Bayesian Networks

Louis Oliphant oliphant@cs.wisc.edu CS540 section 2

Motivation for Bayesian Networks

- Size of full joint probability table
 - N variables that can take on k possible values
 - size of full joint is k^N
- Would be nice to keep all information, but in a compacted form

Remember

• chain rule – any joint probability can be represented as a sum of conditional probabilities

$$P(x_1, x_2, ...x_n) = \sum_{i} P(x_i | x_{i-1}, ..., x_1)$$

• conditional independence – A is independent of B given C

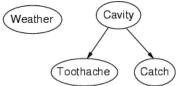
$$P(A,B|C)=P(A|C)P(B|C)$$

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:
 P (X_i | Parents (X_i))
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

Topology of network encodes conditional independence assertions:



- Weather is independent of the other variables
- *Toothache* and *Catch* are dependent upon *Cavity* and they are conditionally independent from each other given *Cavity*

Example contd. P(E) Burglary Earthquake .001 .002 E P(A|B,E) T T .95 Alarm F T T F .29 F F .001 A P(J|A) A P(M|A) JohnCalls MaryCalls .70 .01

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 2⁵-1 = 31)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

= $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$

Inference in Bayes Networks

- Three types of nodes during inference
 - Query Nodes
 - These are the ones you want to know the probability distribution about
 - Evidence Nodes
 - These are the ones you know what their values are
 - Hidden Nodes
 - These are the ones you don't know anything about
- More powerful than simply having a fixed classification feature like with decision trees, neural nets, etc.
 - You can guery about any node, or any set of nodes

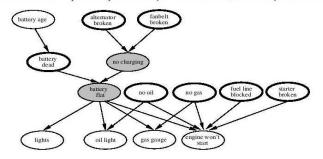
Two Parts to every Model

- Inference (classifying)
 - Inference by Enumeration (exact method)
 - Variable Elimination (exact method)
 - Sampling methods (approximation method) (next time)
- Induction (learning) (next time)
 - parameter learning
 - Given a Bayes Net graph, fill in the values in the CPTs using some training set of data
 - structure learning
 - Given some training set construct the Bayes Net topography

Another Example

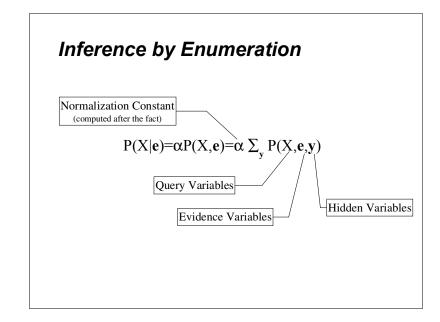
Initial evidence: engine won't start

Testable variables (thin ovals), diagnosis variables (thick ovals) Hidden variables (shaded) ensure sparse structure, reduce parameters



Inference by Enumeration

```
EnumerationAsk(X, \mathbf{e}, bn) returns a distribution over X
inputs: X, the query variable
          e, evidence specified as an event
           bn, a belief network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n)
   \mathbf{Q}(x) \leftarrow \mathbf{a} distribution over X
   for each value x_i of X do
         extend e with value x_i for X
         \mathbf{Q}(x_i) \leftarrow \text{EnumerateAll}(\text{Vars}[bn], \mathbf{e})
   return NORMALIZE(\mathbf{Q}(X))
EnumerateAll(vars,e) returns a real number
  if EMPTY?(vars) then return 1.0
   else do
         Y \leftarrow \text{First}(vars)
         if Y has value y in e
              then return P(y \mid Pa(Y)) \times \text{EnumerateAll}(\text{Rest}(vars), \mathbf{e})
              else return \Sigma_y P(y \mid Pa(Y)) \times \text{ENUMERATEALL}(\text{Rest}(vars), \mathbf{e}_y)
                    where \mathbf{e}_y is \mathbf{e} extended with Y = y
```



Inference by Enumeration

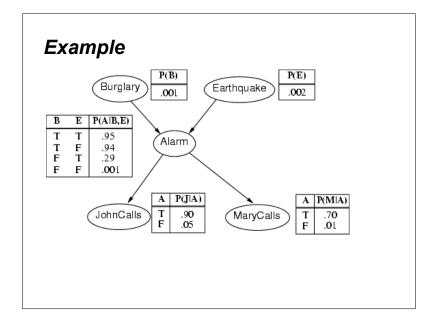
Lets figure out what the probability is of a buggiven the fact that both John and Mary have called.

$$P(B|j,m) = \alpha P(B,j,m) = \alpha \sum_{e} \sum_{a} P(B,e,a,j,m)$$

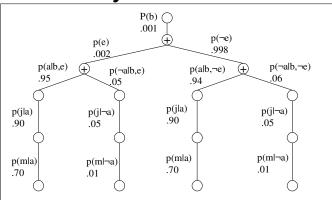
- Remember the Chain Rule. You can rewrite any joint probability as a product of conditional probabilities
- So figuring out P(b|j,m) (half of the problem)

$$P(b|j,m) = \alpha \sum_{e} \sum_{a} P(b) P(e) P(a|b,e) P(j|a) P(m|a)$$

$$= \alpha P(b) \sum_{a} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$$



Inference by Enumeration



Notice the repeated sub-structures. It would be nice to do them once and store the result. This would speed up computation.

Variable Elimination

Enumeration is inefficient: repeated computation e.g., computes P(J=true|a)P(M=true|a) for each value of e

Variable elimination: carry out summations right-to-left, storing intermediate results (<u>factors</u>) to avoid recomputation

$$\begin{split} \mathbf{P}(B|J = true, M = true) \\ &= \alpha \underbrace{\mathbf{P}(B)}_{\bar{B}} \underbrace{\sum_{e} \underbrace{P(e)}_{\bar{E}} \underbrace{\sum_{a} \underbrace{P(a|B,e)}_{\bar{A}} \underbrace{P(J = true|a)}_{\bar{J}} \underbrace{P(M = true|a)}_{\bar{M}}}_{\bar{M}} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{\bar{A}} P(J = true|a) f_{M}(a)}_{\bar{M}} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{f_{J}(a)} f_{M}(a)}_{\bar{M}} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) \underbrace{\sum_{a} f_{A}(a,b,e)}_{f_{J}(a)} f_{M}(a)}_{\bar{M}} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) f_{\bar{A}JM}(b,e)}_{\bar{E}\bar{A}JM}(b) \text{ (sum out } A)}_{\bar{M}} \\ &= \alpha f_{B}(b) \times f_{\bar{E}\bar{A}JM}(b) \end{split}$$

Inference by Enumeration

• You try it:

P(JohnCalls=true | Burglary=true)

setup the equation for finding the probability.

Variable Elimination

• Point-wise product between two factors

Α	В	f ₁ (A,B)	В	С	f ₂ (B,C)	Α	В	С	f ₃ (A,B,C)
T	Т	.3	Т	Т	.2	Т	Т	Т	.3x.2
Т	F	.7	Т	F	.8	т	Т	F	.3x.8
F	۲	.9	F	۲	.6	Н	F	Н	.7x.6
F	F	.1	F	F	.4	Н	F	F	.7x.4
						F	Н	Н	.9x.2
						F	Н	F	.9x.8
						F	F	T	.1x.6
						F	F	F	.1x.4

• Summing out variable A

_								
	В	C	f ₃ (B,C)					
	Т	Т	.3x.2+.9x.2					
	Т	F	.3x.8+.9x.8					
	F	т	.7x.6+.1x.6					
	F	F	.7x.4+.1x.4					

Variable Elimination

```
function {\tt ELIMINATIONAsk}(X, \mathbf{e}, bn) returns a distribution over X
```

inputs: X, the query variable

 \mathbf{e} , evidence specified as an event

bn, a belief network specifying joint distribution $\mathbf{P}(X_1,\ldots,X_n)$

if $X \in \mathbf{e}$ then return observed point distribution for X

 $factors \!\leftarrow\! [\]; \ vars \!\leftarrow\! \texttt{Reverse}(\texttt{Vars}[\ bn])$

for each var in vars do

 $factors \leftarrow [MakeFactor(var, e)|factors]$

if var is a hidden variable then factors ← SumOut(var.factors)

return Normalize(PointwiseProduct(factors))

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Query, Evidence, and Hidden nodes
- Inference by Enumeration
- Variable Elimination