Game Playing

Louis Oliphant (slides borrowed from Burr H. Settles) CS-540-2, UW-Madison www.cs.wisc.edu/~cs540-2 Fall 2005

Announcements

- Read:
 - Chapter 6 Adversarial Search
 - Chapter 17.6-17.7 Game Theory
- Homework 1 due on Thursday
 - Written portion to me by beginning of class
 - Programmed portion handed in electronically by beginning of class

2

Al for Game Playing

- Game playing is (was?) thought to be a good problem for AI research
- Game playing is non-trivial
 - Players need "human-like" intelligence
 - Games can be very complex (e.g. chess, go)
 - Requires decision making within limited time
- Games usually are:
 - Well-defined and repeatable
 - Limited and accessible
- Can directly compare humans and computers

Al for Game Playing

	Deterministic	Chance
Accessible: perfect info	Tic-tac-toe, checkers, chess, mancala	backgammon, monopoly
Inaccessible: imperfect info	???	bridge, poker, scrabble

Game Playing as Search

- Consider a two player board game:
 - e.g. chess, checkers, mancala
 - Board configuration: unique arrangement of pieces
- Let's represent board games as search problem:
 - States: board configurations
 - Actions: legal moves
 - Initial state: current board configuration
 - Goal state: winning/terminal board configuration

Game Tree Representation But there's a new aspect

There's an opponent we do not control!

to the problem...

How do we handle this?

Complexity of Game Playing

- Assume the opponent's moves can be predicted given the agent's moves
- How complex would search be in this case?
 - Worst case: O(bd)
 - Tic-Tac-Toe: ~5 legal moves, max of 9 moves
 - 59 = 1.953.125 states
 - Chess: ~35 legal moves, ~100 moves per game

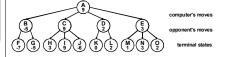
 35¹⁰⁰ ~10¹⁵⁴ states (but "only" ~10⁴⁰ legal states)
- * Common games produce enormous search trees!!

Greedy Search for Games

- A utility function is used to score each terminal state of the board to a number value for that state for the computer
 - Positive for winning (e.g. +1, +∞)
 - Negative for losing (e.g. -1, -∞)
 - Zero for a draw

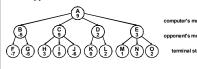
Greedy Search for Games

- Expand the search tree to the terminal states
- Evaluate utility of each terminal board state
- Make the initial move that results in the board configuration with the maximum value



Greedy Search for Games

- But this still ignores what the opponent is likely to do...
 - Computer chooses C because its utility is 9
 - Opponent chooses J and wins!



10

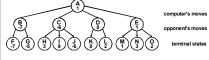
The MiniMax Principle

- Assuming the worst (*i.e.* the opponent plays optimally):
 - Given there are two plays till the terminal states
 - Low utility numbers favor opponent
 - · Smart opponent chooses minimizing moves
 - High utility numbers favor computer
 - Computer should choose maximizing moves

11

The MiniMax Principle

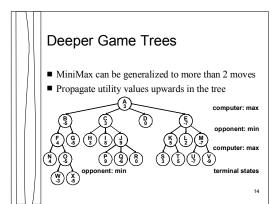
- The computer assumes after it moves the opponent will choose the minimizing move
 - Therefore, it chooses the best move considering *both* its move and the opponent's best move



Propagating MiniMax Values

- Explore the tree to the terminal states
- Evaluate utility of the resulting board configurations
- The computer makes a move to put the board in the best configuration for it, assuming the opponent makes its best moves on its turn:
 - Start at the leaves
 - Assign value to the parent node as follows

 - Use minimum when children are opponent's moves
 Use maximum when children are computer's moves



General MiniMax Algorithm

for each move by the computer {
 perform DFS to terminal states
 evaluate each terminal state

- evaluate each terminal state
 propagate MiniMax values upward
 if opponent propagate min value of children
 if computer propagate max value of children
 choose move with maximum MiniMax value

- ute:

 MiniMax values gradually propagate upwards as DFS proceeds

 (i.e. MiniMax values propagate up in "left-to-right" fashion)

 MiniMax values for sub-tree propagate upwards "as we go"; so only O(bd)

 nodes need to be kept in memory at any time

Complexity of MiniMax

- Space complexity
 - depth-first search (no closed list necessary), so O(bd)
- Time complexity
 - given branching factor b, O(b^d)
- Time complexity is a major problem since computer typically only has a finite amount of time to make a move!!

Complexity of MiniMax

- Direct MiniMax algorithm is impractical
 - Instead do depth-limited search to depth limit l
 - But evaluation defined only for terminal states
 - We need to know the value of non-terminal states
- Static board evaluator (SBE) functions use heuristics to estimate utility for non-terminal

Static Board Evaluators (SBE)

- A static board evaluation function is used to estimate how good the current board configuration is for the computer
 - Reflects computer's chances of winning from that state
 - Must be easy to calculate from board configuration
- For Example, Chess:

 $\textit{SBE} = \alpha \times \textit{materialBalance} + \beta \times \textit{centerControl} + \gamma \times .$ material balance = Value of white pieces - Value of black pieces pawn = 1, rook = 5, queen = 9, etc...

Static Board Evaluators (SBE)

- Typically, one subtracts how good it is for the opponent from how good it is for the computer
- \blacksquare If the board evaluation has utility x for a player, then it is usually considered -x for opponent

19

■ Must agree with the utility function that is calculated at terminal nodes

```
function minimax (STATE, DEPTH, LIMIT) {
// base cases
if STATE is terminal then
return utility(STATE)
if DEPTH = LIMIT then
return sbe(STATE)
// continue search
else {
                      CHILDREN = empty list
foreach CHILD of STATE {
    add to CHILDREN:
        minimax(CHILD, DEPTH+1, LIMIT)
    if computer's turn then
        return max(CHILDREN)
                                                                      return min (CHILDREN)
```

MiniMax Algorithm with SBE

MiniMax with SBE

- lacktriangle The same as general MiniMax, except
 - Only goes to depth l
 - Estimates using SBE function
- How would this algorithm perform at chess?
 - If could look ahead ~4 pairs of moves (i.e. 8 ply) would be consistently beaten by average players
 - If could look ahead ~8 pairs (16 ply)
 as done in typical PC, is as good as human master

21

Summary So Far

- MiniMax can't search to the end of the game
 - Otherwise, choosing a move is trivial
- SBE isn't perfect at estimating utility
 - If it was, just choose best move without searching
- Since neither is feasible for interesting games, combine MiniMax with SBE
 - MiniMax to depth l
 - Use SBE to score board configuration

22

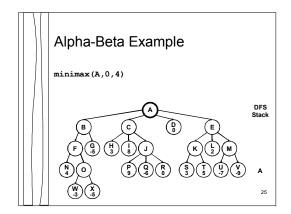
Alpha-Beta Pruning

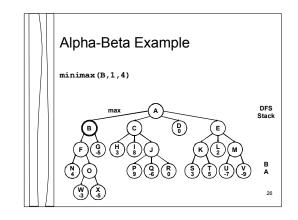
- Some of the branches of the game tree won't be taken if playing against an intelligent opponent
- We can "prune" those branches from the tree
- Keep track while doing DFS of game tree of:
 - Maximizing level: alpha
 - Highest value seen so far
 - Lower bound on node's utility or score
 - Minimizing level: beta
 - · Lowest value seen so far
 - · Higher bound on node's utility or score

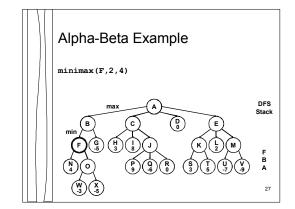
Alpha-Beta Pruning

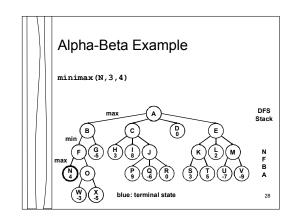
- When **maximizing** (computer's turn):
 - If alpha ≥ parent's beta, stop expanding
 - Opponent shouldn't allow the computer to make this move.
- When **minimizing** (opponent's turn):
 - If *beta* ≤ parent's *alpha*, stop expanding
 - Computer shouldn't take this route

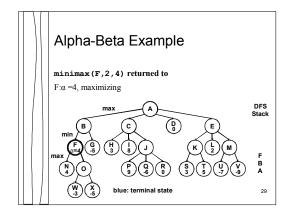
24

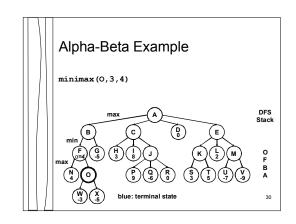


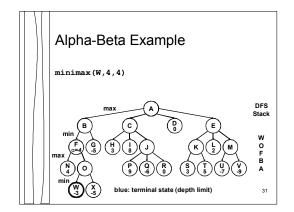


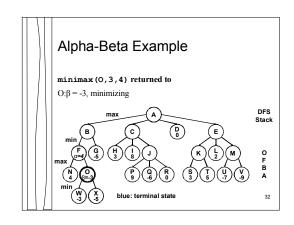


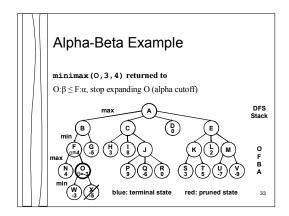


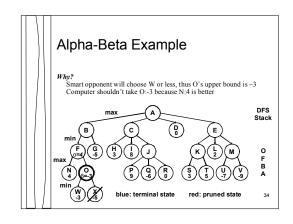


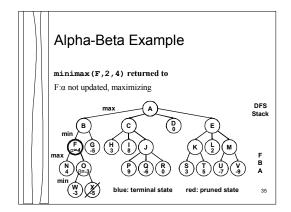


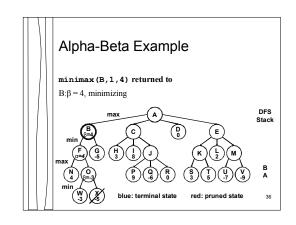


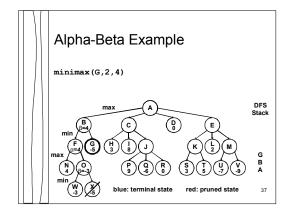


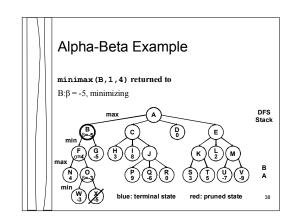


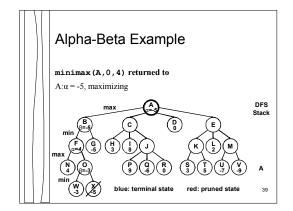


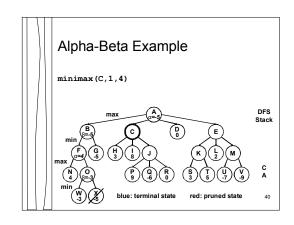


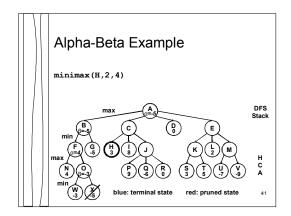


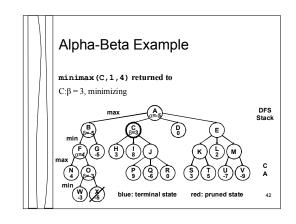


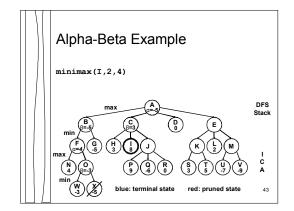


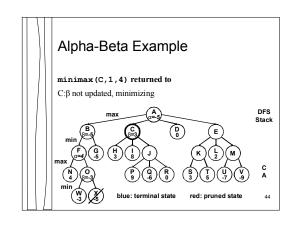


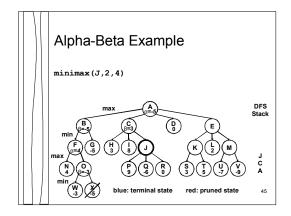


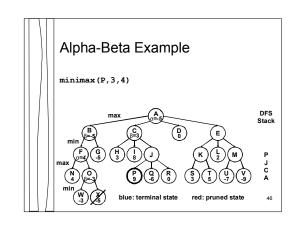


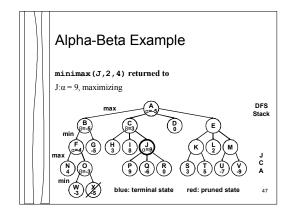


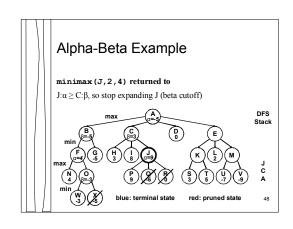


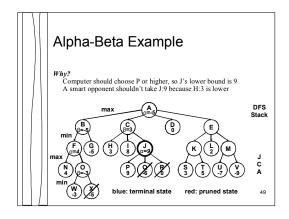


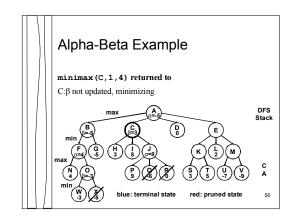


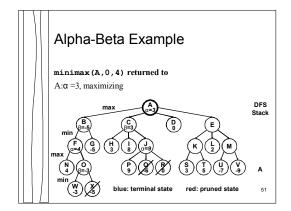


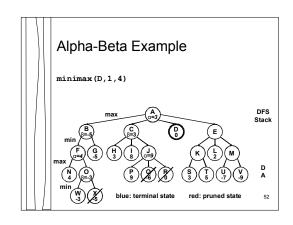


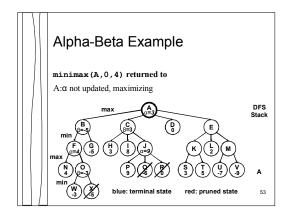


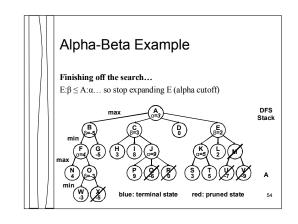


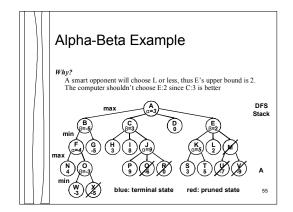


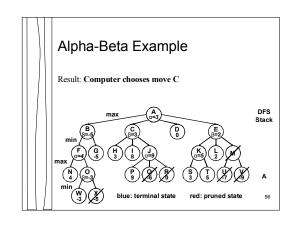










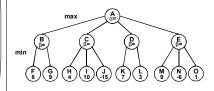


Now It's Your Turn!

- Let's try working out a MiniMax search with alpha-beta pruning on this game tree (going from left to right):

 — If alpha ≥ parent's beta, stop expanding

 - If beta ≤ parent's alpha, stop expanding



Effectiveness of Alpha-Beta

- Effectiveness depends on the order in which successors are examined (more effective if best are examined first)
 - Best Case:
 - Each player's best move is evaluated first (left-most)
 - Worst Case:
 - · Ordered so that no pruning takes place
 - · No improvement over exhaustive search
- In general, performance is closer to the best case than the worst case

Effectiveness of Alpha-Beta

- In practice often get $O(b^{(d/2)})$ rather than $O(b^d)$
 - Same as having a branching factor of sqrt(b) since $(sqrt(b))^d = b^{(d/2)}$
- Example: chess
 - Branching factor goes from ~35 to ~6
 - Allows for a much deeper search given the same amount
 - Allows computer chess to be competitive with humans

The Horizon Effect

- Sometimes disaster is just beyond the depth limit
 - Computer captures queen, but a few moves later the opponent checkmates and wins
- The computer has a limited horizon, it cannot see that this significant event could happen
- How do you avoid catastrophic losses due to "short-sightedness"?
 - Quiescence search
 - Secondary search

The Horizon Effect

- Quiescence Search
 - When evaluation frequently changing, allow looking deeper than the limit
 - Looking for a point when game quiets down
- Secondary Search
 - 1. Find best move looking to depth d
 - 2. Look k steps beyond to verify it still looks good
 - 3. If it doesn't, repeat step 2 for next best move

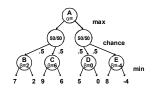
Stochastic Game Environments

- Some games involve chance, for example:

 Roll of a die
- Spin of a game wheel
- Deal of cards from shuffled deck
- Extend the game tree representation:
 - Computer moves
 - Opponent moves
 - Chance nodes

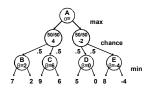
Stochastic Game Environments

The game tree representation is extended:



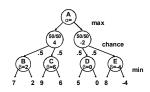
Stochastic Game Environments

- Weight score by the probabilities that move occurs
- Use expected value for move: sum of possible random outcomes



Stochastic Game Environments

■ Choose move with highest expected value



65

Stochastic Game Environments

- Stochastic elements increase the branching factor
 - 21 possible number rolls with 2 dice
 - The value of look-ahead diminishes: as depth increases, probability of reaching a particular node decreases
- Alpha-beta pruning is less effective
- See AI: A Modern Approach for more details

66

Limiting Search Time

- * In real games there is usually some time limit T on making a move
- How do we take this into account?
 - Can't stop alpha-beta midway and expect to use results with any confidence
 - $-\,$ So, we could set a conservative depth-limit that guarantees we will find a move in time < T
 - But then, the search may finish early and the opportunity to search deeper is wasted

Limiting Search Time

- In practice, we use an iterative-deepening (IDS) approach
 - Run MiniMax with alpha-beta pruning at increasing depth limits
 - When the clock runs out, use the solution found for the last complete alpha-beta search (i.e. the deepest search that was completed)
- As with all heuristics, there is also a speed vs. accuracy tradeoff for board evaluation functions

68

.-

Using Book Moves

- For well-studied games, maybe we know the move we should make without having to searching for it
- Build a database of opening moves, end-games, and common board configurations
- If the current game state is in the lookup table, use database:
 - To determine the next move
- To evaluate the board
- Otherwise do alpha-beta search

69

Evaluation Functions

- * The board evaluation function estimates how good the current board state is for the computer
- Heuristic function of the features of the board -i.e. function($f_1, f_2, f_3, ...,$ fn)
- The features are numeric characteristics
 - $-f_1 = \#$ of white pieces
 - $-f_2 = \#$ of black pieces
 - $-f_3 = f_1/f_2$
 - $-f_4$ = estimate of "threat" to white king, etc...

'n

Linear Evaluation Functions

■ A linear evaluation function of the features is a weighted sum of f_1 , f_2 , f_3 ...

$$(w_1 \times f_1) + (w_2 \times f_2) + (w_3 \times f_3) + \dots + (w_n \times f_n)$$

- where $f_1, f_2, ..., f_n$ are features
- and $w_1, w_2, ..., w_n$ are their weights
- * More important features get more weight

Linear Evaluation Functions

- The quality of play depends directly on the quality of the evaluation function
- To build an evaluation function we have to:
 - Construct good features using expert knowledge of the game
 - Choose good weights... or learn them

Learning Weights

- Q: How can we learn the weights for a linear evaluation function?
- A: Play lots of games against an opponent!

 - For every move (or game)
 error = true outcome evaluation function
 - If error is positive (underestimating) adjust weights to *increase* the evaluation function
 - If error is zero do nothing
 - If error is negative (overestimating) adjust weights to *decrease* the evaluation function

Learning Checkers

- A. L. Samuel, "Some Studies in Machine Learning using the Game of Checkers," IBM Journal of Research and Development, 11(6):601-617, 1959
- Learned linear weights by playing copies of itself thousands of times
- Used only an IBM 704 with 10,000 words of RAM, magnetic tape, and a clock speed of 1 kHz
- Successful enough to be competitive in human

Learning Backgammon

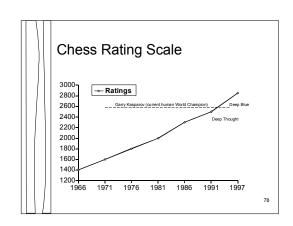
- G. Tesauro and T. J. Sejnowski, "A Parallel Network that Learns to Play Backgammon," Artificial Intelligence, 39(3), 357-390, 1989
- Also learned by playing copies of itself
- Used a non-linear evaluation function: a neural network (we'll discuss these models in the machine learning section of the course)
- Rates in the top three players in the world

IBM's Deep Blue

- Current world chess champion
- Parallel processor, 8 dedicated VLSI "chess chips"
- Can search 200 million configurations/second
- Uses MiniMax, alpha-beta pruning, very sophisticated heuristics
- It can search up to 14 ply (i.e. 7 pairs of moves)
- Can avoid horizon by searching as deep as 40 ply
- Uses book moves

IBM's Deep Blue

- Kasparov vs. Deep Blue, May 1997
 - 6-game full-regulation chess match sponsored by ACM
 - Kasparov lost the match 2.5 to 3.5
- This was a historic achievement for computer chess because it became the best chess player on the
- Note: Deep Blue still searches "brute force," and still plays with little in common with the intuition and strategy humans use



Al for Other Games

■ Checkers

- Current world champion is Chinook
- Blondie24 won a 2001 online checkers tournament
 - Learned to play checkers with genetic algorithms
 Used a neural network: wasn't even programmed with rules!

- Branching factor is ~360 on average, very large!
- Pretty much still play at novice levels these days
- S2 million prize for any system that can beat a world expert

Al in Modern Computer Games

- Modern computer games (i.e. "Doom," "Civilization," etc.) usually still use rudimentary AI
- Finite state machines, simple reflex agents
 - e.g. the "scientist" AI schema for Half-life:

Al in Modern Computer Games

- Path-finding for FPS-type tournament arena games is often done using A* search with straight-line distance as a heuristic
 - Often makes the agent's moves "look like it's drunk"
- Remember: reflex agents aren't very adaptable, and behave very deterministically (not very human-like)
- S. Rabin, editor, AI Game Programming Wisdom, Charles River Media, 2002

81

83

Al in Modern Computer Games

- Genetic algorithms and genetic programming have been used and shown some success in "evolving" realistically-acting agents for games
 - Certainly appropriate for "Sim"-type games
- B. Geisler, "An Empirical Study of Machine Learning Algorithms Applied to Modeling Player Behavior in a 'First Person Shooter' Video Game," M.S. Thesis, UW-Madison, 2002
 - Used machine learning to learn typical player actions
 - Created a computer agent player based on learned behavior

82

Summary

- Classic game playing is best modeled as a search problem
- Search trees for games represent alternate computer/opponent moves
- Evaluation functions estimate the quality of a given board configuration for each player
 - good for opponent
 - + good for computer

0 neutral

Summary

- MiniMax is a procedure that chooses moves by assuming that the opponent always choose their best move
- Alpha-beta pruning is a procedure that can eliminate large parts of the search tree enabling the search to go deeper
- For many well-known games, computer algorithms using heuristic search can match or out-perform human world experts

Summary

- Initially thought to be good area for AI research
- But brute force has proven to be better than a lot of knowledge engineering
 - More high-speed hardware issues than AI
 - AI relatively simple, enabled scaled-up hardware
- Still a good test-bed for machine learning
- * Perhaps machines don't have to think like us?