Escaping Local Maxima

Louis Oliphant
oliphant@cs.wisc.edu
CS540 section 2

Complete State vs. Partial State
Search

Partial State

modify state by adding
a queen to an empty column

Complete State vs. Partial State
Search

Partial State

until you get a leaf node

Complete State vs. Partial State
Search

Partial State Complete State

Modify the state to get to

another complete state

Complete State vs. Partial State
Search

Partial State Complete State

Modify the state to get to
another complete state
successor function — moving
single queen to another square
in same column

Local Search vs. Global Search

* Global search systematically searches ALL of
state space
- What if State space is large (infinite)?
* Local search only considers modifications to
current state
- Little memory requirements — no need to keep full
search tree
- Often return results that are good enough
- Useful in optimization problems where you try to
maximize some objective function

Objective Function in 8-queens

* Number of pairs of attacking queens
Objective function = 1

* Number of non-attacking pairs
Objective function =27

Traveling Salesperson Problem

m/e o mf'\w“o
g
e%m o m

eAssume Euclidean Distance

*Must visit each city once and return to starting city
*Minimize Total distance traveled

sFirst tour (1,4,2,5,6,3) has distance 62 km

*Second tour (1,2,5,4,6,3) has distance 48 km

Random Walk Local Search
Algortihm

Start with an initial random configuration
Randomly select one of its neighbors
Keep track of best solution seen so far
Repeat until you get tired

Score=1

Random Walk Local Search
Algortihm

Start with an initial random configuration
Randomly select one of its neighbors
Keep track of best solution seen so far
Repeat until you get tired

Score=3

Random Walk Local Search

* Complete, will always find the global optimum

(if it runs long enough)

* It Could run a VERY long time

Hill Climbing or Greedy Local
Search

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static; current, a node
next, a node

current & MAKE-NODE(INITIAL-STATE[problem])

loop do
next + a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
CUrrent < next

end

* Only keeps track of Current Node

Hill Climbing

evaluation

highest successor

The Problem with Hill Climbing

evaluation

current node

The Problem with Hill Climbing

current node

The Problem with Hill Climbing

¢ Local maxima
¢ Plateaus
* Ridges

* In the 8-queens problem 86% of random boards
get stuck at a local maximum

Fixing The Problem

Random Restart Hill Climbing

Local Beam Search
- stochastic local beam search

Genetic Algorithms

Simulated Annealing

Random Restart Hill Climbing

* hill climb from a random initial state

* If fail to reach a goal state then repeat

* Algorithm guaranteed to find goal state ceventuain)
* How long does it take?

How long to find goal

p = probability of success on hill-climb search
Expected number of restarts will be 1/p

How long to find goal

p = probability of success on hill-climb search
Expected number of restarts will be 1/p

So for the §-queens problem
p=0.14
Expected number of restarts is around 7

How long to find goal

p = probability of success on hill-climb search
Expected number of restarts will be 1/p

So for the 8-queens problem
p=0.14

Expected number of restarts is around 7

Very Fast Algorithm in some domains

NP-hard problems

* NP-hard problems typically have exponential
number of local maxima to get stuck on.

* Its like a porcupine with porcupines living on the

tip of each needle, ad infinitum.

Escaping Local Maxima

* Random Restart Hill Climbing

¢ [Local Beam Search
- stochastic local beam search

* Genetic Algorithms

* Simulated Annealing

Local Beam Search

* start with k randomly generated states
* all successors of k states are generated
* if no goal found select k best states and repeat

Local Beam Search

* start with k randomly generated states
* all successors of k states are generated
* if no goal found select k best states and repeat

* similar to general search algorithm???
* similar to random restart???

Comparing Local Beam Search and
Random Restart

* In local beam search useful information is passed
among the k parallel search threads

* Algorithm quickly abandons unfruitful searches
and moves resources to where progress is being
made

Comparing Local Beam Search and
Random Restart

* In local beam search useful information is passed
among the k parallel search threads

* Algorithm quickly abandons unfruitful searches

and moves resources to where progress is being
made

* Local Beam Search suffers from lack of diversity

Comparing Local Beam Search and
Random Restart

k=3 6) /%@:@

Initial Nodes

Comparing Local Beam Search and
Random Restart

k=3

Successors

Comparing Local Beam Search and
Random Restart

k=3

k best successors

Comparing Local Beam Search and
Random Restart

k=3

retained nodes

Loss of Diversity

Stochastic Local Beam Search

* Instead of choosing the best k from the successors
choose k successors at random, with probability of
choosing a successor based on its value

* Resembles natural selection:

“offspring of an organism populate the next generation
according to its fitness”

Stochastic Local Beam Search

* Instead of choosing the best k from the successors
choose k successors at random, with probability of
choosing a successor based on its value

* Resembles natural selection:

“successorsof a state populate the next generation
according to their value”

Escaping Local Maxima

* Random Restart Hill Climbing

¢ [Local Beam Search
- stochastic local beam search

* Genetic Algorithms

* Simulated Annealing

Genetic Algorithms

Similar to stochastic local beam search

Population of randomly generated states

Fitness Function to score individuals in population
Reproducing between individuals

Mutation of a new individual

Genetic Algorithm

population=k randomly generated states
repeat
new_population=initially empty
loop for i from 1 to size(population)
x=random-selection(population fitness_function)
y=random-selection(population,fitness_function)
child=reproduce(x,y)
if (small random probability) then child=mutation(child)
add child to new_population
population=new_population
until some individual is fit enough or enough time passed
return best individual in population

Random Selection Methods

* Stochastic Sampling based upon fitness

- Each node has a score based upon fitness function

- Select a parent with probability of its score / total score
* Tournament style competition

- Randomly select some subset of the population

- Select the node with the highest score to be a parent

Reproducing Method

¢ 8-queens problem

(42748552) -- parent

(32752411) -- parent

Randomly select a cutpoint

(427|48552) -- parent

(327|52411) -- parent

Exchange all numbers to one side of cutpoint
(42752411) --child

(32748552) --child

Mutation method

* 8-queens problem
Randomly select a column
(42752411)

Randomly permute its value
(42732411)

Genetic Algorithms — 8 queens

[24748552] 24 a1%__[32752411 (32728552 | —{ 3272412]

[32752411 | 23 29%7*[247)s8552 [24752011 |+ 24752411
[2441512¢ | 20 20973275411 (32752124 | —{ 3:43b2121]
[32513213] " 14%7[2415124 [24415001] 2441541

(a) k) (€} () O]
nitial Population Fitness Functien Selestion Cross—Ovel Motation

Reproduction Algorithms

* Reproduction using two parents is called cross-
over

* Cross-over needs to retain blocks of information
that work well together

* Children should get good blocks from each parent

* States need to have meaningful components of a
solution

Reproduction in TSP

* Three commonly used cross-over reproduction
methods are
- partially-mapped(PMX)
- order(OX)
- cycle(CX)

Partially-Mapped(PMX) crossover

* Parents
- pl=(123456789)
~- p2=(452187693)
* Randomly select 2 cutpoints
- pl=(123]4567|89)
~ p2=(452[1876|93)
* Exchange everything between cutpoints
- 0l=(xxx|1876|xx)
—- 02=(xxx|4567|xx)
Fill in additional cities from original parents that have no conflicts
- 0l=(x23|1876[x9)
~ 02=(xx2[4567|93)
* Use mappings between cutpoints to fill in remaining x's
- 01=(423|1876|59)
~- 02=(182[4567(93)

Order (OX) crossover

¢ Randomly select 2 cutpoints in parents
- pl=(123]4567|89)
~ p2=(452|1876|93)
* Retain all information between cutpoints in children
- 0ol=(xxx|4567|xx)
—- 02=(xxx|1876|xx)
* Starting from the second cutpoint of one parent, the cities from the other parent
are copied in the same order, omitting repeated symbols
- 01=(218[4567|93)
- 02=(345|1876|92)

¢ This method exploits property that relative ordering of the
cities is important (as opposed to their specific position)

Simulated Annealing

* Important philosophical observation in life:

SSometimes one needs Sometimes one
needs to move to an

— |inferior neighbor in
order to escape a
local optimum.

to temporarily step back
in order to move

forward.

Simulated Annealing

funetion SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
static: current, a node
next, a node
T, a “temperature” controlling the probability of downward steps

current < MAKE-NODE(INITIAL-STATE([problem])
for 1 1to codo

T schedule(1]

if 7=0 then return current

next — a randomly selected successorof current

AFE + VALUE[next] — VALUE[current]

if AE > 0 then current « next

else current « next only with probability e

Simulated Annealing

Pick initial state s
Randomly pick ¢ in neighbors(s)
IF f(f) better THEN accept s€t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

2 R

How to choose the small probability?
idea 1: p=0.1
idea 2: p decreases with time
idea 3: p decreases with time, also as the ‘badness’ |f(s)-
f(t)| increases

Simulated Annealing

* If f{¢) better than f{s), always accept ¢
* Otherwise, accept ¢ with probability

_|f(S)—f(,)|) Boltzmann

distribution
exXp
T

* Tis a temperature parameter that ‘cools’
(anneals) over time, e.g. T<T7%0.9
- High temperature: almost always accept any ¢
- Low temperature: first-choice hill climbing

¢ If the ‘badness’ (formally known as energy
difference) |[f(s)-f(?)| is large, the probability is
small.

Simulated Annealing issues

* Cooling scheme important

* Neighborhood design is the real ingenuity, not
the decision to use simulated annealing.

* Not much to say theoretically

- With infinitely slow cooling rate, finds global
optimum with probability 1.

* Proposed by Metropolis in 1953 based on the
analogy that alloys manage to find a near global
minimum energy state, when annealed slowly.

* Easy to implement.

* Try deterministic methods first!

What You Should Know...

Partial State vs. Complete State search
Comparision Between Global and Local Search
Hill Climbing

Random Restart Hill Climbing

Local Beam Search

Stochastic Local Beam Search

Genetic Algorithms

- cross-over reproduction methods

Simulated Annealing

