line in the relevant
function to indicate whether that line executed during the
execution of the selected stack frame: green for “yes,” red
for “no,” and yellow for “maybe.” Second, selecting a frame

expands the frame’s path trace record (if present). The current
path entry is brightly highlighted (and indicated with an arrow
, as shown in figure 2), and the user can step through the

trace using the forward and backward buttons in the toolbar.
In a realistic debugging scenario, a developer is likely to
start from the failure point, and step backward through the
provided statement trace. CSIclipse also allows a developer
to connect traces across stack frames (where path trace data
is available) and examine calling context for the failure. In
this example, a user is currently stepping through the path
trace gathered for main’s stack frame. Note that each other
stack frame also displays the line number of the final call (or
crash location) in that function, and has additional path trace
information (as indicated by the twistie drop-down icon).

While looking through main’s execution, the developer
will notice that the function flexinit was called on line 160,
but is no longer on the active stack; thus, our failure data will
contain no path trace data for that call. However, flexinit is
a complex initialization function, and, in this case, contains
relevant context information for the failure. When the user
activates the global annotations button (in the toolbar), CSI-
clipse adds a marker for each source line in all project files.
Each marker indicates the line’s execution status (yes, no, or
maybe) for the entire program’s execution. Figure 3 shows
these markers for our example crash report, centered on a
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portion of flexinit. This global information is very nearly the
standard notion of line coverage in program testing, with the
small addition of the “maybe” possibility (for lines which
may or may not have been covered in the execution). These
markers are less invasive than their local counter-parts (as
small icons in the side-bar of the source file). Being standard
Eclipse markers, though, global annotations are also visible in
the file overview to the right of the scroll bar. This has a num-
ber of important advantages: it allows a developer to quickly
assess how much of a given file’s code was used (visually
complementing the information in the Global Data section),
helps to identify large regions of executed or unexecuted
code in a source file, and facilitates navigation to interest-
ing code regions. These global markers also intentionally do
not overlap with local annotations. In fact, global and local
source annotations are entirely independent, and can provide
useful information when used together. For example, a line
annotated locally “no” and globally “yes” indicates that the
containing function executed previously. A function whose
final statement is marked as globally “no” never executed
outside the crashing stack context.

4. Related Work
Others [8, 12, 13] have developed Eclipse plugins to evaluate
and display program coverage information. Often, such tools
operate in the context of running or automatically generating
JUnit test cases for Java programs. We draw inspiration from
these tools on how to present coverage information to devel-
opers in the Eclipse IDE. However, our analyses (1) work in
the context of a single failure, (2) must also handle partial
coverage data (i.e., cases where multiple executions could
possibly lead to a provided core dump), (3) must recover this
data from external failing executions (rather than Eclipse-lo-
cal test executions), (4) segregate stack-local coverage data
and global coverage data, and (5) also include path trace in-
formation. These concerns lead to different design choices.
First, we use an explicit annotation for unknown execution
data, as ambiguous traces are the normal case for our anal-
ysis. Second, we load execution data from external sources
in a simple CSV format; this also improves the integration
potential of our tool. Finally, we separate global and local
data both by section and by different annotation types; this
allows us to take advantage of the full range of CSI result
data, and adapt to different debugging contexts.

Many prior tools present program traces to developers
[1, 10, 14]. The Path Projection toolkit [10] visualizes pro-
gram paths from static analysis reports in an IDE, and pro-
vides users with a variety of tools with which to explore,
understand, and compare different error paths. Our traces
differ in some important respects: they are incomplete, and
are derived from incomplete data from deployed applications.
Nevertheless, these are mature tools with support for visu-
alizing “nested” stack frame traces. We could potentially

improve trace visualization in CSIclipse by adopting similar
approaches, or perhaps even integrate with existing tools.

Whyline [11] is a debugging tool that allows programmers
to ask “why” and “why not” questions about a program’s
execution in the context of an interactive debugging session.
The tool uses a combination of static and dynamic analysis
to suggest and answer relevant questions. CSIclipse similarly
aids developers in understanding failing program executions,
but operates in a different context. For CSI, we assume that
failure data is recovered from deployed software, and, thus,
we intentionally reduce trace detail to improve instrumenta-
tion efficiency. Program slicing (in the context of debugging)
extracts portions of a program’s code that are relevant to a
point of interest. Whyline and many other tools [2, 7, 9] allow
a developer to perform static (generalizing all possible exe-
cutions) or dynamic (restricted to a single failing execution)
slicing within an IDE. CSI does support a separate analy-
sis for partially-dynamic program slicing, but our present
iteration of CSIclipse does not integrate this feature.

5. Limitations and Future Work
CSIclipse currently offers many features for viewing and nav-
igating crash data, and we plan to build on our successes in a
number of directions. In the near future, we plan to more-fully
integrate CSIclipse with the existing Eclipse C/C++ Devel-
opment Tooling (CDT). First, while the CSIclipse Analysis
Data view complements standard Eclipse debugging features,
the two are currently not closely integrated. Specifically, the
CSIclipse Stack Data section presents stack trace information
which largely overlaps with the Eclipse Debug view; our data
should be accessible from this standard access point. Sec-
ond, our plugin currently reads CSI analysis result data from
an external file. When a developer loads a core dump into
Eclipse for postmortem debugging, we could automatically
run CSI analysis on that core dump in the background, and
later present the results to the developer. Unfortunately, our
analysis can run for a substantial amount of time, and re-
lies on external static metadata (created during compilation).
We believe that we can overcome these challenges, but the
implementation remains future work.

The CSI toolkit itself has some limitations, most notably
the fact that CSI currently only supports C/C++ programs.
We are expanding our instrumentation and analysis frame-
works to support other languages, including Java. CSIclipse,
however, does not depend on a specific programming lan-
guage; rather, it reads result data from an external analysis
tool. Thus, new language developments will expand the appli-
cability of CSIclipse, but are orthogonal to its development.

As noted in section 4, many analysis toolkits (including
our own CSI toolkit) provide program slicing functionality
to determine a smaller set of statements that are transitively
responsible for crashing program state. Our analysis currently
supports a static/dynamic hybrid variant of both intraproce-
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dural and interprocedural backward slicing, and we plan to
bring this functionality to CSIclipse in the future.

While we believe that our tool shows promise, we have yet
to empirically evaluate its usefulness for real debugging tasks.
We have designed a user study for this purpose, with two
important goals: (1) to understand and model the debugging
process using standard tools (such as Eclipse and gdb [5]),
and (2) to determine the effect our tooling has on that
process, and its effectiveness in reducing debugging effort
and improving the quality of bug fixes. The development of
CSIclipse is a key first step in this endeavor.

6. Conclusions
In this paper, we present CSIclipse, an Eclipse plugin for
displaying and navigating analysis results from the CSI
toolkit. CSIclipse is under active development, but already
supports both local and global source code annotations, as
well as bidirectional “stepping” functionality for execution
traces. We have also identified several promising future
directions for extension, as detailed in section 5. While
CSIclipse was specifically designed to work with CSI, it could
theoretically support many other analysis tools via basic CSV
input (see section 3). Any tool that produces complete or
partial coverage information for a program’s execution may
plug in to our framework. CSIclipse is designed to make the
postmortem debugging experience easier, and we hope that
other researchers can also benefit from our efforts.
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