Decision Trees

CS 540 section 2
Louis Oliphant
oliphant@cs.wisc.edu

Inductive learning

¢ Simplest form: learn a function from examples
fis the target function
An example is a pair (x, f{x))
Problem: find a hypothesis /
such that 2z~ f
given a training set of examples
(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes examples are given)

Learning decision trees

Problem: decide whether to wait for a table at a restaurant, based
on the following attributes:

. Alternate: is there an alternative restaurant nearby?

. Bar: is there a comfortable bar area to wait in?

. Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

. Patrons: number of people in the restaurant (None, Some, Full)

. Price: price range ($, $$, $3%)

. Raining: is it raining outside?

. Reservation: have we made a reservation?

. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

O 0NN AW =

Attribute-based representations

¢ Examples described by attribute values (Boolean, discrete, continuous)
* E.g, situations where I will/won't wait for a table:

Fample “Attributes Target
Alt| Bar | Fri| Hun| Pat | Price | Rain | Res| Type | Est | Wait

X T F F T |Some| $$$ F T |[French | 0-10 T

X T F F T Full $ R F | Thai [30-60 F

X3 E T F F | Some $ F F | Burger| 0-10 T

Xy T|F|T T | Full $ F F | Thai |10-30| T

X5 T|F|T F Full | $$$ F T |French| >60 F

X E|'T| E T |Some| $$ T T | ltalian | 0-10 T

X7 F| T]|F F |None| § T F | Burger| 0-10 F

Xz F|F F T |Some| $% T T | Thai | 0-10 T

Xy F| T|T F Full $ T F | Burger| >60 F
Xio T| T |T T | Full | $$% F T | Italian | 10-30 F
X1 F F F F |None| $ F F | Thai | 0-10 F

. X1 T| T T T Full $ F F | Burger | 30-60 T

¢ Classi - - - — =

Decision trees

* One possible representation for hypotheses
¢ E.g., here is the “true” tree for deciding whether to wait:

No No

| Reservation? || Fri'sat? |
Na

Expressiveness

Decision trees can express any function of the input attributes.
¢ E.g, for Boolean functions, truth table row — path to leaf:

A B AxorB
F F F
F
F
F

Trivially, there is a consistent decision tree for any training set with one path to leaf

for each example (unless f nondeterministic in x) but it probably won't generalize to
new examples

* Prefer to find more compact decision trees

Decision tree learning

e Aim: find a small tree consistent with the training examples
* Idea: (recursively) choose "most significant" attribute as root of (sub)tree

function DTL(ezamples, altributes, default) returns a decision tree

if ezamples is empty then return defaull
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)
else
best + CHOOSE- ATTRIBUTE(attributes, examples)
tree +—a new decision tree with root test best
for each value v; of best do
ezamples; < {elements of ezamples with best = v}
subtree «+— DTL(ezamples;, attributes — best, MODE(ezamples))
add a branch to tree with label v; and subtree subtree
return free

Choosing an attribute

* Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000
MNong Some Full French Italian Thai Burger
eeo00 00 (] o oo o0
o0 o000 [] o oo o0

e Patrons? is a better choice

Using information theory

e To implement Choose-Attribute in the DTL
algorithm

* Information Content (Entropy):
I(P(v)), ..., P(v))=Z_, -P(v) log, P(v)

* For a training set containing p positive examples and
n negative examples:

p n p p n
1 R =— lo - lo
(p+n p+n) p+n g2p+n p+n g2p+n

Information function with two
categories

Information gain

¢ A chosen attribute 4 divides the training set E into subsets £,
..., E, according to their values for 4, where 4 has v distinct
values.

v

p;+tn; D; n;
remainder(A)=Y, "' I e,
S p+n pi+n p+n,

)

* Information Gain (IG) or reduction in entropy from the
attribute test:

G(a)=1(?

,)—remainder(A)
pt+tn p+n

* Choose the attribute with the largest IG

Entropy reflects the lack L0
of “purity” of some
particular set S
As the proportion of o 05
positives p, approaches =
0.5 (very impure), the
Entropy of S converges
to 10 0.0 0.5 1.0
p.
Information gain
For the training set, p= n =6, 1(6/12, 6/12) = 1 bit
Consider the attributes Patrons and Type (and others too):
16 (Patrons)=1-[> 1(0,0)+* 1(10)+%_ 13 *))=.541 bits
12 12 12 66
2 11,2 11,4 22 4 22
IG(Type)=1-[I + 1 + 1 + 1 =0 bits
Glpe)=t)y 1y g 1y g I g 11 =0 bl

Patrons has the highest IG of all attributes and so is chosen by the DTL
algorithm as the root

Example contd.

* Decision tree learned from the 12 examples:

¢ Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data

Make The Decision Tree
Pick Features that maximize IG

p n p p n
N =— l - l
p+n p+n) p+n ngp+n p+n ngp+n
- Pt D; n;

inder (A)= 1 s
remainder (A) Z:l pin (Pi"‘”i Pi"‘”i)
IG(A)=I(P)—remainder(A)

pt+tn p+n

Size Shape Color Class

small square red +

large circle blue +

small triangle blue -

large circle red -

small circle blue +

small circle red -

Make The Decision Tree
Pick Features that maximize IG

p n p p n
N =— lo - lo
p+n p+n) p+n g2p+n p+n g2p+n

Pyt D; n;
j A)= 1
remainder (A) le ptn (Pi"'"i’ Pi"'"i)
IG(A)=I(P)—remainder(A)
ptn p+tn
Size Shape Color Class
small square red +
large circle blue +
small triangle blue -
large circle red -
small circle blue +

small circle red -

Handling Continuous Features

* One way of dealing with a continuous feature £ is
to treat them like Boolean features, partitioned on a
dynamically chosen threshold #:

- Sort the examples in S according to F'

Identify adjacent examples with differing class labels

- Compute InfoGain with ¢ equal to the average of the

values of at these boundaries

Can also be generalized to multiple thresholds

B U. Fayyad and K. Irani, “Multi-interval descretization of
continuous-valued attributes for classification learning,”
Proceedings of the 13" International Joint Conference on
Artificial Intelligence, 1993

Handling Continuous Features

* There are two candidates for threshold # in this example:

Temperature 40 48 160 72 80 ! 90
>1,000? No No iYes Yes Yesi No
t=(48+60)/2 = 54 t=(80+90)/2 = 85

e The dynamically-created Boolean features Temp_,, and
Temp_ 4 can now compete with the other Boolean and
discrete features in the dataset

Noisy Data

* Noisy data could be in the examples:
- examples have the same attribute values, but different
classifications (rare case: if (empty (atts)))
- classification is wrong
- attributes values are incorrect because
of errors getting or preprocessing the data
- irrelevant attributes used in
the decision-making process
¢ Use Pruning to improve performance when working
with noisy data

Missing Data

* Missing data:
- while learning: replace with most likely value
- while learning: use NotKnown as a value

- while classifying: follow arc for all values and
weight each by the frequency of exs. crossing that
arc

Tree Induction as Search

* We can think of inducing the “best tree” as an
optimization search problem:
- States: possible (sub-)trees
- Actions: add a feature as a node of the tree

- Objective Function: increase the overall information
gain of the tree

¢ Essentially, Decision Tree Learner is a hill-
climbing search through the hypothesis space,
where the heuristic picks features that are likely to
lead to small trees

Pruning

* Overfitting
meaningless regularity is found in the data
- irrelevant attributes confound the
true, important, distinguishing features
- fix by pruning lower nodes in the decision tree

- if gain of best attribute is below a threshold,
make this node a leaf rather than
generating child nodes

Pruning

randomly partition training examples into:
TRAIN set (~80% of training exs.)
TUNE set (~10% of training exs.)
TEST set (~10% of training exs.)
build decision tree as usual using TRAIN set
bestTree = decision tree produced on the TRAIN set;
bestAccuracy = accuracy of bestTree on the TUNE set;
progressMade = true;
while (progressMade) { //while accuracy on TUNE improves
find better tree;
//starting at root, consider various pruned versions
//of the current tree and see if any are better than
//the best tree found so far
}
return bestTree;
use TEST to determine performance accuracy;

Pruning

Pruning

//find better tree

progressMade = false;

currentTree = bestTree;

for (each interiorNode N in currentTree) { //start at root
prunedTree = pruned copy of currentTree;

newAccuracy = accuracy of prunedTree on TUNE set;
if (newAccuracy >= bestAccuracy) {

bestAccuracy = newAccuracy;

bestTree = prunedTree;

progressMade = true;

//pruned copy of currentTree

replace interiorNode N in currentTree by a leaf node

label leaf node with the majorityClass among TRAIN set
examples that reached node N

break ties in favor of '-'

Case Studies

* Decision trees have been shown to be
at least as accurate as human experts.
* Diagnosing breast cancer
- humans correct 65% of the time
- decision tree classified 72% correct
* BP designed a decision tree for
gas-oil separation for offshore oil platforms
* Cessna designed a flight controller
using 90,000 exs. and 20 attributes per ex.

Conclusions

* Information (Entropy) of a set of data
* Information Gain using some feature on a set of
data
* Handling
- continuous features
- noisy data
- missing values
* Pruning
* Constructing decision trees as Search

