Inference
in
First Order Logic

CS 540-2
Louis Oliphant
oliphant@cs.wisc.edu

Remembering Inference

* Entailment — Given some Knowledge what must
logically follow
afp
* Inference is the mechanism by which you can
show what is entailed

afp
i — the inference mechanism
¢ We would like Inference mechanisms that are:
- Sound
- Complete

Methods of Inference in FOL

* There are two main methods of inference in FOL:
- convert FOL sentences to propositional sentences
- Resolution in FOL
¢ Additional methods exist for subsets of FOL
- First Order Definite Clauses and Datalog
- Forward Chaining and Backward Chaining

Reducing to Propositional Logic

Ux King(x) UGreedy(x) U Evil(x)

* Universal Instantiation — substitute in all possible
constants from the knowledge base for the variable
King(John) O Greedy(John) O Evil(John)

King(Richard) [0 Greedy(Richard) [0 Evil(Richard)
King(Father(John)) O Greedy(Father(John)) O Evil(Father(John))

* Then treat each predicate with its arguments as a
unique symbol in propositional logic.




Reducing to Propositional Logic

[ Crown(x) UOnHead(x,John)

 Existential Instantiation — substitute in a new
constant not in the knowledge base for the variable

Crown(C]) a OnHead(C],John)

* Again, treat each predicate with its arguments as a
unique symbol in propositional logic.

Reducing to Propositional Logic

* Universal Instantiation — substitute in all possible
constants from the knowledge base for the variable
v a
subst({v/g}, 00)*

*for any variable v and ground term g.

 Existential Instantiation — substitute in a new
constant not in the knowledge base for the variable
v a
subst({v/k}, a}*

*For any sentence 0,variable v, and constant symbol k that does not appear in the knowledge base

Reducing to Propositional Logic

* Using Universal Instantiation and Existential
Instantiation you can convert all FOL sentences into
a set of Propositional sentences

* Then use standard Propositional reasoning methods
to decide if a query is true or false.

Reducing to Propositional Logic

e Let's Try it. Here are the sentences in the
Knowledge base:
Ux Man(x) O Mortal(x)
Man(Socrates)

* And Here is my Query:
Mortal(Socrates)

* Oh, and one other point. The Knowledge base
contains the function Father(x). What is the set of
Propositional sentences?




Problems with converting to
Propositional Logic

* Universal instantiation creates a huge number of
sentences in propositional logic.
- Each term in the knowledge base needs to be substituted

into sentences in each possible way
How many ways to substitute 3 constants into this predicate?

Ox,y Pred(x,y)

* Universal instantiation may create an infinite
number of sentences in propositional logic if there

are any functions in the knowledge base
Father(John), Father(Father(John)), ...

Reducing to Propositional Logic

Theorem: Herbrand (1930). If a sentence o is entailed by a FOL
KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n =0 to c do
create a propositional KB by instantiating with depth-$n$ terms
see if a is entailed by this KB

Problem: works if o is entailed, infinitely loops if o is not entailed

Theorem: Turing (1936), Church (1936) Entailment for
FOL is semidecidable (algorithms exist that say yes
to every entailed sentence, but no algorithm exists
that also says no to every nonentailed sentence.)

So let's try reasoning in FOL directly.

Un I f Ica t’ on Standardize Apart: Change the name of variables
so sentences don't have any in common

* To reason in FOL directly we need to be able to
decide if there is some setting for the variables that

would make two sentences identical:
[Ox Knows(John,x) -- Knows(John,Jane) — {x/Jane}
Ox Knows(John,x) -- Oy Knows(y,Father(Jane)) — {x/Father(Jane), y/John}
Ox Knows(John,x) -- (x)Knows(x)Father(Jane)) — ?77?
Ox Knows(John,x) -- Oy Knows(John,y) —

* Unification is the process of generating a
substitution (if one exists) that would make two
sentences look identical.

* We want the Most General Unifier

(MGU is unique up to renaming of variables for any two sentences)

Unification

* To reason in FOL directly we need to be able to
decide if there is some setting for the variables that

would make two sentences identical:
Ox Knows(John,x) -- Knows(John,Jane) — {x/Jane}
Ox Knows(John,x) -- Oy Knows(y,Father(Jane)) — {x/Father(Jane), y/John}
Ox Knows(John,x) -- Oy Knows(y,Father(Jane)) — {x/Father(Jane), y/John}
Ox Knows(John,x) -- [y Knows(John,y) — {x/Jane, y/Jane} or {y/x} or

{x/Father(Jane), y/Father(Jane)}
* Unification is the process of generating a
substitution (if one exists) that would make two
sentences look identical.
* We want the Most General Unifier

(MGU is unique up to renaming of variables for any two sentences)




Unification Algorithm

function UNIFY(z y,6) returns a substitution to make z and y identical
inputs: z, a variable, constant, list, or compound
%, a variable, constant, list, or compound
@, the substitution built up so far

if # = failure then return failure

else if z = y then return 6

else if VARIABLE?(z) then return UNIFY-VAR(g, y,0)

else if VArIABLE?(y) then return UNiFY-Var(y r 6)

else if ComPlWhat if you have to unify(a,F(a))? -- fail

return {4 . A >
else if List? This makes algorithm O(n”)

return UNTFY(REST[Z], RESTIY], UNIEY(FIRST(4], FIRSTIY], 6])

else return fpilure

function UNIFY{VAR(var, z,6) returns a substitution

inputs: var, g variable

, any| expression

8, thelsubstitution built up so far
if {var/val} ¢ 6 then return UNIFY(val, z,6)
else if {z/val} € 6 then return UNIFyY(var, val, 0)
else if OCCUR-CHECK?(var, x) then return failure
else return add {var/z} to @

Resolution: brief summary

¢ Full first-order version:
004  m0O-On
((0-+0f0f,0+04{0m0~0Om, Om,

J*l

0 Om)o
where Unify(f, ~m)=0.

* The two clauses are assumed to be standardized apart
so that they share no variables.
* For example,
= Rich(x) O Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 6 = {x/Ken}

* Use resolution on CNF(KB [0 - a); complete for FOL
* So First convert to Conjunctive Normal Form

Conversion to CNF in FOL

Everyone who loves all animals is loved by someone:
Ox [Oy Animal(y) O Loves(x,y)] O [y Loves(y,x)]

1. Eliminate biconditionals and implications
Ox [0y = 4nimal(y) O Loves(x,y)] O[Oy Loves(y,x)]

2.Move - inwards: -Oxp=[k -p, - (kp=Ux-p
Ox [Oy = (= 4nimal(y) O Loves(x,y))] O [y Loves(y,x)]
Ox [Oy == Animal(y) O - Loves(x,y)] O[Oy Loves(y,x)]
Ux [Oy Animal(y) 0= Loves(x,y)] O[Oy Loves(y,x)]

Conversion to CNF contd.

3. Standardize variables: each quantifier should use different one

Ox [Oy Animal(y) 0= Loves(x,y)] O [k Loves(z,x)]

4. Skolemize: general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the
enclosing universally quantified variables:

Ox [Animal(F(x)) O~ Loves(x,F(x))] O Loves(G(x),x)

5. Drop universal quantifiers:

[Animal(F(x)) O-Loves(x,F(x))] OLoves(G(x),x)

6. Distribute Oover O :

[Animal(F(x)) O Loves(G(x),x)] O [~ Loves(x,F(x)) O Loves(G(x),x)]




Conversion to CNF contd.

You try — “Anyone who kills all the animals is loved by no one.”
Ox [Oy Animal(y) O Kills(x,y)] O [Oy = Loves(y,x)]
[Animal(G(x)) O - Loves(y,x)] O [~ Kills(x,G(x)) O~ Loves(y,x)]

1. Eliminate biconditionals and implications

a-=b=alb0ObOa adb=-alb

2. Move = inwards:
ﬂDXpED}(ﬂp —|DxpE|:|X_|p
- (alb)=-a0-b - (alb)=-a0-b

3. Standardize variables: each quantifier should use different one

4. Skolemize: general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the
enclosing universally quantified variables

5. Drop universal quantifiers

6. Distribute Oover O
(al bx) = (alb)(alc)

Example Knowledge Base

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.

Jack loves all animals.

Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

* Convert to FOL sentences
e Convert to CNF

* Use Resolution by Refutation to prove (KB - 0) is false

Convert to FOL sentences

Ox [0y Animal(y) O Loves(x,y)] O [Oy Loves(y,x)]
Ox [y Animal(y) OKills(x,y)] O [0z - Loves(z,x)]
Ox Animal(x) 00 Loves(Jack,x)

Kills(Jack,Tuna) O Kills(Curiosity, Tuna)
Cat(Tuna)

Ox Cat(x) 0 Animal(x)
= Kills(Curiosity, Tuna)

Convert FOL sentences to CNF

Remember to write every clause on a seperate line
Animal(F(x)) O Loves(G(x),x)

= Loves(x,F(x)) O Loves(G(x),x)

= Animal(y) 0= Kills(x,y) - Loves(z,x)

= Animal(x) [JLoves(Jack,x)

Kills(Jack,Tuna) O Kills(Curiosity, Tuna)
Cat(Tuna)

= Cat(x) 0 Animal(x)
= Kills(Curiosity, Tuna)




Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) 0 Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[ = Animal(y) O=Kills(x.y) O-Loves(zx)

[ =Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) 0 Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity,Tuna)

[ = Animal(y) O=Kills(x.y) O-~Loves(z.x)

[ = Loves(x,F(x)) OLoves(G(x),x]| ~Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0=Loves(zx)

[ =Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity,Tuna)| - Kills(Curiosity,Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0=Loves(zx)

[ ~Loves(x,F(x)) OLoves(G(x),x]| ~Animal(x) OLoves(Jack.x)

[ Animal(F(x)) OLoves(G(x).x)




Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) 0 Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O-Kills(x.y) O—Loves(z.x)| Kills(Jack,Tuna)

[ = Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

Resolution by Refutation

[ Cat(Tuna) [ ~Cat(x) O Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity,Tuna)| - Kills(Curiosity,Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0= Loves(zx)[ Kills(Jack, Tuna)

[ = Loves(x,F(x)) OLoves(G(x),x]| ~Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O-Kills(x.y) O—Loves(z.x)| KillsJack.Tuna)

[ =Kills(x,Tuna) O~Loves(z.x) [ = Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity,Tuna)| - Kills(Curiosity,Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0= Loves(zx)[ Kills(Jack, Tuna)

[ =Kills(x,Tuna) O~Loves(z.x)] [ = Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack.x)

[ Animal(F(x)) OLoves(G(x).x)




Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) 0 Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O-Kills(x.y) O—Loves(z.x)| Kills(Jack.Tuna)

[ =Kills(x,Tuna) O~Loves(z.x) [ =Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

= Loves(z,Jack

Resolution by Refutation

[ Cat(Tuna) [ ~Cat(x) O Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity,Tuna)| - Kills(Curiosity,Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0= Loves(zx)[ Kills(Jack, Tuna)

[ =Kills(x,Tuna) O~Loves(z.x)] [ = Loves(x.F(x)) OLoves(G(x).x) = Animal(x) 0 Loves(Jack,x)

[ Animal(F(x)) OLoves(G(x).x)

= Loves(zJack

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O-Kills(x.y) O—Loves(z.x)| Kills(Jack,Tuna)

[ =Kills(x,Tuna) O~Loves(z.x) [ =Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(Jack)) OLoves(G(Jack).Jack] [ Animal(F(x)) OLoves(G(x).x)|

- Loves(z,Jack

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity,Tuna)| - Kills(Curiosity,Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0= Loves(zx)[ Kills(Jack, Tuna)

[ =Kills(x,Tuna) O~Loves(z.x)] [ = Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack.x)

[ Animal(F(Jack)) OLoves(G(Jack).Jack] [ Animal(F(x)) OLoves(G(x).x)

- Loves(zJack




Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) 0 Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O-Kills(x.y) O—Loves(z.x)| Kills(Jack.Tuna)

[ =Kills(x,Tuna) O~Loves(z.x) [ = Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(Jack)) OLoves(G(Jack).Jack] [ Animal(F(x)) OLoves(G(x).x)

- Loves(z,JJack Loves(G(Jack),Jackj

Resolution by Refutation

[ Cat(Tuna) [ ~Cat(x) O Animal(x)[ Kills(Jack, Tuna) OKills(Curiosity,Tuna)| - Kills(Curiosity,Tuna)

[Animal(Tuna) [ = Animal(y) O=Kills(x,y) 0= Loves(zx)[ Kills(Jack, Tuna)

[ =Kills(x,Tuna) O~Loves(z.x)] [ = Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack.x)

[~ Animal(F(Jack)) OLoves(G(Jack).Jack] [ Animal(F(x)) OLoves(G(x).x)

- Loves(zJack Loves(G(Jack),Jackj

Resolution by Refutation

[ Cat(Tuna) [ = Cat(x) O Animal(x)[ Kills(Jack,Tuna) OKills(Curiosity, Tuna)| - Kills(Curiosity, Tuna)

[Animal(Tuna) [ = Animal(y) O-Kills(x.y) O—Loves(z.x)| KillsJack,Tuna)

[ =Kills(x,Tuna) O~Loves(z.x) [ =Loves(x.F(x)) OLoves(G(x).x)| = Animal(x) OLoves(Jack,x)

[ Animal(F(Jack)) OLoves(G(Jack).Jack] [ Animal(F(x)) OLoves(G(x).x

- Loves(z,Jack

ILoves(G(Jack),Jack

Resolution by Refutation

* Resolution is Refutation Complete
- Ifa |= [3 then resolution will find a proof'in a finite
number of steps
- Godel's completeness theorem (1930)
- Ifa ,F (3 then resolution may never terminate —
entailment for FOL is semidecidable
- Similar to Turing's Halting Problem
* FOL with mathematical induction is incomplete
- There are sentences that can not be proven even though
akp

- Godel's incompleteness theorem (1931)




Godel, Escher, Bach

an Eternal Golden Braid

GODEL,ESCHER,BACH

"I realized that to me, Godel and Escher and Bach were only shadows
cast in different directions by some central solid essence. I tried to
reconstruct the central object, and came up with this book.” --
Douglas Hofstadter

Induction

Induction (mathematics) — A two-part method of proving a theorem
involving an integral parameter. First the theorem is verified for the
smallest admissible value of the integer. Then it is proven that if the
theorem is true for any value of the integer, it is true for the next greater

value. The final proof contains the two parts.

Induction (logic) — The process of deriving general principles from

particular facts or instances.

Conclusion

¢ How to Convert FOL to Propositional Logic
- Universal Instantiation
- Existential Instantiation
- Drawbacks of doing this
* Reasoning in FOL with resolution
- converting to CNF and skolemization
- Most General Unifier
- substitutions
* Next Time — Definite clauses, Back and Forward Chaining




