Remember

* chain rule — any joint probability can be
represented as a sum of conditional probabilities

Bayesian Networks Plxy) = 2P bt
* conditional independence — A is independent of B
given C
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Motivation for Bayesian Networks Bayesian networks

* A simple, graphical notation for conditional independence
e Size of full J oint probability table assertions and hence for compact specification of full joint

. . distributions
- N variables that can take on k possible values
- size of full joint is k" * Syntax:
- a set of nodes, one per variable
* Would be nice to keep all information, but in a - adirected, acyclic graph (link = "directly influences")
- a conditional distribution for each node given its parents:
compacted form P (X, Parents (X))

* In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over
X; for each combination of parent values




Example

* Topology of network encodes conditional independence

assertions: @
Tocthache @

* Weather is independent of the other variables

* Toothache and Catch are dependent upon Cavity and they are
conditionally independent from each other given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.
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Compactness
A CPT for Boolean X, with k Boolean parents has 2* rows for the
combinations of parent values /CE)
Each row requires one number p for X, = true ﬁ
(the number for X, = false is just I-p) @ @

If each variable has no more than k parents, the complete network
requires O(n - 2¥) numbers

Le., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 +4 +2 +2 =10 numbers (vs. 25-1 =31)




Semantics

The full joint distribution is defined as the product of the local
conditional distributions:

P(X, .. X)=TL_, P (X, Parents(X)) /@{C@
e, PG OmOa0-b0ne) g ®

=P(|a)P(m|a)P(a|=b —e)P(=b)P (e

Two Parts to every Model

* Inference (classifying)
- Inference by Enumeration (exact method)
- Variable Elimination (exact method)
- Sampling methods (approximation method) (ex: time)

* Induction (learning) pex rime)
- parameter learning
* Given a Bayes Net graph, fill in the values in the CPTs using
some training set of data
- structure learning
* Given some training set construct the Bayes Net topography

Inference in Bayes Networks

* Three types of nodes during inference
- Query Nodes
* These are the ones you want to know the probability
distribution about
- Evidence Nodes
* These are the ones you know what their values are
- Hidden Nodes
* These are the ones you don't know anything about
* More powerful than simply having a fixed
classification feature like with decision trees,

neural nets, etc.
- You can query about any node, or any set of nodes

Another Example

Initial evidence: engine won’t start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters




Inference by Enumeration

ExvMERATIONASK(X.e.bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn., a belief network specifving joint distribution P(Xy,.... X,)

Q(x) +a distribution over X
for each value r; of X do

extend e with value a; for X

Q) + ENUMERATEALL(VARS[bn], e)
return NORMALIZE(Q(X))

ENUMERATEALL(wars,e) returns a real nunber
if EmMPTY?(vars) then return 1.0
else do
Y « FIRST(vars)
if ¥V has value yin e
then return Py | Pa(Y)) X ENUMERATEALL(REST(vars).e)
else return &, Py | Pa(Y)) x ENUMERATEALL(REST(vars).e,)
where e, is e extended with ¥ = y

Inference by Enumeration

Normalization Constant
(computed after the fact)

P(X|e)=aP(X,e)=a Zy P(X,e)y)

Evidence Variables

Hidden Variables

Inference by Enumeration
e

Lets figure out what the probability is of a bu@’ ™
given the fact that both John and Mary have
called.

P(BJj,m) = aP(B,j,m) = a3 3 P(B,e,a,j,m)

* Remember the Chain Rule. You can rewrite any joint probability as
a product of conditional probabilities
* So figuring out P(blj,m) (half of the problem)

P(blj,m)=a} > P(b) P(e) P(alb,e) P(j|a) P(m|a)
=aP(b) 3 P(e) > P(alb,e) P(jla) P(m|a)

Example
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Inference by Enumeration

p(alb,e) @ . S p(—alb,—e)
.06

p(jla)
90

I p(ml-a)
b

Notice the repeated sub-structures. It would be nice to do them once and
store the result. This would speed up computation.

Inference by Enumeration

* You try it:
P(JohnCalls=true | Burglary=true)

setup the equation for finding the probability.

Variable Elimination

Enumeration is inefficient: repeated computation
e.g., computes P(.J =truela) P(M =truela) for each value of e

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|J = true, M = true)
=aP(B)X. P( ) 2. P(a\B e) P(J =truela) P(M =true|a)
B 7 i

= QP(B)EfP( E,,P(a|B e)P(J = truela) far(a)
= aP(B)X.P(e)X.Pla|B,e)fi(a)fir(a)

= aP(B)X.P(e)X, fa(a, b,e) f1(a) far(a)

= aP(B)X.P(e)fisa(b,e) (sum out A)

= aP(B)fpi(b) (sum out £)

= afp(b) x fzim(b)

Variable Elimination
* Point-wise product between two factors

A|B|f(AB)]B[c|f.(B.C)]a|B|C|f.(AB,C)
T|IT .3 T|T 2 T|T[T| .3x.2
T|F 7 T|F .8 T|T|F| .3x.8
F|T .9 FI|T .6 T|F|[T| .7x.6
F|F 1 F|F 4 T|F|F| .7x.4
F[T|[T| .9x.2
F[T|[F| .9x.8
F[F[T| .1x.6
F|F|F| .1x.4

* Summing out variable A
Blc| fi(B.C)

.3x.2+.9x.2
.3x.8+.9x.8
.7x.6+.1x.6
Ix4+.1x.4
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Variable Elimination

function ELIMINATION ASK(X e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X,... . X,)

if X €e then return observed point distribution for X
factors+[1; vars < REVERSE(VARS[bn])
for each ver in vars do

Jactors + [MAKEFACTOR(var, e)|factors]

if var is a hidden variable then fuctors«— SUMOUT(var factors)
return NoRMALIZE(POINTWISEPRODUCT( factors))

Summary

* Bayesian networks provide a natural
representation for (causally induced)
conditional independence

* Topology + CPTs = compact representation of
joint distribution

* Query, Evidence, and Hidden nodes
* Inference by Enumeration
* Variable Elimination




