Neural Networks

Louis Oliphant
oliphant@cs.wisc.edu

slides borrowed from Burr H. Settles
CS-540-2, UW-Madison
www.cs.wisc.edu/~cs540-2

Announcements

B Midterm

— average: 74.0

—std: 10.6
= HW 4

— get busy, due next Thursday

— blank lines, multi-character feature values
B Projects

— proposals in, progress report next week

Training Example Results

m After 1,000 epochs, this is the learned perceptron:
-1

o(in)
Predictions on the training data:
x=001 flx)=0 o(in)=0.070 x=111 flx)=1 o(in) =1.000
x=110 flx)=1 o(in) =1.000 x=101 flx)=1 o(in) =0.951
x=000 flx)=0 o(in)=0.030 x=011 flx)=1 o(in) =0.951
And on some novel examples:
x=010 flx)=? o(in) =0.906 x=100 flx)=? o(in) =0.906

Any ideas what function this might be?

Perceptrons and Logic

B Perceptrons can learn logical functions:
1

x, Ox, &

x, Ox,

Perceptrons and Logic Linear Separability

] Perceptrons can learn logica] functions: m Consider a perceptron with two inputs and and a
threshold (bias):
— The perceptron fires if w.x, + wyx,— 120
— Recall the weights for the “and” perceptron:
.+ 0.5x +0.51,-07520

— This is really the equation for a line!
* x,2—x, * 1.5 (in slope-intercept form)
m The activation threshold for a perceptron is actually
A perceptron cannot represent the a linearly separable “hyperplane” in the space of
X O X, XOR function! Why not?? inputs Y Sep: yperp P

Linear Separability Linear Separability
,xz o Using the sigmoid
\ activation function

x, Ox,

achieves the same
general effect,

0 1 sliding the sigmoid §;
surface across the §};
linear

X
X hyperplane...
1 ° 1 el
ax, x, Ox, nn
X
0 1 X1

The Need for a Network

m Clearly a single perceptron is limited compared to

the expressiveness of a decision tree or &-NN
— They can handle XOR, for example

® But remember: the brain is a network of neurons:
the axon (output) is connected to the dendrites
(inputs) of others through synapses (weights)

m By this analogy, we can create a multi-layer feed-
forward neural network made up of perceptrons,
which might learn more expressive functions

Multi-Layer Networks

® The structure of a multi-layer network is fairly
straightforward:
— The input layer is the set of features (percepts)

— Next is a hidden layer, which has an arbitrary number of
perceptrons called hidden units that take the features
(input layer) as inputs

— The perceptron(s) in the output layer then takes the
outputs of the hidden units as its inputs

* This is looking more like a model of the brain!

Multi-Layer Networks

m Here is a very simple multi-layer network that can
handle the XOR function:

x, Ox,

Input Hidden Output
layer layer layer

Multi-Layer Networks

m This network is essentially equivalent to a more
complex logical function:

(¢ Oxy) O=(x Oxy)
® Which, represented graphically, is:

(sigmoid)

Multi-Layer Networks

® We aren’t limited to just one layer of hidden units,
though, we could have even more, which will allow
us to learn even more complex functions:

Multi-Layer Networks

Multi-layer networks are called
feed forward because the
information is fed forward from
the input layer (features) toward
the output layer

For most problems, one layer of
hidden units is sufficient

Such networks are also usually
fully connected: every output
from one layer is connected to
every input of the next (but they
don’t need to be)

Training Multi-Layer Networks

® Training multi-layer networks can be a bit
complicated (the weight space is larger!)
— The perceptron rule worked fine for a single unit that
mapped input features to the final output value
— But hidden units don’t produce the final output

— Output unit(s) take other perceptrons — not known
feature values — as inputs

® The solution is to use the back-propagation
algorithm, which is an intuitive extension of the
perceptron training algorithm

Back-Propagation (BP)

m BP generalizes the perceptron rule:
— Gradient-descent search to minimize error on the
training data (again, usually in iterative mode)
— In the forward pass, features are fed forward to the
output layer where error is calculated
— Then, in the backward pass:
* Update weights from hidden layer to output layer as usual:
Aw,, = a xx, X ERR, ; where ERR, = g'(in,) (true — g(in,))
« Update weights from input layer to the hidden layer:
Aw,, = o xx, x ERR, ; where ERR, =g'(in,) X Z, (), X ERR,)
B More complete version of the algorithm on p.746 of
AIMA

16

Back-propagation Algorlthm

Back-| propagauon(mimmg examples, o, 0, n
<t Eoctvrk npa v, ad s

00511, st ~ mdn, Foutpt i,
heinput o it it i s deted . e ightfrom it 10wt i dected

wr> Dhidaen

(Createa et forward nework with n, inputs, ., hidden units andn, outp s,

Initalizeal etk weights to small random

betwcen 0,05 and 0.05),

Until the termination condition is met, do:
For cach <x,t> in training_examples, do:
Propagate the input forward through the network:
1. Input the instance x to the network and compute the output o, of every
unit u in the network
Propagate the errors backward through the network:
2. For each network output unit k, calculate its error term BA
3, o (1-0)(t-0)
3. For each hidden unit h, calculate its error term 8,

8-0,10) T (w,5)

4. Update each nctwork ‘weight W,
W W +AW

where Aw, = 03, x,

Problems with BP

m Because BP is a gradient descent (hill-climbing)
search, it suffers from the same problems:
— Doesn’t necessarily find the globally best weight vector

« Convergence is determined by the starting point
(randomly initialized weights)

« If ais set too large, can “bounce” right over the global
minimum into a local minimum

® To deal with these problems:
— Usually initialize weights close to 0

— Can repeat training with multiple random restarts

Non-Boolean Features

m So far, the networks we’ve described only take
Boolean features [1,0] as inputs

® To hand discrete-valued features, we can create a
unique input for each feature-value pair

— e.g. Outlook = {Sunny, Overcast, Rainy} would be
converted into 3 Boolean inputs

— For classification purposes, the observed value’s input is
set to 1, the others are 0

m Continuous features can be left alone and fed
through the network as real numbers
— The weights will figure out what to do with them!

Handling Multiple Labels

® Similarly, the networks so far have been for Boolean
classification functions
® To handle multi-label classification tasks we can simply
create extra output units:
— Each unit corresponds to one label (e.g. animal/vegetable/mineral)
For classification, the unit with the highest output is the “winner,”
and the network assigns the corresponding label to that example

For training purposes, the “true” label’s output unit is set to 1, and
the others are set to 0

* This variant on networks has been applied with wide

succ

ss to several multi-class problems

Regression and Neural Nets

® Are neural networks very well suited for regression
(i.e. real-valued function) tasks?
® We currently use the 0 function to allow the perceptrons to
behave like classifiers, but we could just output the
weighted sum of their inputs directly
— Since this is a linear function, the g'(in) factor in training is 1

* Neural networks can learn regression problems better than
decision trees or k-nearest neighbors (though training can

be slower than a standard network)

21

Expressiveness of Neural Nets

m Classification problems
— Any Boolean function can be represented in a neural
network with just 2 layers
— But might require an exponential number of hidden units
(in terms of input features)
m Regression problems
— Perceptrons can learn any linear function
B G. Cyberko, “Continuous valued neural networks with
two hidden layers are sufficient,” Tech. Report, 1988

* 2-layer networks with enough hidden units can learn any
bounded, continuous (e.g. polynomial) function

« 3-layer networks can learn any function. Period.

Overfitting in Neural Nets

m Overfitting is when a model that generalizes poorly
to new data despite excellent performance on
training data.

® As with all machine learning algorithms, there is a
risk of overfitting the training data

— Neural nets with lots of hidden units are particularly
prone to overfit, because the model is so expressive!

m Recall that the network ultimately “converges,”
within some € of change

— If we keep cycling through epochs ad infinitum, we end
up memorizing the training examples

® But how do we know when to stop? z

22
Overfitting in Neural Nets
Error versus weight updates (example 1)
001 T T T
N -
0.009 Fe Training set error .
Validation set error +
0.008 [~ q
. 0.007 ;; 1
E o0 7W
0.005 - q
0004 q
0.003 - q
0.002 L L L
[} 5000 10000 15000 20000

Number of weight updates

Overfitting in Neural Nets

3000 4000

5000
Number of weight updates

Exror versus weight updates (example 2)
0.08 .\. T T T
007 | *, Training set error .
. Validation set error +
0.06 j‘%%
005
Bom o
=) - %
003 T
.
0.02 - '.’
.
001 \u......_
o .
0 1000 2000

Neural Network Applications

B W. Huang & R. Lippmann, “Neural net and
traditional classifiers,” Neural Information
Processing Systems, 1988

m Used a simple network to disambiguate between
vowel phoneme sounds in “h — d” words

— Only 2 features (percepts) obtained from spectral
analysis of recorded data

— 7 hidden units in 1 layer (fully connected)
— 10 outputs (words: head, hid, who d, hood, etc...)

Overfitting in Neural Nets

® We can use a tuning set to avoid overfitting in
neural nets
— We can train several candidate structures and use the
tuning set to find one that’s appropriately expressive
® More common: given a network structure, use early
stopping by evaluating the network on the tuning
set after each epoch
— Stop when performance begins to dip on the tuning set

— Sometimes allow a fixed number of epochs beyond the
dip... just in case it goes back up

Neural Network Applications

4000,

F2 (8z)

1000|

2000}

D hesd
« nid

+ hed

» had

< hawed
» heard
© heed
< hud

> who'd
~ hood

500

Tago
FL (52)

Neural Network Applications

Neural Network Applications

slilal

left
® Used 30%32 pixel images of faces pointing left,

m Facial pose recognition

Example
[Section 4.7 of Machine Learning by T. Michell images:
 All this image data is available at
www.cs.cmu.edu/~tom/faces.html

straight right up
Network weights
(darii E’;ﬁﬁf IS BN | e e
: : after 100 epochs
straight, right, and up of teaining on 260
— Each of the 30x32 = 960 pixels was a continuous feature examples
(grayscale value) Achieved 90%
— 3 hidden units accuracy
— 4 output units (poses) hidden #1 hidden #2 hidden #3
29 30
Neural Network Applications Issues with Neural Nets
B D. Pomerleau, “Knowledge-based training of ® Neural networks are very powerful and can
artificial neural networks for autonomous robot approximate any function, but they do have
driving,” Robot Learning, 1993 drawbacks
— Many weights to learn: training can take a while
® That’s right, folks: ALVINN (Autonomous Land — Sensitive to structure, initial weights, and learning rate
Vehicle In a Neural Network)
— Takes 3032 pixel input camera images ® Once the network has learned a hypothesis
— Only 1 hidden layer: 4 hidden units function, what does it mean?
— 30 output units (discrete steering wheel direction) — Neural networks are connectionist models, thus not as
comprehensible as decision trees, which are symbolic
31 32

Understanding Neural Nets

o M. Craven & J. Shavlik, “Extracting Tree-Structured
Representations of Trained Networks,” Advances in Neural
Information Processing Systems, MIT Press, 1996

— “Trepan” Algorithm: extract decision trees from Neural Nets to
better understand what they learned

Summary

® Perceptrons are mathematical models of neurons
(brain cells)
— Learn linearly separable functions
— Insufficiently expressive for many problems

® Neural Networks are machine learning models that
have multiple layers of perceptrons
— Trained using back-propagation, a gradient descent
search through weight space (NN hypothesis space)
— Sufficiently expressive for any classification or
regression task, also quite robust to noise

Problem Y Accuracy Fidelity
Dataset Network | ID2/3 | Trepan | ©©NN
Heart 845 746 818 | 941
Promoters 9.6 83.5 876 | 857
Protein-coding | 94.1 90.9 914 | 924
Voting 922 878 908 | 959
33
Summary

® Many applications:

— Speech processing, driving, face/handwriting
recognition, backgammon, checkers, etc.

® Disadvantages:
— Overly expressive: prone to overfitting
— Difficult to design appropriate structure
— Many parameters to estimate: slow training
— Hill-climbing can get stuck in local optima
— Poor comprehensibility

