Searching in Continuous Space

Louis Oliphant oliphant@cs.wisc.edu cs540 section 2

Different Approaches

- Discritize the state space
 - Not much to say about this
- Use the derivative of f(x)
 - solve for f'(x)=0
 - gradient descent
 - Newton's method

Environment Types

- Up until now we have been working in discrete environments
 - given a state, there is a clear, finite set of neighbors
- Now we will look at continuous environments
 - No clear, finite set of neighbors
- Still trying to maximize an objective function f(x)

Discritizing State Space

- Binning (one method of)
 - For each continuous variable in state space divide its domain into a fixed number of equally spaced bins
 - Use standard discrete search methods

Using the Derivative

- Remember when f'(x)=0 then f(x) is:
 - at a maximum
 - at a minimum
 - at a point of inflection
- Solve f'(x)=0
- So Really we need to find the roots of f'(x)

$$f(x) = -x^4 + (32/3)x^3 - 38x^2 + 48x - 10$$

- Check each x in f(x) for a maximum
 - or check f "(x) for each x
 - f''(x)==0 then point of inflection
 - f''(x)==positive then minimum
 - f''(x)==negative then maximum

Using the Derivative

- What if you can't solve f '(x)=0 but you can still figure out the derivative?
 - Use Gradient Descent
 - Use Newton's Method

Gradient Descent (Ascent)

- pick an initial value for x
- pick a step size
- if f '(x) is:
 - positive move right one step size
 - negative move left one step size
- Repeat until sign of f'(x) changes or f'(x)=0.
- if f'(x)=0 then return x else return $(x_i+x_{i-1})/2$.

$$f(x) = -x^4 + (32/3)x^3 - 38x^2 + 48x - 10$$

• try it with x=2, step size=0.25

Picking a Step Size

- Step size to small
 - take forever to reach maximum
- Step size to large
 - "step over" the maximum

Picking a Step Size

- Use a varying step size
 - Start by using a large step-size and find the range where a maximum exists
 - repeat using a smaller step-size inside that range
 - continue this until you have enough precision
- Alternate method
 - Start by using a small step-size
 - As long as the sign of f'(x) doesn't change double the step size
 - When sign changes drop back to initial small step size and continue search

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x_n

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x_a

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Newton's Method of finding Roots

g(x) and g'(x) are given x_o = initial guess of root repeat

$$x_{(i+1)} = x_i - g(x_i)/g'(x_i)$$

until little change made in x

Newton's Method of finding Roots

- We are trying to find the roots of some function g(x).
 - Remember this is the derivative of the Real function that we want to maximize
- Assume g(x) is linear and that you know the value of g(x) and g'(x) for your initial guess, x₀

Multi-dimensional Environments

- f(x) but now x is a vector $x=\{x_1,x_2,...,x_n\}$
- Now use the Gradient of f(x) written as ∇f
- ∇f is just a vector of the partial derivatives of f

• gradient always points to higher ground

Multi-dimensional Environments

$$f(x,y) = x^{2} - 4y^{2} - 2xy + 5x - 2y + 3$$

$$\nabla f = \left\{ \begin{cases} \partial f, \partial f \\ \partial x, \partial y \end{cases} \right\}$$

$$\nabla f = \left\{ 2x - 2y + 5, -8y - 2x - 2 \right\}$$

$$f(2,3) = 2^{2} - 4 + 3^{2} - 2 + 2 + 3 + 5 + 2 - 2 + 3 + 3 = -37$$

$$\nabla f(2,3) = \left\{ 2 + 2 - 2 + 3 + 5, -8 + 3 - 2 + 2 - 2 \right\} = \left\{ 3, -30 \right\}$$

Multi-dimensional Environments

- Follow the direction of the gradient
- Take small step sizes until the gradient is zero
- You can also vary the step size just like before

Conclusions

- Binning
- Solve for f'(x)=0
- Gradient descent
- Newton's method
- Understand what the Gradient of a multi-dimensional function is:
 - always points to higher ground

Project Ideas – Ant Colony Optimization

Fig. 12. At chooses No senia and At is selecting its setum such

Fig. 11. A_i^a is selecting its reven path while the others make round B_i

1) As N_s, Al_s, Al_s, Al_s and Al_s have no knowledge observed the bostnian of F_s. Hence, they randomly select from (H_B, H_B, H_S); suppose that Al_s and Al_s choice R_s and all selections are the species of the As they move a long their choice no paths, they deposits a certain motion of piercomone. While Al_s and Al_s each deposits on our and of blue color pheromene as one R_s respectively, Al_s and Al_s each deposits one unit of coloring the and R_s, respectively. Al_s and R_s are presented as a superconduction of the coloring the and R_s respectively.

2) As shown in Fig. 11, since R₁ > R₂ > R₂, A₁¹ cenches F₂ before A₂¹, A₁², and A₂². To return from F₂ to N₂, A₁² discovers that τ₁^{1/2} = 1 and τ₁^{2/2} = τ₁^{2/2} = 0 (there is one unit of blue pheromone along R₂, but there is no more of blue pheromone along R₂ and R₃.)

 Since τ_k⁽ⁱ⁾ > τ_k⁽ⁱ⁾ and τ_k⁽ⁱ⁾ > τ_k⁽ⁱ⁾, A^k is more likely to choose R₂. Suppose A^k chooses R₂. As it moves along

hig. 14. All chooses H. and All chooses in-

So When A_k^2 and A_k^2 finally reach U_k and need to return to X_k , they select their return paths according to their degrees of affarricho by γ_k and γ_k , respectively, and repulsate by v_k and v_k . The properties V_k and repulsate by v_k and v_k . Supervively Since A_k^2 discovers that $a_k^{**} > v_k^{**} = a_k A_k$ discovers that $a_k^{**} > a_k^{**} = a_k A_k$ discovers that $a_k^{**} > a_k A_k$ and defined A_k^2 for $A_k^{**} > a_k A_k$ and defined A_k^2 for $A_k^{**} > a_k A_k$ and defined A_k^2 for $A_k^{**} > a_k A_k$ and $A_$

Project Ideas – Root Finding Methods

