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Announcements

* Homework 4 due Thursday
* Project
- meet with me during office hours this week.
- or setup a time via email
* Read
- chapter 13
- chapter 20 section 2 portion on Naive Bayes model
(page 718)

Probability and Uncertainty

* Probability provides a way of summarizing the
uncertainty that comes from our /aziness and
ignorance.

- 60% chance of rain today
- 85% chance of making a free throw

* Calculated based upon past performance, or degree
of belief

Probability Notation

* Random Variables (RV):

- are capitalized (usually) e.g. Sky, RoadCurvature, Temperature

- refer to attributes of the world whose "status" is unknown

~ have one and only one value at a time

~ have a domain of values that are possible states of the world:
* boolean: domain = <true, false>

Cavity=true abbreviated as cavity

Cavity=false abbreviated as —cavity

discrete:  domain is countable (includes boolean)

values are exhaustive and mutually exclusive

c.g. Sky domain = <clear, partly_cloudy, overcast>

Sky=clear abbreviated as clear

Sky#clear also abbrv. as ~clear

continuous:domain is real numbers (beyond scope of CS540)
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Probability Notation

* An agent’s uncertainty is represented by:
P(A=a) or simply P(a), this is:
— the agent’s degree of belief that variable A takes
on value a given no other information relating to A
- asingle probability called an unconditional or prior probability

* Properties of P(A=a):
-0<P@<1
-2 P(a)=P(a,) +Pa,) +...+P@a,)=1
sum over all values in the domain of variable A is 1
because domain is exhaustive and mutually exclusive

Axioms of Probability

* S — Sample Space (set of possible outcomes)
* E — Some Event (some subset of outcomes)

* Axioms:
-0<PE)<I
- P(S)=1

- for any sequence of mutually exclusive events, E , E, ..E

P(E, or E, ... E,) = P(E)+P(E, .. +P(E,)
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Probability Table

Outlook

bt e Jor

* P(Weather=sunny)=P(sunny)=5/13
* P(Weather)={5/14, 4/14, 5/14}

* Calculate probabilities from data

A Hypothesis for the Circus

Day Outlook  Temperature Humidity Wind | >1,000?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
1 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No




Joint Probability Table

Outlook
sunny overcast _rainy
Temg hot [ 2714 214 0/14
mild [ 2714 1714 3114
cool [ 1/14 114 2/14

P(Outlook=sunny, Temperature=hot) = P(sunny,hot) = 2/14
P(Temperature=hot) = P(hot) = 2/1442/14+0/14 = 4/14

‘With N Random variables that can take k values the

full joint probability table size is k¥

Probability of Disjunctions

* P(A or B)=P(A) + P(B) — P(A and B)

* P(Outlook=sunny or Temperature=hot)?
- P(sunny) + P(hot) — P(sunny,hot)
- 5/14+4/14-2/14

True

Marginalization

* P(cavity)=0.108+0.012+0.072+0.008=0.2
* Called summing out or marginalization

toathache

1 toothache

catch

—carch

carch

—carch

caviry | 108

012

072

008

- caviiy | 016

084

144

576

Conditional Probability

* Probabilities discussed up until now are called
prior probabilities or unconditional probabilities
- Probabilities depend only on the data, not on any other
variable

* But what if you have some evidence or knowledge
about the situation? You know you have a
toothache. Now what is the probability of having
a cavity?

roarhache 1 1oathache

caich | - catch|catch| - catch

cavity | 108 | .012 072 | .008
- caviiy | 016 .064 144 | 576




Conditional Probability

* Written like P(A |B)
— P(cavity | toothache)

taathache - taothache

carch| = catch| catch | - earch
cavity | 108 .012 072 | .008
- caviiy | 1016 .064 144 | 576

Calculate conditional probabilities from data as follows:
P(A I B) =P(A,B) / P(B) if P(B)z0

P(cavity | toothache) = (0.108 + 0.012) / (0.108 + 0.012 + 0.016 + 0.064)

P(cavity | toothache) =0.12/0.2=0.6
‘What is P(no cavity | toothache) ?

Conditional Probability

P(A | B)=P(A,B)/P(B)
You can think of P(B) as just a normalization constant to make P(A|B) adds up to 1.

toothache 1 toothache

catch | —catch|carch| — carch

caviry | 108 | .012 072 | .008

- caviiy | 016 | .064 144 | 576

Product rule: P(A,B) = P(A|B)P(B) = P(B|A)P(A)

Chain Rule is successive applications of product rule:
PX, X)) = P X ) POX | XX )

X,2) P, | X X)

Independence

* What if I know Weather=cloudy today. Now what
is the P(cavity)?

* if knowing some evidence doesn't change the
probability of some other random variable then we
say the two random variables are independent

* A and B are independent if P(A[B)=P(A).

* Other ways of seeing this (all are equivalent):

- P(AIB)=P(A)
- P(A,B)=P(A)P(B)
- P(B|A)=P(B)
* Absolute Independence is powerful but rare!

Conditional Independence

P(Toothache, Cavity, Catch) has 2* — 1 =7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on
whether I have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)

The same independence holds if I haven't got a cavity:
(2) P(catch | toothache, - cavity) = P(catch | = cavity)

Catch is conditionally independent of Toothache given Cavity:

P(Catch | Toothache,Cavity) = P(Catch | Cavity)

* Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)




Bayes' Rule

* Remember Conditional Probabilities:
- P(A]B)=P(A,B)/P(B)
- P(B)P(A[B)=P(A,B)

- P(B|A)=P(B,A)/P(A)
- P(A)P(BJA)=P(B,A)

- P(B,A)=P(A,B)

- P(B)P(A|B)=P(A)P(B|A)
- Bayes' Rule: P(A[B)=P(B|A)P(A) / P(B)

Bayes' Rule

* P(AB)=P(B|A)P(A) / P(B)
* A more general form is:
- P(Y|X,e)=P(X|Y,e)P(Yl|e) / P(X|e)
* Bayes' rule allows you to turn conditional
probabilities on their head:
- Useful for assessing diagnostic probability from causal
probability:
- P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
- E.g., let M be meningitis, S be stiff neck:
P(m|s) = P(s|m) P(m) / P(s) = 0.8 x 0.0001 /0.1 =
0.0008

- Note: posterior probability of meningitis still very
small!

Bayes' Rule used in Classification

Day Outlook  Temperature Humidity Wind | >1,000?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overeast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overeast Cool Normal Strong Yes
8 Overeast Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
1 Sunny Mild Normal Strong Yes
12 Overeast Mild High Strong Yes
13 Overeast Hot Normal Weak Yes
14 Rain Mild High Strong No

‘What is the probability of >1,000 people given Outlook=overcast,
Temperature=mild, Humidity=normal, Wind=weak?
Use Bayes' Rule and Assume Features are independent given the class

naive Bayes (Idiot's Bayes) model

P(Class|Feature,, ... ,Feature ) = P(Class) I1,P(Feature,|Class)
classify with highest probability

* One of the most widely used classifiers
* Very Fast to train and to classify
* One pass over all data to train
* One lookup for each feature / class combination to classify
* Assuming the features are independent given the class
(conditional independence)




Issues with naive Bayes

In practice, we estimate the probabilities by maintaining counts as we
pass through the training data, and then divide through at the end

But what happens if, when classifying, we come across a feature /
class combination that wasn’t see in training?

P(xnlc):() ... therefore...
P(c)XH P(xn|c):0

*Typically, we can get around this by initializing all the counts to
Laplacian priors (small uniform values, e.g., 1) instead of 0

* This way, the probability will still be small, but not impossible
* This is also called “smoothing”

Issues with naive Bayes

* Another big problem with naive Bayes: often the
conditional independence assumption is violated
~ Consider the task of classifying whether or not a certain word is a
corporation name
* e.g. “Google,” “Microsoft,” “IBM,” and “ACME”
- Two useful features we might want to use are captialized, and
all-capitals
- Naive Bayes will assume that these two features are independent
given the class, but this clearly isn’t the case (things that are all-
caps must also be capitalized)!!
* However naive Bayes seems to work well in practice even when this
assumption is violated

Training with naive Bayes

Day Outlook  Temperature Humidity Wind | >1,000?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overeast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overeast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
1 Sunny Mild Normal Strong Yes
12 Overeast Mild High Strong Yes
13 Overeast Hot Normal Weak Yes
14 Rain Mild High Strong No

* Use table to calculate probabilities
- table for class, and for each feature / class combination

Conclusion

* Probabilities

* Joint Probabilities

* Conditional Probabilities

* Independence, Conditional Independence
* naive Bayes Classifier




