Wrap-Up and Review

Louis Oliphant oliphant@cs.wisc.edu cs540 section 2

Announcements

- HW5 Graded
- Solution and grades will be up on the web
- Projects not yet graded
- Team Reviews due today
- Final Dec 19th, 10:05am CS\&S 1325

What Have We Learned (first half)

- Search
- Different Global and Local Search Techniques
- DFS, BFS, Greedy Search, A* Search
- Hill Climbing, Simulated Annealing, Genetic Algorithms
- Searching With an Opponent
- Game Playing - Mini-Max with alpha beta pruning
- Game Theory
- Logic
- Propositional Logic
- First Order Logic

What we have learned (second half)

- Learning
- Induction of models
- Inference with models
- Lots of models
- K-NN, Decision Trees, Neural Nets, Naïve Bayes, Bayesian Networks, Ensembles, Support Vector Machines, Inductive Logic Programming, etc.
- Each model is trying to capture a function: $f(x)$ that is a mapping from feature space to a classification for every possible input
- Model Bias
- Evaluation of Models: How well have you learned the function
- Accuracy, precision, recall, confusion matrix, etc.

Review

- For each model know:
- How to create the model (Induction)
- How to label unseen examples (Inference)
- Learning Bias
- Types of Learning
- Unsupervised
- Reinforment learning
- Supervised
- Converting to Fixed Length Feature Vectors

Review

- K-NN
- Euclidean Distance
- Weighted Features
- Choosing K
- Decision Trees
- Information, Information Gain
- Pruning
- Ensembles
- Boosting
- Occam's Razor

Review

- Types of Data
- Noisy data
- Missing Values
- Continuous Features
- Skewed Data
- Irrelevant Features
- Feature Subset Selection
- Forward chaining
- Backward chaining

Review

- Methodology
- Accuracy
- Learning curves
- Precision, Recall
- N-Fold cross validation
- Confusion Matrix
- Train/Tune/Test set splits
- Laplacian Priors

Review

- Perceptrons
- Step Function, Sigmoid Function
- Perceptron Training Rule, Delta rule
- Threshold
- Gradient Descent
- Perceptrons and Logic
- Artificial Neural Networks (ANNs)
- BackPropagation Algorithm
- Non-boolean features
- More than two classes
- Overfitting Problems
- K-Means Clustering

Review

- Bayesian Networks
- Exact Methods of Inference
- Inference by Enumeration
- Variable Elimination
- Approximate Methods of Inference
- Direct Sampling
- Rejection Sampling
- Likelihood Weighting
- Markov Chain Monte Carlo
- Induction
- Parameter Learning
- Maximum Likelihood (ML)
- Maximum A-Posteriori (MAP)
- Topology Learning

Review

- Basic Probability
- Joint probability, Full joint probability
- Conditional probability
- Marginalization
- Bayes Rule
- Chain Rule
- Independence, Conditional Independence
- Naïve Bayes

Review

- Inductive Logic Programming
- More than fixed length feature vectors
- Covering Algorithms in general
- Top Down Approaches
- FOIL
- PROGOL
- Seeds and Bottom Clauses
- Bottom Up Approaches
- GOLEM
- Support Vector Machines
- Support Vector
- Maximizing the margin
- Kernels (mapping to higher dimensions)

Information and Gain Example

Calculate Information of the above dataset.
Calculate Information Gain for each F1.

Probability Example

- Full Joint Probability is

Bayes Rule:
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
Chain Rule:
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z})=$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}) \mathrm{P}(\mathrm{B} \mid \mathrm{C}, \ldots, \mathrm{Z}) \ldots \mathrm{P}(\mathrm{Z})$
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=$?
$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C})=$?
$\mathrm{P}(\mathrm{A})=$?
$\mathrm{P}(\mathrm{A}, \mathrm{B})=$?
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$?
is A independent of B ?

Back-Propagation Example

- Calculate Errors:
- Output Units:
- $\delta_{k}+o_{k}\left(1-0_{0}\right)\left(t_{t}-0_{k}\right)$
- Hidden Units:
- $\delta_{1}-o_{1}\left(1-o_{n}\right)$
- Update each network weight:

$\begin{array}{l}\mathrm{w}_{\mathrm{ji}} \leftarrow \mathrm{w}_{\mathrm{ji}}+\Delta \mathrm{w}_{\mathrm{ji}} \\ \text { where } \Delta \mathrm{w}_{\mathrm{ji}}=\alpha \delta_{\mathrm{hj}} \mathrm{x}_{\mathrm{ji}}\end{array}$

- Sigmoid Function:
1
$\left(1+e^{-(\vec{k} \cdot \vec{x})}\right)$
- Update weights using back-prop and the example: $1,0,1$ and the learning rate 0.2

Bayesian Network Example

