
Supporting Proofs for Control-Flow
Recovery from Partial Failure Reports

Peter Ohmann Alexander Brooks Loris D’Antoni Ben Liblit
University of Wisconsin–Madison, USA

{ohmann,albrooks,loris,liblit}@cs.wisc.edu

Abstract
Debugging post-deployment failures is difficult, in part
because failure reports from these applications usually provide
only partial information about what occurred during the
failing execution. We introduce approaches that answer
control-flow queries about a failing program’s execution
based on failure constraints given as formal languages. A
key component of our approach is the introduction of a new
class of subregular languages, the unreliable trace languages
(UTL), which allow us to answer many common queries in
polynomial time. This report supplements the description of
these new approaches with formal proofs. Specifically: we
prove completeness for our context-insensitive query problem,
tightly bind polynomial-time decidability of query recovery to
the UTL class, and prove partial correctness for our approach
to answering user queries with UTL constraints.

1. Introduction
This report provides supplemental proofs for the techniques
and language classes introduced by Ohmann et al. [3]. The
report is not meant to be read in isolation. Rather, it should
be read alongside the full conference paper [3], as this report
glosses over many details that are fully expounded in the
original paper.

Debugging is a tedious and difficult task, particularly
when failures occur after software is deployed to end users.
In our full paper [3], we formalize and evaluate analysis
techniques that can answer control-flow queries as Possible
or Impossible given a program’s control-flow graph (CFG)
and formal descriptions of constraints obtained from a failure
report for that program. These queries can be posed with or
without including calling context sensitivity in our analysis;
we define these two problems as the context-sensitive query
recovery problem and the context-insensitive query recovery
problem respectively (see Ohmann et al. [3, section 3.3]).

At a high level, each approach first encodes the program’s
CFG, each failure constraint, and the query as formal
languages whose accepted strings are sequences of edges
from the CFG. Both query recovery problems are then defined
as intersection-emptiness checks over these languages: if a
string exists in all of the provided languages, then the query

is satisfiable (i.e., Possible) given the provided CFG and
failure report. In the full paper [3], we also introduce a new
subclass of regular languages, the unreliable trace languages
(UTL), for which we are able to solve the context-insensitive
query recovery problem in polynomial time. In this paper, we
provide supplemental proofs for these approaches, showing
the relationship between the context-sensitive and context-
insensitive query recovery problems, and proving properties
of the class UTL.

This paper is organized as follows. Section 2 briefly
summarizes definitions from the full paper [3]. The following
sections provide supplementary proofs. Section 3 proves that
the context-insensitive query problem provides a complete
approximation of the context-sensitive problem. Section 4
demonstrates the bounds of UTL by proving that two small
extensions to this language class result in NP-hard query
problems. Section 5 provides partial proofs of correctness for
the intersection-emptiness algorithms for UTL from Ohmann
et al. [3, section 4.2]. We conclude in section 6.

2. Background
This section briefly reiterates some of the key definitions from
the full paper [3]. All definitions and descriptions are taken
from Ohmann et al. [3], where they are discussed in much
greater detail.

2.1 Control-Flow Queries
Per Ohmann et al. [3, definition 1], a control-flow graph (CFG)
is a tuple G = (N, n0,L, Ei, Ec, Er) where:

• N is a finite set of nodes;
• n0 is the entry node;
• L is a finite set of function names;
• Ei ⊆ N × N is a set of internal (intraprocedural) edges;
• Ec ⊆ N × (N ×L) × N is a set of function-call edges, such
that for every (n, (n1, α), n′) ∈ Ec , n = n1; and

• Er ⊆ N × (N × L) × N is a set of function-return edges.

From aCFG,G, we use NL to denote the alphabet N∪N×L
and N̂L to denote the tagged alphabet �N ∪ (N × L). A path
through G is given as a sequence of edges π = 〈e1 · · · ej〉,

1 2017/4/17

mailto:ohmann@cs.wisc.edu
mailto:albrooks@cs.wisc.edu
mailto:loris@cs.wisc.edu
mailto:liblit@cs.wisc.edu

such that π ∈ (Ei ∪ Ec ∪ Er)∗. Informally, a path, π is a
context-insensitive path in G if, for every adjacent pair of
edges from π, (e1, e2), the target node of e1 equals the source
node of e2. Further, π is a context-sensitive path in G if every
edge e ∈ Er from π is paired with a preceding edge from
Ec with an identical function label, and these pairings are
strictly nested. Then, proj(π) is a context-insensitive (resp.
context-sensitive) trace in G if π is a context-insensitive (resp.
context-sensitive) path in G via the definition of proj() from
Ohmann et al. [3, definition 2]. Informally, we translate the
sequence of edges from π to a corresponding sequence of
symbols from N̂L. Finally, define languages Ls(G) and Li(G)
as the set of all context-sensitive and context-insensitive
traces in G, respectively. Per Ohmann et al. [3, theorem 1],
Ls(G) ⊆ Li(G) for any CFG, G.

Symbolic visibly-pushdown automata (s-VPAs) describe
nested-word languages, where words may have hierarchical
structure in addition to their linear encoding and contain
symbolic transition functions to better support large or infinite
alphabets [1]. Most importantly, s-VPAs can compactly
and precisely encode a trace of program control flow. An
s-VPA that operates over ordinary words without hierarchical
structure (e.g., a program’s control flow, ignoring the program
stack) is a Symbolic Finite Automaton (s-FA) [5, 6]. In
Ohmann et al. [3, section 3.2], we describe methods for
encoding Ls(G) and Li(G) as s-VPA and s-FA respectively.
An individual element of a failure report is a constraint, given
as a language. A constraint C is s-VPA-definable (resp. s-FA-
definable) if there exists an s-VPA (resp. s-FA) AC such that
L(AC) = C.

The inputs to the query recovery problem are:
• G, a control-flow graph
• {FP1, . . . ,FPn}, a set of s-VPA-definable failure con-
straints defined over N̂L

• R, an s-VPA-definable query constraint defined over N̂L

Then, per Ohmann et al. [3, definition 5], the context-sensitive
query recovery problem is to check whether

Ls(G) ∩
⋂
i

FPi ∩ R , ∅.

If all FPi and R are s-FA-definable, then, per Ohmann et al. [3,
definition 6], the context-insensitive query recovery problem
is to check whether

Li(G) ∩
⋂
i

FPi ∩ R , ∅.

In section 3, we prove that the context-insensitive recovery
problem provides an unsound but complete approximation
for the context-sensitive recovery problem.

2.2 Unreliable Trace Languages
The unreliable trace languages (UTL) are a class of sub-
regular languages. Formally, for an alphabet Σ, the following

characterizes the class UTL:

UTL =
{
Σ
∗ σ1 Σ

∗ σ2 Σ
∗ . . . Σ∗ σn Σ

∗

for n ≥ 0 and such that all σi ∈ Σ
}

Note that, since UTL is a subclass of the regular languages,
all languages in UTL are s-FA-definable.

UTL is an important class for the context-insensitive
query recovery problem from Ohmann et al. [3, definition 6].
Specifically, if all FPi ∈ UTL and R ∈ UTL, then we can
answer user queries in polynomial time via the algorithm from
Ohmann et al. [3, section 4.2]. In section 4, we prove that two
small extensions to UTL result in NP-hard context-insensitive
query recovery problems, and thereby provide evidence for
the tightness of the UTL class. In section 5, we prove partial
correctness for our intersection algorithm from Ohmann et al.
[3, section 4.2].

3. Proof of Completeness For
Context-Insensitive Recovery

Theorem 1 Given
• a control flow graph G with nodes in N and labels in L,
• a set of s-VPA-definable failure constraints {FP1, . . . ,FPn}
of nested words over the alphabet NL, and

• an s-VPA-definable query constraint R of nested words
over the alphabet NL,

if {FP′1, . . . ,FP′n} and R′ are s-FA-definable languages of
words over the alphabet N̂L, such that for all i, FPi ⊆ FP′i
and R ⊆ R′, and

Li(G) ∩
⋂
i

FP′i ∩ R′ = ∅

then
Ls(G) ∩

⋂
i

FPi ∩ R = ∅.

Proof.Assume, by contradiction that Li(G)∩
⋂

i FP′i∩R′ =
∅, but Ls(G) ∩

⋂
i FPi ∩ R , ∅. This means that there exists

a word w ∈ N̂L
∗
such that w ∈ Ls(G), w ∈ FPi for all i,

and w ∈ R. Since, for all i, FPi ⊆ FP′i and R ⊆ R′, we
have that w ∈ FP′i for all i, and w ∈ R′. From Ohmann et al.
[3, theorem 1], we know that Ls ⊆ Li , therefore w ∈ Li .
Therefore, w ∈ Li(G) ∩

⋂
i FP′i ∩ R′, which means that this

set cannot be empty. Hence, a contradiction. �

4. Proofs of NP-hardness for Two
Generalized Trace Language Classes

Unfortunately, the unreliable trace languages (described in
Ohmann et al. [3, section 4.1]) are a very tight class. Specifi-
cally, the useful property of polynomial-time decidability for
queries in unreliable trace languages appears not to generalize
beyond this restrictive class. Here, we prove that two small ex-
tensions of the unreliable trace languages (to more generalized

2 2017/4/17

language families describing program trace properties) result
in language intersection problems with NP-hard complexity.

Throughout this section we will often use regular ex-
pressions to define regular languages, though most of our
techniques are defined over automata. The equivalence of
regular expressions and finite-state automata is well-known,
and, for each of the trace languages we define, this conversion
is trivial and requires no more than a constant-factor increase
from the number of regular expression terms to the number
of FSA transitions.

4.1 Allowing Ambiguity
The first generalization that we consider relaxes the require-
ment that each constraint be composed of a sequence of
characters, instead allowing a sequence of character classes.
Specifically, we consider the class of languages:

A =
{
Σ
∗ C1 Σ

∗ C2 . . . Σ
∗ Cn Σ

∗

for n ≥ 0 and such that all Ci ⊆ Σ
}

Theorem 2 The context-insensitive recovery problem from
Ohmann et al. [3, definition 6] is NP-hard if all FPi ∈ A and
R ∈ A.

Proof. The proof is via a straightforward reduction from
Boolean SAT on formulae in conjunctive normal form
(CNF) [2].

We are given a CNF formula:

f = (p1,1 ∨ p1,2 ∨ . . .) ∧ (p2,1 ∨ p2,2 ∨ . . .) ∧ . . .

We begin by converting each conjunct into a regular
expression as follows:

fi = pi,1 ∨ pi,2 ∨ · · · ∨ pi,n
⇓

ri = Σ∗ [pi,1 pi,2 . . . pi,n] Σ∗

Our alphabet, Σ, is comprised of all literals in all of these
conjunct formulae, along with their negations. That is, from
the single conjunct

π1 ∨ π2 ∨ π3

we would add the following characters to Σ:

π1, π1, π2, π2, π3, π3

Note that all ri ∈ A; that is, all ri are generalized trace
languages by our extended definition. Further, all ri are
languages over Σ.

Next, we need to construct a language to enforce the
principle of excluded middle. In terms of our trace language,
this corresponds to recognizing only strings with exactly
one of each literal (from our original CNF formula) or its

negation. To do so, we construct our principle of excluded
middle regular expression:

L(M) = [σ1 σ1][σ2 σ2] . . . [σ|Σ | σ|Σ |]

from each σi ∈ Σ. This language recognizes those strings
assigning “true” or “false” to each literal appearing in the
original CNF formula. Note that L(M) corresponds exactly
to Li(G) for a control-flow graph, G, that is a sequence of
branches. Now, recall that each ri enforces one of the original
conjuncts of f . Thus, if⋂

i

(ri) ∩ L(M) , ∅

the original formula (f) is satisfiable. Each of the above
steps is a straightforward linear transformation from our
original formula into a regular language, and, hence, the whole
transformation is clearly polynomial. Therefore, determining
intersection-emptiness for this generalized class of trace
languages is NP-hard. �

4.2 Constrained Paths
The second generalization that we consider relaxes the re-
quirement that each constraint have no detail on what happens
during execution between observation points. Specifically, if
our original alphabet is Σo, we consider the class of languages:

B =
{
C∗ σ1 C∗ σ2 C∗ . . . C∗ σp C∗

for p ≥ 0, C ⊆ Σo and such that all σi ∈ Σo
}

For the proof, we require a slightly extended alphabet:

Σ = Σo ∪ {#}

where the symbol “#” is not present in Σo, and is used only
as a marker in the proof.

Theorem 3 The context-insensitive recovery problem from
Ohmann et al. [3, definition 6] is NP-hard if all FPi ∈ B and
R ∈ B.

Proof. The proof is via reduction from the decision version
of the Shortest Common Supersequence Problem (SCSP) on
any alphabet (including a binary alphabet), which is proven
NP-complete by Räihä and Ukkonen [4]. The following input
characterizes a SCSP over an arbitrary alphabet:

• a size, z

• a set of sequences S = s1, s2, . . . , sn such that for all si ∈ S,
all characters si j are members of alphabet Σo = Σ \ {#}.

Solving the SCSP requires that one find a string R such that
|R| ≤ z and for all si ∈ S, si is an ordered subsequence of R
(that is, si is obtained by deleting zero or more elements from
R).

3 2017/4/17

We begin by converting each si to a regular expression:

si = si1 si2 . . . sim
⇓

ri = Σ∗ si1 Σ
∗ si2 Σ

∗ . . . Σ∗ sim Σ
∗

Note that all ri ∈ B—that is, all ri are generalized trace
languages by our extended definition (with C = Σ)—and this
conversion is a simple enumeration of the sequence (and,
hence, is clearly polynomial). The intersection⋂

i

ri

is always non-empty, as it always contains the concatenation of
sequences s1 s2 . . . sn. However, any string in this intersection
that contains no more than z characters from Σo serves as a
witness for the original SCSP. Now, consider the language

L(Z) = (Σ∗o #)z Σ∗o
This language recognizes exactly those strings with z “#”
characters. Further, L(Z) ∈ B (it is a generalized trace
language with C = Σo). Finally, consider the language

L(V) = (# Σ?
o)
∗

This language requires that every character from Σo be
immediately preceded by a “#” character. Further, note that
L(V) corresponds exactly to Li(G) for a control-flow graph,
G, that contains an infinite loop containing a large switch
branching to nodes labeled with each σ ∈ Σo, all branching
back together into the single entry node labeled “#”. More
concretely, G = (N, n0,L, Ei, Ec, Er) where:

N = Σ n0 = # L = ∅
Ei = {(#, σ)∀σ ∈ Σ} ∪ {(σ, #)∀σ ∈ Σ}

Ec = ∅ Er = ∅
The language

L(Z) ∩ L(V)
contains those strings with exactly z “#” characters, where
each “#” is optionally followed by a single character from Σo.
Hence, this language contains at most z characters from Σo.

Now, if the language

L(R) =
⋂
i

(ri) ∩ L(Z) ∩ L(V)

is non-empty, then a supersequence of size no larger than z
exists for the original input sequences. This supersequence
is comprised of the ordered sequence of characters from
Σo (i.e., excluding all instances of “#”) in any witness for
L(R). Note that L(R) is an intersection of generalized trace
languages (i.e., languages from B) with a feasible control-
flow graph language Li(G), and the above procedure checks
this intersection for emptiness to obtain a solution to the
original SCSP. All transformations in generating L(R) are
polynomial. Therefore, determining intersection-emptiness
for this generalized class of trace languages is NP-hard. �

5. Proofs of Correctness For Unreliable
Trace Language Intersection

In this section, we present partial correctness proofs for our ap-
proach to checking intersection-emptiness from Ohmann et al.
[3, section 4.2]. Specifically, we prove that our procedure—
given a control-flow graph, G = (N, n0,L, Ei, Ec, Er), and
a vector of unreliable trace constraint vectors V that corre-
spond to a set of failure report elements FP and a query
R—answers Possible if and only if the language intersection
Li(G) ∩

⋂
j FPj ∩ R (by Ohmann et al. [3, definition 6]) is

non-empty.

Theorem 4 If our data-flow analysis procedure reports
Possible, then the context-insensitive intersection Li(G) ∩⋂

j FPj ∩ R is non-empty.

Proof. Note that for any node n ∈ sccG, either in(n) = ⊥
or in(n) = out(m) for some immediate predecessor m of n.
If our procedure reports Possible, then there exists a path p
through sccG where n0 ∈ p1.nodes, in(pi) = out(pi−1) for
all i ∈ 2 . . . |p|, and out(p |p |) is a vector of empty vectors.
We will use this path through sccG to form a witness to the
non-empty intersection.

Consider the difference between in(pi) and out(pi). This
difference contains the set of constraint observations that
were consumed when passing through pi . For each constraint
FPj , the difference corresponds to a sequence of consumed
symbols, cj . We then form the string si = c1 q c2 . . . q c |c | .
This string is not necessarily a substring of any trace in Li(G).
Fortunately, all symbols in si correspond to nodes or edge
labels from G that are mutually reachable from one another
(i.e., they are in the same strongly-connected component). We
can form a new string, s′i , that corresponds to a partial trace
from Li(G), and contains si as a subsequence. Therefore, s′i
contains, in order, all symbols consumed by every constraint
at pi . If the resulting s′i is empty, we update s′i to contain a
single arbitrary node from pi .nodes.

For every adjacent pair (s′i, s′i+1), the final symbol in s′i ,
α, belongs to strongly-connected component pi (from our
path p) and the first symbol from s′

i+1, β, belongs to strongly-
connected component pi+1 (also from the path p). Thus, there
exists some partial trace wi from Li(G) where wi1 = α and
wi|wi |

= β. The following string is a witness to the non-empty
intersection Li(G) ∩

⋂
j FPj ∩ R:

s′1 q w1 q s′2 q w2 q . . . q s′|s |

�

Theorem 5 If Li(G) ∩
⋂

j FPj ∩ R is non-empty, then our
data-flow analysis procedure reports Possible.

Proof. If we know that the intersection Li(G)∩
⋂

j FPj∩R
is non-empty, then there must exist some witness string
w over N̂L within the intersection. The context-insensitive

4 2017/4/17

condensation of G, sccG, induces a mapping from symbols
in N̂L to nodes in sccG. We can thus, given a witness string
w, construct a sequence of substrings w1,w2, . . . ,wk where
each wi consists of exactly those symbols in w that mapped
to the same strongly-connected component pi .

The induced sequence of strongly-connected components
p = 〈p1, p2, . . . , pk〉 describes a path through sccG. Note that
all symbols appearing in all unreliable trace language vectors
Vj appear in the witness w, so the consume() function will
make no progress in any node n ∈ sccG where n does not
occur in p. That is, consume(n, f) = f for n that do not occur
in p. This means that for all i ∈ 2 . . . |p|, in(pi) = out(pi−1).
Further, no merge() operation (u) can possibly return ⊥.

Since our data-flow problem iteratively computes the
meet-over-all-paths solution, we simply need to show that,
given path p over sccG, our data-flow approach consumes
all of the observations so that out(p |p |) is a vector of
empty vectors. Concretely, Fp|p | (Fp|p |−1 (. . . Fp1 (V))) is the
vector of |V | empty vectors. Consider a single constraint
Vj = 〈Vj1,Vj2, . . . ,Vjm 〉. Each symbol Vjk appears in exactly
one strongly-connected component, pi , from the path p. For a
given pair of observations Vja,Vjb with a < b, Vja appears in
some pα, and Vjb appears in some pβ . Note that Vja appears
before Vjb in w, because the sequence of symbols in Vj is a
subsequence of w. Since sccG is a condensation of G, we
therefore know that α ≤ β.

Now, all symbols from V occur somewhere within the
path p, and moreover, they occur in order (as demonstrated).
Recall (from Ohmann et al. [3, section 4.2]) that consume(pi ,
in(pi)) will greedily consume the longest prefix, x, of each
vector in in(pi) where each symbol xn ∈ pi .nodes. Each
requirement vector is consumed independently in parallel
as we call consume() over each pi , and, as previously
demonstrated, our approach will never merge facts to ⊥
in the given problem instance. This allows us to conclude
that the data-flow procedure consumes all symbols from each
Vj ∈ V , and out(p |p |) is a vector of empty vectors as desired.
We then report “Possible”. �

6. Conclusion
Interpreting partial failure reports from post-deployment
applications is challenging.Our system [3] allows users to pose
control-flow queries to answer questions about a program’s
failing execution. We use formal-language representations of
a program’s control flow and various failure report constraints
to check if a query is Possible to satisfy on any run consistent
with the failure constraints. If all constraints and the user
query are expressible as unreliable trace languages, we can
answer queries remarkably efficiently (in polynomial time).

In this document, we provide supporting proofs for this
system. Specifically, we first show that our calling-context-

insensitive query recovery approach safely approximates the
context-sensitive result. Then, we prove that the unreliable
trace languages are a bounded class, by proving that two small
extensions to UTL result in NP-hard query recovery problems.
Finally, we prove partial correctness for our approach to
query recovery using UTL constraints from Ohmann et al. [3,
section 4.2].

Acknowledgments
This research was supported in part by DoE contract DE-
SC0002153 and NSF grants CCF-0953478, CCF-1217582,
CCF-1318489, CCF-1320854, and CCF-1420866. Opinions,
findings, conclusions, or recommendations expressed herein
are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

References
[1] L. D’Antoni and R. Alur. Symbolic visibly pushdown automata.

In Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, volume 8559 of Lecture Notes
in Computer Science, pages 209–225. Springer, 2014. ISBN
978-3-319-08866-2. URL http://dx.doi.org/10.1007/
978-3-319-08867-9_14.

[2] R. M. Karp. Reducibility among combinatorial problems. In
Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York,
The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. ISBN 0-306-30707-3. URL http:
//www.cs.berkeley.edu/~luca/cs172/karp.pdf.

[3] P. Ohmann, A. Brooks, L. D’Antoni, and B. Liblit. Control-
flow recovery from partial failure reports. In M. Vechev,
editor, Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Barcelona,
Spain, June 2017.

[4] K. Räihä and E. Ukkonen. The shortest common supersequence
problem over binary alphabet is NP-complete. Theor. Comput.
Sci., 16:187–198, 1981. URL http://dx.doi.org/10.1016/
0304-3975(81)90075-X.

[5] M. Veanes. Applications of symbolic finite automata. In
Implementation andApplication of Automata - 18th International
Conference, CIAA 2013, Halifax, NS, Canada, volume 7982
of Lecture Notes in Computer Science, pages 16–23. Springer,
2013. ISBN 978-3-642-39273-3. URL http://dx.doi.org/
10.1007/978-3-642-39274-0_3.

[6] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic
regular expression explorer. In 3rd International Conference on
Software Testing, Verification and Validation, ICST 2010, Paris,
France, pages 498–507. IEEE, 2010. ISBN 978-0-7695-3990-4.
URL http://dx.doi.org/10.1109/ICST.2010.15.

5 2017/4/17

http://dx.doi.org/10.1007/978-3-319-08867-9_14
http://dx.doi.org/10.1007/978-3-319-08867-9_14
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://dx.doi.org/10.1007/978-3-642-39274-0_3
http://dx.doi.org/10.1007/978-3-642-39274-0_3
http://dx.doi.org/10.1109/ICST.2010.15

	Introduction
	Background
	Control-Flow Queries
	Unreliable Trace Languages

	Proof of Completeness For Context-Insensitive Recovery
	Proofs of NP-hardness for Two Generalized Trace Language Classes
	Allowing Ambiguity
	Constrained Paths

	Proofs of Correctness For Unreliable Trace Language Intersection
	Conclusion

