Announcements

Game Playing u Read

— Chapter 6 — Adversarial Search
— Chapter 17.6-17.7 — Game Theory

® Homework 1 due on Thursday
Louis Oliphant

(slides borrowed from Burr H. Settles)
CS-540-2, UW—Ma:lison - Programmed portion handed in electronically by
beginning of class

— Written portion to me by beginning of class

www.cs.wisc.edu/~cs540-2

Fall 2005
1 2

Al for Game Playing Al for Game Playing

B Game playing is (was?) thought to be a good Deterministic Chance

problem fo'r AI' researd'l . Accessible: Tic-tac-toe, backgammon,
® Game playing is non-trivial perfect info checkers, chess, monopoly

— Players need “human-like” intelligence mancala

— Games can be very complex (e.g. chess, go) Inaccessible: 299 bridge, poker,

— Requires decision making within limited time imperfect info L] scrabble
B Games usually are:

— Well-defined and repeatable

— Limited and accessible

® Can directly compare humans and computers

Game Playing as Search

® Consider a two player board game:
— e.g. chess, checkers, mancala

— Board configuration: unique arrangement of pieces

B Let’s represent board games as search problem:
— States: board configurations
— Actions: legal moves
— Initial state: current board configuration

— Goal state: winning/terminal board configuration

Game Tree Representation

But there’s a new aspect
to the problem...

There’s an opponent
we do not control!

How do we handle this?

Complexity of Game Playing

® Assume the opponent’s moves can be predicted
given the agent’s moves
® How complex would search be in this case?
— Worst case: O(b%)
— Tic-Tac-Toe: ~5 legal moves, max of 9 moves
* 59=1,953,125 states

— Chess: ~35 legal moves, ~100 moves per game
* 351% ~10'5 states (but “only” ~10% legal states)

* Common games produce enormous search trees!!

7

Greedy Search for Games

m A utility function is used to score each
terminal state of the board to a number
value for that state for the computer
— Positive for winning (e.g. +1, +o0)

— Negative for losing (e.g. -1, -o0)
— Zero for a draw

Greedy Search for Games

® Expand the search tree to the terminal states
® Evaluate utility of each terminal board state

® Make the initial move that results in the board
configuration with the maximum value

computer's moves
opponent's moves

terminal states

Greedy Search for Games

B But this still ignores what the opponent is
likely to do...

— Computer chooses C because its utility is 9

— Opponent chooses J and wins!

computer's moves

opponent's moves

terminal states

The MiniMax Principle

B Assuming the worst
(i.e. the opponent plays optimally):
— Given there are two plays till the terminal states
— Low utility numbers favor opponent
« Smart opponent chooses minimizing moves
— High utility numbers favor computer

« Computer should choose maximizing moves

The MiniMax Principle

B The computer assumes after it moves the
opponent will choose the minimizing move

— Therefore, it chooses the best move considering
both its move and the opponent’s best move

computer's moves
opponent's moves

terminal states

Propagating MiniMax Values

m Explore the tree to the terminal states
® Evaluate utility of the resulting board
configurations
® The computer makes a move to put the board
in the best configuration for it, assuming the
opponent makes its best moves on its turn:
— Start at the leaves
— Assign value to the parent node as follows

+ Use minimum when children are opponent’s moves
* Use maximum when children are computer's moves

Deeper Game Trees

® MiniMax can be generalized to more than 2 moves

® Propagate utility values upwards in the tree

computer: max

opponent: min

computer: max

terminal states

General MiniMax Algorithm

for each move by the computer {
perform DFS to terminal states
evaluate each terminal state
propagate MiniMax values upward
- if opponent propagate min value of children
- if computer propagate max value of children
choose move with maximum MiniMax value

Note:

® MiniMax values gradually propagate upwards as DFS proceeds
(i.e. MiniMax values propagate up in “left-to-right” fashion)

® MiniMax values for sub-tree propagate upwards “as we go”, so only O(bd)
nodes need to be kept in memory at any time

Complexity of MiniMax

® Space complexity
— depth-first search (no closed list necessary), so O(bd)

® Time complexity
— given branching factor b, O(b%)

® Time complexity is a major problem since
computer typically only has a finite amount of time
to make a move!!

Complexity of MiniMax

® Direct MiniMax algorithm is impractical
— Instead do depth-limited search to depth limit /
— But evaluation defined only for terminal states

— We need to know the value of non-terminal states

m Static board evaluator (SBE) functions use
heuristics to estimate utility for non-terminal
states

Static Board Evaluators (SBE)

® A static board evaluation function is used to
estimate how good the current board configuration
is for the computer
— Reflects computer’s chances of winning from that state
— Must be easy to calculate from board configuration

® For Example, Chess:
SBE = a. x materialBalance + p x centerControl +y X ...
material balance = Value of white pieces - Value of black pieces
pawn =1, rook = 5, queen = 9, etc...

Static Board Evaluators (SBE)

® Typically, one subtracts how good it is for the
opponent from how good it is for the computer

® [fthe board evaluation has utility x for a player,
then it is usually considered -x for opponent

® Must agree with the utility function that is
calculated at terminal nodes

MiniMax Algorithm with SBE

function minimax (STATE, DEPTH, LIMIT) {
// base cases
if STATE is terminal then
return utility(STATE)
if DEPTH = LIMIT then
return sbe (STATE)
// continue search
else {
CHILDREN = empty list
foreach CHILD of STATE {
add to CHILDREN:
minimax (CHILD, DEPTH+1, LIMIT)
if computer's turn then
return max (CHILDREN)
else
return min (CHILDREN)

MiniMax with SBE

® The same as general MiniMax, except
— Only goes to depth /
— Estimates using SBE function

® How would this algorithm perform at chess?
— If could look ahead ~4 pairs of moves (i.e. 8 ply)
would be consistently beaten by average players
— If could look ahead ~8 pairs (16 ply)
as done in typical PC, is as good as human master

21

Summary So Far

® MiniMax can’t search to the end of the game
— Otherwise, choosing a move is trivial
m SBE isn’t perfect at estimating utility
— If it was, just choose best move without searching
® Since neither is feasible for interesting games,
combine MiniMax with SBE
— MiniMax to depth /

— Use SBE to score board configuration

Alpha-Beta Pruning

® Some of the branches of the game tree won’t be
taken if playing against an intelligent opponent

B We can “prune” those branches from the tree

m Keep track while doing DFS of game tree of:
— Maximizing level: alpha
* Highest value seen so far
« Lower bound on node’s utility or score
— Minimizing level: beta
« Lowest value seen so far

« Higher bound on node’s utility or score
23

Alpha-Beta Pruning

® When maximizing (computer’s turn):
— If alpha > parent’s beta, stop expanding

— Opponent shouldn’t allow the computer to make
this move

® When minimizing (opponent’s turn):
— If beta < parent’s alpha, stop expanding
— Computer shouldn’t take this route

Alpha-Beta Example

minimax (A,0,4)

Alpha-Beta Example

minimax(B,1,4)

Alpha-Beta Example

minimax (F,2,4)

Alpha-Beta Example

minimax (N, 3,4)

Alpha-Beta Example

minimax (F,2,4) returned to

F:0 =4, maximizing

Alpha-Beta Example

minimax (0, 3,4)

Alpha-Beta Example

minimax (W,4,4)

Alpha-Beta Example

minimax (O, 3,4) returned to

O:f = -3, minimizing

Alpha-Beta Example

minimax (O, 3,4) returned to

O:B <F:q, stop expanding O (alpha cutoff)

blue: terminal state red: pruned state

Alpha-Beta Example

Why?
Smart opponent will choose W or less, thus O’s upper bound is -3
Computer shouldn’t take O:-3 because N:4 is better

Alpha-Beta Example

minimax (F,2,4) returned to

F:a not updated, maximizing

blue: terminal state red: pruned state

Alpha-Beta Example

minimax (B, 1,4) returned to

B:B =4, minimizing

Alpha-Beta Example

minimax (G,2,4)

blue: terminal state

red: pruned state

Alpha-Beta Example

minimax (B, 1,4) returned to

B:B = -5, minimizing

Alpha-Beta Example

minimax (A,0,4) returned to

A:o = -5, maximizing

blue: terminal state

red: pruned state

Alpha-Beta Example

minimax(C,1,4)

Alpha-Beta Example

minimax (H,2,4)

blue: terminal state red: pruned state

Alpha-Beta Example

minimax (C,1,4) returned to

C:B =3, minimizing

Alpha-Beta Example

minimax(I,2,4)

Alpha-Beta Example

minimax (C,1,4) returned to

C:B not updated, minimizing

blue: terminal state red: pruned state

Alpha-Beta Example

minimax (J,2,4)

blue: terminal state red: pruned state

Alpha-Beta Example

minimax (P, 3,4)

Alpha-Beta Example

minimax (J,2,4) returned to

J:a =9, maximizing

Alpha-Beta Example

minimax (J,2,4) returned to

J:0.> C:, so stop expanding J (beta cutoff)

blue: terminal state red: pruned state

Alpha-Beta Example

Why?

Computer should choose P or higher, so J’s lower bound is 9
A smart opponent shouldn’t take J:9 because H:3 is lower

blue: terminal state

red: pruned state

Alpha-Beta Example

minimax (C,1,4) returned to

C:B not updated, minimizing

Alpha-Beta Example

minimax (A,0,4) returned to

A:a =3, maximizing

blue: terminal state

red: pruned state

Alpha-Beta Example

minimax(D,1,4)

Alpha-Beta Example Alpha-Beta Example

minimax (A,0,4) returned to Finishing off the search...
A:a not updated, maximizing E:B <A:o... so stop expanding E (alpha cutoft)

blue: terminal state red: pruned state

Alpha-Beta Example Alpha-Beta Example

Why? Result: Computer chooses move C
A smart opponent will choose L or less, thus E’s upper bound is 2.
The computer shouldn’t choose E:2 since C:3 is better

blue: terminal state red: pruned state

Now It's Your Turn!

m Let’s try working out a MiniMax search with alpha-beta
pruning on this game tree (going from left to right):
— If alpha > parent’s beta, stop expanding

— If beta < parent’s alpha, stop expanding

Effectiveness of Alpha-Beta

m Effectiveness depends on the order in which

successors are examined (more effective if best are
examined first)

— Best Case:

* Each player’s best move is evaluated first (left-most)
— Worst Case:

+ Ordered so that no pruning takes place

+ No improvement over exhaustive search

B In general, performance is closer to the best case
than the worst case

Effectiveness of Alpha-Beta

m In practice often get O(b?) rather than O(b?)
— Same as having a branching factor of sqrt(b)
since (sqrt(b))?= b@?

® Example: chess
— Branching factor goes from ~35 to ~6

— Allows for a much deeper search given the same amount
of time

— Allows computer chess to be competitive with humans

59

The Horizon Effect

B Sometimes disaster is just beyond the depth limit

— Computer captures queen, but a few moves later the
opponent checkmates and wins

® The computer has a limited horizon, it cannot
see that this significant event could happen

® How do you avoid catastrophic losses due to
“short-sightedness™?
— Quiescence search

— Secondary search

The Horizon Effect

B Quiescence Search

— When evaluation frequently changing, allow looking
deeper than the limit

— Looking for a point when game quiets down

® Secondary Search
1. Find best move looking to depth d
2. Look k steps beyond to verify it still looks good
3. Ifit doesn’t, repeat step 2 for next best move

61

Stochastic Game Environments

B Some games involve chance, for example:
— Roll of a die
— Spin of a game wheel
— Deal of cards from shuffled deck

® Extend the game tree representation:
— Computer moves
— Opponent moves
— Chance nodes

Stochastic Game Environments

The game tree representation is extended:

63

Stochastic Game Environments

® Weight score by the probabilities that move occurs

® Use expected value for move: sum of possible
random outcomes

Stochastic Game Environments

® Choose move with highest expected value

65

Stochastic Game Environments

Stochastic elements increase the branching factor

— 21 possible number rolls with 2 dice

— The value of look-ahead diminishes: as depth increases,
probability of reaching a particular node decreases

Alpha-beta pruning is less effective

B See AI: A Modern Approach for more details

Limiting Search Time

% In real games there is usually some time limit T
on making a move

® How do we take this into account?
— Can’t stop alpha-beta midway and expect to use
results with any confidence

— So, we could set a conservative depth-limit that
guarantees we will find a move in time < 7

— But then, the search may finish early and the opportunity
to search deeper is wasted

67

Limiting Search Time

B In practice, we use an iterative-deepening (IDS)
approach
— Run MiniMax with alpha-beta pruning at increasing
depth limits
— When the clock runs out, use the solution found for the
last complete alpha-beta search
(i.e. the deepest search that was completed)

® As with all heuristics, there is also a speed vs.
accuracy tradeoff for board evaluation functions

Using Book Moves

® For well-studied games, maybe we know the move
we should make without having to searching for it
® Build a database of opening moves, end-games,
and common board configurations
m [f the current game state is in the lookup table, use
database:
— To determine the next move
— To evaluate the board

® Otherwise do alpha-beta search

69

Evaluation Functions

% The board evaluation function estimates how
good the current board state is for the computer

B Heuristic function of the features of the board
— ie. function(f,, £, f3, ..., fn)
B The features are numeric characteristics
— f,=# of white pieces
— f,=# of black pieces
-fL=hk

— f, =estimate of “threat” to white king, etc...

Linear Evaluation Functions

B A linear evaluation function of the features
is a weighted sum of f,, f,, f;...

(W, %f) + @, %f,) + (W xf) + .. + (W, *f,)
— where f,, f,, ..., f, are features

—and w,, w,, ..., w, are their weights

* More important features get more weight

7

Linear Evaluation Functions

® The quality of play depends directly on
the quality of the evaluation function

B To build an evaluation function we have to:

— Construct good features using expert knowledge
of the game

— Choose good weights... or learn them

Learning Weights

® Q: How can we learn the weights for a linear
evaluation function?
® A: Play lots of games against an opponent!
— For every move (or game)
error = true outcome - evaluation function
— If error is positive (underestimating)
adjust weights to increase the evaluation function
— If error is zero do nothing
— If error is negative (overestimating)
adjust weights to decrease the evaluation function

73

Learning Checkers

B A. L. Samuel, “Some Studies in Machine Learning
using the Game of Checkers,” IBM Journal of
Research and Development, 11(6):601-617, 1959

m] earned linear weights by playing copies of itself
thousands of times

® Used only an IBM 704 with 10,000 words of RAM,
magnetic tape, and a clock speed of 1 kHz

® Successful enough to be competitive in human
tournaments

Learning Backgammon

B G. Tesauro and T. J. Sejnowski, “A Parallel
Network that Learns to Play Backgammon,”
Artificial Intelligence, 39(3), 357-390, 1989

® Also learned by playing copies of itself

® Used a non-linear evaluation function: a neural
network (we’ll discuss these models in the machine
learning section of the course)

® Rates in the top three players in the world

75

IBM’s Deep Blue

® Current world chess champion

B Parallel processor, 8 dedicated VLSI “chess chips”

B Can search 200 million configurations/second

® Uses MiniMax, alpha-beta pruning, very
sophisticated heuristics

m]t can search up to 14 ply (i.e. 7 pairs of moves)

® Can avoid horizon by searching as deep as 40 ply

m Uses book moves

IBM’s Deep Blue

m Kasparov vs. Deep Blue, May 1997
— 6-game full-regulation chess match sponsored by ACM
— Kasparov lost the match 2.5 to 3.5
® This was a historic achievement for computer chess
because it became the best chess player on the
planet!!
® Note: Deep Blue still searches “brute force,” and
still plays with little in common with the intuition
and strategy humans use

77

Chess Rating Scale

3000,

2800

2600_ Garry Kasparov (current human World Champion) Deep Blue
2400
2200
2000
1800
1600
14004

1200 u T T T T J
1966 1971 1976 1981 1986 1991 1997

Deep Thought

Al for Other Games

® Checkers
— Current world champion is Chinook
— Blondie24 won a 2001 online checkers tournament
+ Learned to play checkers with genetic algorithms
+ Used a neural network: wasn’t even programmed with rules!

= Go
— Branching factor is ~360 on average, very large!
— Pretty much still play at novice levels these days
— $2 million prize for any system that can beat
a world expert

79

Al in Modern Computer Games

® Modern computer games (i.e. “Doom,” “Civilization,” etc.)
usually still use rudimentary Al
— Finite state machines, simple reflex agents
— e.g. the “scientist” Al schema for Half-life:

see player
noises
nearffar

playoruses " playor valke ey St

enemy
nearffar

Cice>

path not found

stop follow

Al in Modern Computer Games

m Path-finding for FPS-type tournament arena games is often
done using A* search with straight-line distance as a
heuristic

— Often makes the agent’s moves “look like it’s drunk”

m Remember: reflex agents aren’t very adaptable, and behave
very deterministically (not very human-like)

o S. Rabin, editor, A1 Game Programming Wisdom, Charles
River Media, 2002

81

Al in Modern Computer Games

® Genetic algorithms and genetic programming have
been used and shown some success in “evolving”
realistically-acting agents for games
— Certainly appropriate for “Sim”-type games

®

5 B. Geisler, “An Empirical Study of Machine Learning
Algorithms Applied to Modeling Player Behavior in a “First
Person Shooter’ Video Game,” M.S. Thesis, UW-Madison,
2002

— Used machine learning to learn typical player actions

— Created a computer agent player based on learned behavior

Summary

B (Classic game playing is best modeled as a search
problem
m Search trees for games represent alternate
computer/opponent moves
m Evaluation functions estimate the quality of
a given board configuration for each player
- good for opponent
+ good for computer
0 neutral

83

Summary

® MiniMax is a procedure that chooses moves by
assuming that the opponent always choose their
best move

® Alpha-beta pruning is a procedure that can
eliminate large parts of the search tree enabling
the search to go deeper

® For many well-known games, computer algorithms
using heuristic search can match or out-perform
human world experts

Summary

® Initially thought to be good area for Al research
® But brute force has proven to be better than

a lot of knowledge engineering

— More high-speed hardware issues than Al

— Al relatively simple, enabled scaled-up hardware

m Still a good test-bed for machine learning

% Perhaps machines don’t have to think like us?

85

