
Homework Assignment 2
Part B
Iterative Deepening Minimax Algorithm with Alpha-Beta Pruning
Due: October 18th at 1pm

This part has a programming task, and a written part which is based on the programming
question. Please use handin to turn in the program part, and turn in the written part
separately in class (preferably typed).

Problem Description
The PEG game is a simple 2 player board game. One player will be trying to collect as
many points as possible by capturing blue cells, while the opponent will be trying to collect
as many points as possible by capturing red cells. The green cells are neutral. The objective
is for a player to collect more points by capturing their target cells (and the associated
points) than their opponent.

row 0,
col 0

1 2

3

5 4

Row 4,
col 4

Figure 5. 5x5 Peg game board

Objective:  Collect more points than your opponent by capturing target cells.
Game Setup:  The board is setup by setting each cell in the NxN matrix to be:

nutral – no points for either player
blue cell – a cell that has some value for the first player (max)(usually 1)*
red cell – a cell that has some value for the second player (min)(usually -1)*
played – a cell that is not available for selection be either player

*note that cells may have varying values and need not always be worth 1.  However the maximum points
for any cell will be no greater than 50.
Game Play:  The first player to move (max) may select any un-played cell in the board.
Players then alternate taking turns.  Each player can only select a cell that is not played and
is adjacent to the last players move (In Figure 5. the player moving next can only select



from cells labeled 1, 2, 3, 4 and 5.).  A running score is kept.  When either player moves to
a blue or red cell, the score is updated by adding in the cells value.
Game End: When a player has no legal move the game ends.

A winner is declared based upon the score.  If the score is greater than 0 then player 1 is
declared the winner.  If the score is less than 0 then player 2 is declared the winner.
Otherwise the game is a Draw.

Program a computer player for the game using iterative deepening minimax algorithm
with alpha-beta pruning.  You are given a maximum of 10 seconds to make a move
(during the tournament), however the timeout limit can be modified by the instructors when
evaluating your player.

Your computer player will be used to play against other human or computer players (from
other classmates or instructors).Your programmed player must be able to play as player 1
(the player who makes the first move and try to capture the blue cells) or player 2 (the
player trying to capture the red cells).

Program Specification
A controller program has been written for the Peg game. It will create and manage a game
board. A game board can range from a 3X3 board to a 15X15 board. The controller
program is written in JAVA and you need to implement your computer player in the form
of a JAVA class. The name of your player class should take the form: 

CS540<section><class login>

For example, CS5402yong, if you are in section 2 and have a login of yong.  Rename the
PlayerTemplate.java file to have this form and rename the class in that file to have the same
form.  That is the file you will need to modify to make your player.

Your program should run on any of the UNIX machines in the lab. It will be invoked as
part of the controller program as follows:

java HW2 <Timeout><Play Mode><Player Name1><PlayerName2><Board
Size><Board Layout>

where,

<Timeout> is used to specify the time limit for each move in terms of number of
minutes.  This can range from 0.1 to 3.

<Play Mode> is used to specify whether the game is a computer-computer, human-
computer, or human-human game.  Valid values are: cc, hc, hh.

<Player Name1> is the same as the name of the java class you created for your



computer player. Leave this parameter out if the play mode is 2 human players (hh).
<Player Name2> is the same as the name of the java class you created for your

computer player. Leave this parameter out if the play mode is 2 human players (hh) or one
human player (hc).

<Board Size> is any number between 3 and 15 (including 3 & 15).
<Board Layout> the name of a file that specifies a custom game board. This is a

text file that contains only integers. This parameter is optional.  Check
boardlayoutNUM.txt files for examples

examples would be: 

java HW2 3 cc CS5401pradheep CS5402yong 5 
java HW2 0.1 hc CS5402yong 5 BoardLayout5.txt
java HW2 0.5 hh 5 BoardLayout5.txt

Notes
[1] Pay attention to what heuristic you will use to select your first move if you are

player 1.

[2] Your program needs to provide 2 public int variables for the controller to obtain
your next move directly. The variables should be called rowNextMove and colNextMove.
For example, as shown in Fig. 5, the top leftmost cell is represented by rowNextMove = 0
and colNextMove = 0. 

[3] DO NOT under any condition cause the controller program to crash. Pay
attention to your recursive functions and make sure they terminate properly. If your
program causes the controller to crash, you will FAIL this programming part of this
homework.

[4] Make sure to check for legal move and any return of illegal move to the
controller program will terminate the game with you loosing that game.

[5] The game board is represented as an int[][] gameBoard in the controller
program. Your program needs to call a method, int[][] getBoard(), to get a copy(pointer)
of the current game board to compute the next move. 

[6] Remember the controller program will have a timeout mechanism and your
program must be able to provide a legal move after the timeout. 

[7] Your computer player needs to provide a public Boolean variable called
minFlag that the game controller can set to indicate whether your player is a min player or
a max player. If minFlag is set with a true value, your computer player is a min player,
otherwise it is a max player.

[8] When reading the game board, all cells with value less than or equal to -55 have
been occupied by previous player moves.



Written Part: 
Question 8
(a) Describe the heuristic (EVAL function) you used at non-terminal states.

(b) Describe the heuristic you used for selecting the “first” move of the game (when you
are the first player to move).

(c) For a 15x15 board size PEG game, assume a constant branching factor of 8, assume the
game tree is complete (all branches are present, every branch has depth 15*15), if in each
state the game board is stored using an array of type int[15][15] (assuming 4 bytes to store
an integer value), and the program can visit 10 million states per second, calculate the
amount of memory and time needed for standard minimax.


