Support Vector Machines

Louis Oliphant oliphant@cs.wisc.edu Cs540 section 2

Announcements

- · Projects Due Today
 - I'll put links on course website tomorrow.
- Check out projects Courses before next week
- · Presentations next Week
 - 15 minutes total
 - Leave a few minutes for questions
 - 5 teams each day
 - Presentations In order as they appear on website
 - Email me any slides you want to use (or bring your own laptop)
 - Questions on final may be taken from presentations or project web-sites

Annoucements

- · Things left in the course:
 - Presentations next week
 - Evaluate each-others projects (week after presentations)
 - 2 more lectures after presentations
- · Reading:
 - Chapter 20 section 6 and 7 on Support Vector Machines

Things You Should Know

- · In Depth
 - K-NN, Decision Trees, Perceptron, Neural Network, Ensembles, Naïve Bayes, Bayesian Network, K-Means clustering
 - Induction
 - Inference
 - How they Divide up feature space
 - Important aspects of each model

Things You Should Know

- Overview
 - Inductive Logic Programming
 - FOIL
 - PROGOL
 - GOLEM
 - Support Vector Machines
 - Re-enforcement Learning
 - Q-Learning
- · Understand the important points of each model
 - When are they used, how are the models more or less expressive
 - · Important terms
 - General Idea of how the algorithm works

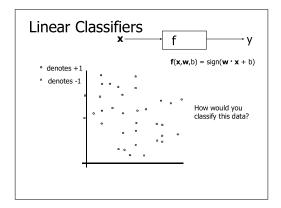
What is a Support Vector Machine?

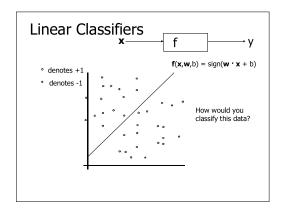
- · An optimally defined surface
- · Typically nonlinear in the input space
- · Linear in a higher dimensional space
- · Implicitly defined by a kernel function

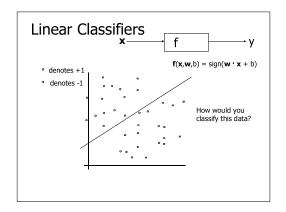
Acknowledgments: These slides combine and modify ones provided by Andrew Moore (CMU), Glenn Fung (Wisconsin), and Olvi Mangasarian (Wisconsin), and Chuck Dyer (Wisconsin)

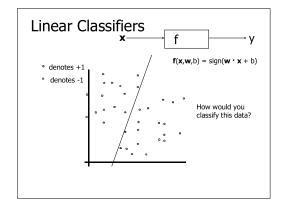
What are Support Vector Machines Used For?

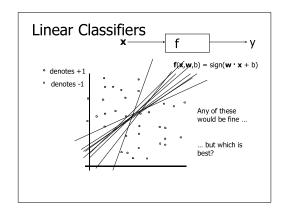
- · Classification
- · Regression and data-fitting
- · Supervised and unsupervised learning

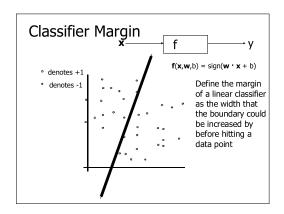


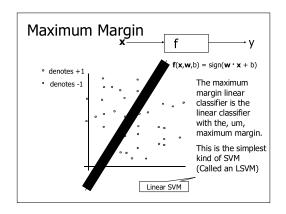


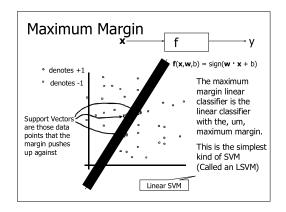


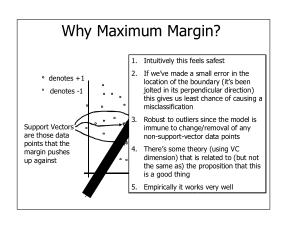










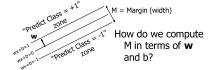


Specifying a Line and Margin

- · How do we represent this mathematically?
- · ... in m input dimensions?

Specifying a Line and Margin Plus-Plane_ -Classifier Boundary -Minus-Plane • Plus-plane = { **w** • **x** + b = +1 } • Minus-plane = $\{ \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1 \}$ Classify as.. +1 if $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} \leq -1$ Universe if $-1 < \mathbf{w} \cdot \mathbf{x} + b < 1$ explodes

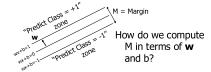
Computing the Margin



- Plus-plane = $\{ \mathbf{w} \mathbf{x} + \mathbf{b} = +1 \}$
- Minus-plane = { **w x** + b = -1 }

Claim: The vector ${\bf w}$ is perpendicular to the Plus-Plane

Computing the Margin

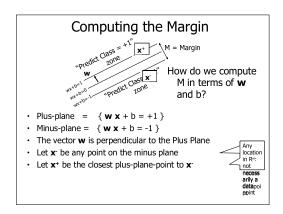


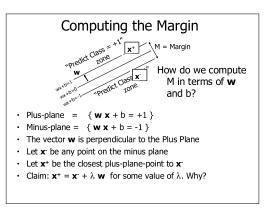
- Plus-plane = $\{ \mathbf{w} \mathbf{x} + \mathbf{b} = +1 \}$ Minus-plane = $\{ \mathbf{w} \mathbf{x} + \mathbf{b} = -1 \}$

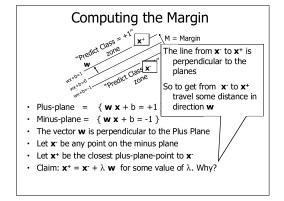
Claim: The vector ${\bf w}$ is perpendicular to the Plus Plane. Why?

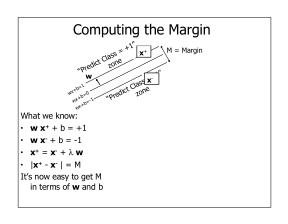
Let **u** and **v** be two vectors on the Plus Plane. What is **w** . (**u** - **v**)?

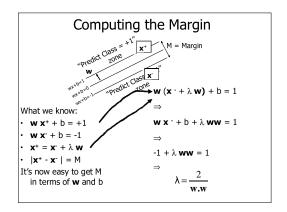
And so of course the vector **w** is also perpendicular to the Minus Plane

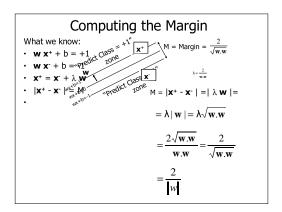




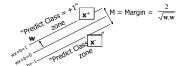








Learning the Maximum Margin Classifier



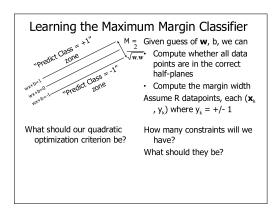
Given a guess of **w** and b we can

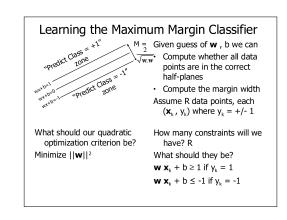
- Compute whether all data points in the correct half-planes
- Compute the width of the margin

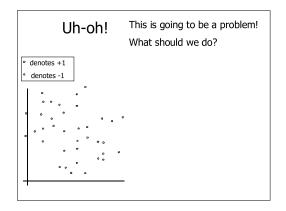
So now we just need to write a program to search the space of w's and b's to find the widest margin that matches all the data points. How?

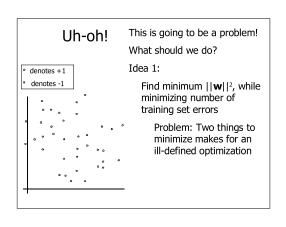
Learning via Quadratic Programming

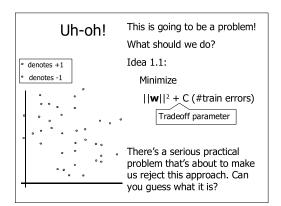
QP is a well-studied class of optimization algorithms to maximize a quadratic function of some real-valued variables subject to linear constraints

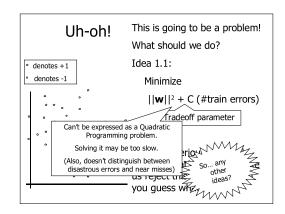


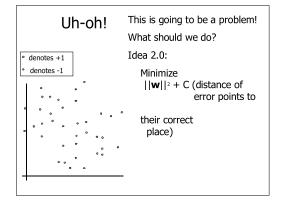


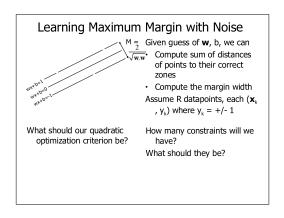












Learning Maximum Margin with Noise $M = \frac{1}{2}$ Given guess of **w**, b we can

Compute sum of distances of points to their correct

 Compute the margin width Assume R datapoints, each (x_k , y_k) where $y_k = +/-1$

What should our quadratic How many constraints will we optimization criterion be? Minimize 1

$$\frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{k=1}^{R} \boldsymbol{\varepsilon}_{k}$$

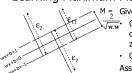
have? R

What should they be? \boldsymbol{w} . \boldsymbol{x}_{k} + b >= 1- $\boldsymbol{\epsilon}_{k}$ if \boldsymbol{y}_{k} = 1

$$\boldsymbol{w}$$
 . \boldsymbol{x}_k + b <= -1+ $\boldsymbol{\epsilon}_k$ if \boldsymbol{y}_k = -1

Learning Maximum Margi
$$m = \# input dimensions$$
 we can dimensions we can use our original (noiseless data) QP had m+1 variables: $w_{1\prime}$, $w_{2\prime}$..., $w_{m\prime}$ and b. Our new (noisy data) QP has m+1+R variables: $w_{1\prime}$, $w_{2\prime}$..., $w_{m\prime}$, $w_{2\prime}$,

Learning Maximum Margin with Noise



 $M = \frac{1}{2}$ Given guess of **w**, b we can Compute sum of distances of points to their correct zones

> Compute the margin width Assume R datapoints, each $(\mathbf{x}_k, \mathbf{y}_k)$ where $\mathbf{y}_k = +/-1$

What should our quadratic How many constraints will we optimization criterion be?

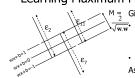
Minimize
$$\frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{k=1}^{R} \mathbf{\varepsilon}_{k}$$

have? Ŕ

What should they be?

$$\boldsymbol{w}$$
 . \boldsymbol{x}_k + b >= 1- ϵ_k if \boldsymbol{y}_k = 1

Learning Maximum Margin with Noise



 $M = \frac{1}{2}$ Given guess of **w**, b we can Compute sum of distances of points to their correct zones

> Compute the margin width Assume R datapoints, each $(\mathbf{x}_k, \mathbf{y}_k)$ where $\mathbf{y}_k = +/-1$

What should our quadratic optimization criterion be?

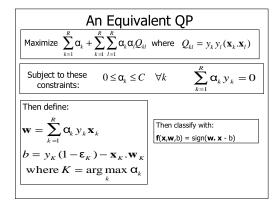
Minimize

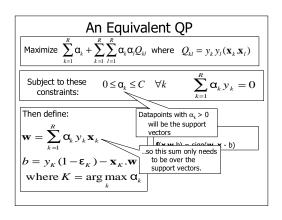
How many constraints will we have? 2R

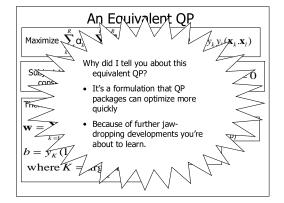
What should they be?

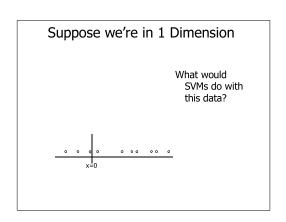
$$\boldsymbol{w}$$
 , \boldsymbol{x}_k + b >= 1- $\!\epsilon_k$ if \boldsymbol{y}_k = 1

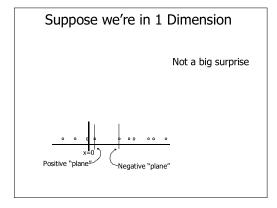
$$\boldsymbol{w}$$
 . \boldsymbol{x}_k + b <= -1+ ϵ_k if \boldsymbol{y}_k = -1 ϵ_k >= 0 for all k

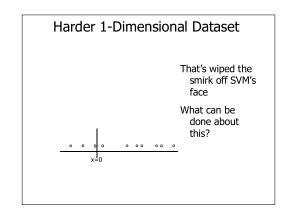


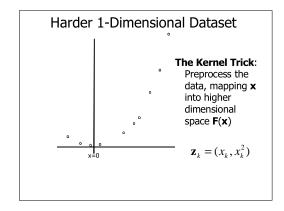


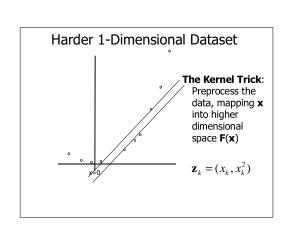












Example: All Degree 2 Monomials

- · Project examples into some higher dimensional space where the data is linearly separable, defined by $\mathbf{z} = \mathbf{F}(\mathbf{x})$
- Training depends only on dot products of the form $\mathbf{F}(\mathbf{x}_i) \cdot \mathbf{F}(\mathbf{x}_j)$

$$F(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$\boldsymbol{K}(\boldsymbol{x}_{i},\ \boldsymbol{x}_{j}) = \boldsymbol{F}(\boldsymbol{x}_{i}) \,\cdot\, \boldsymbol{F}(\boldsymbol{x}_{j}) = (\boldsymbol{x}_{i} \,\cdot\, \boldsymbol{x}_{j})^{2}$$

Common SVM Basis Functions

 $\mathbf{z}_k = (\text{ polynomial terms of } \mathbf{x}_k \text{ of degree } 1 \text{ to } q)$

$$\mathbf{z}_{k} = (\text{ radial basis functions of } \mathbf{x}_{k})$$

$$\mathbf{z}_{k}[j] = \varphi_{j}(\mathbf{x}_{k}) = \text{KernelFn}\left(\frac{|\mathbf{x}_{k} - \mathbf{c}_{j}|}{\text{KW}}\right)$$

 $\mathbf{z}_{k} = (\text{ sigmoid functions of } \mathbf{x}_{k})$

SVM Kernel Functions

- $K(\mathbf{a},\mathbf{b})=(\mathbf{a} \cdot \mathbf{b} +1)^d$ is an example of an SVM kernel function
- Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right kernel function
 - Radial-Basis-style Kernel Function:

$$K(\mathbf{a}, \mathbf{b}) = \exp\left(-\frac{(\mathbf{a} - \mathbf{b})^2}{2\sigma^2}\right)$$

 σ , κ and δ are magic $K(\mathbf{a},\mathbf{b}) = \exp\left(-\frac{(\mathbf{a}-\mathbf{b})}{2\sigma^2}\right)$ • Neural-Net-style Kernel Function: (\mathbf{b}, \mathbf{c}) and (\mathbf{b}, \mathbf{c}) are selection method such as CV or VCSRM of (\mathbf{c}, \mathbf{c}) and (\mathbf{c}, \mathbf{c}) are (\mathbf{c}, \mathbf{c}) and (\mathbf{c}, \mathbf{c}) and (\mathbf{c}, \mathbf{c}) are $(\mathbf{c}$

$$K(\mathbf{a}, \mathbf{b}) = \tanh(\kappa \mathbf{a} \cdot \mathbf{b} - \delta)$$

The Federalist Papers

- Written in 1787-1788 by Alexander Hamilton, John Jay, and James Madison to persuade the citizens of New York to ratify the constitution
- Papers consisted of short essays, 900 to 3500 words in length
- Authorship of 12 of those papers have been in dispute (Madison or Hamilton); these papers are referred to as the disputed Federalist papers

Description of the Data

- For every paper:
 - Machine readable text was created using a scanner
 - Computed relative frequencies of 70 words that Mosteller-Wallace identified as good candidates for authorattribution studies
 - Each document is represented as a vector containing the 70 real numbers corresponding to the 70 word frequencies
- The dataset consists of 118 papers:
 - 50 Madison papers
 - 56 Hamilton papers
 - 12 disputed papers

Function Words Based on Relative Frequencies

1	a	15	do	29	is	43	or	57	this
2	all	16	down	30	$i\ell$	44	our	58	lo
3	also	17	even	31	its	45	shall	59	up
4	an	18	every	32	may	46	should	60	upon
5	and	19	for	33	more	47	so	61	was
6	any	20	from	34	must	48	some	62	were
7	arc	21	had	35	my	49	such	63	what
8	as	22	has	36	no	50	than	64	when
9	al	23	have	37	nol	51	that	65	which
10	be	24	her	38	now	52	the	66	who
11	been	25	his	39	of	53	their	67	will
12	but	26	if	40	on	54	then	68	with
13	by	27	in	41	onc	55	there	69	would
14	can	28	into	42	only	56	things	70	your

SLA Feature Selection for Classifying the Disputed Federalist Papers

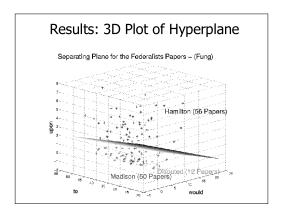
- Apply the SVM Successive Linearization Algorithm for feature selection to:
 - Train on the 106 Federalist papers with known authors
 - Find a classification hyperplane that uses as few words as possible
- Use the hyperplane to classify the 12 disputed papers

Hyperplane Classifier Using 3 Words

• A hyperplane depending on three words was found:

0.537to + 24.663upon + 2.953would = 66.616

• All disputed papers ended up on the Madison side of the plane



Multi-Class Classification

- · SVMs can only handle two-class outputs
- · What can be done?
- Answer: for N-class problems, learn N SVM's:
 - SVM 1 learns "Output=1" vs "Output \neq 1"
 - SVM 2 learns "Output=2" vs "Output ≠ 2"
 - :
 - SVM N learns "Output=N" vs "Output \neq N"
- To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region

Summary

- · Learning linear functions
 - Pick separating plane that maximizes margin
 - Separating plane defined in terms of support vectors only
- Learning non-linear functions
 - Project examples into higher dimensional space
 - Use kernel functions for efficiency
- · Generally avoids over-fitting problem
- Global optimization method; no local optima
- Can be expensive to apply, especially for multiclass problems

Case Study

- Handwritten digits important domain
- Automated sorting of mail (zip code recognition)
- · NIST dataset of handwritten digits
 - 60,000 labeled digits, 20x20=400 pixels in 8-bit greyscale values

01 23 4567 89 01 23 4567 89 01 23 4567 89

Case Study -- Models

- 3 Nearest Neighbor
- · ANN with 300 hidden units
- ANN specially crafted for the domain (LeNet)
 - Lots of work went into crafting this
- · LeNet with Ensembles (Boosted LeNet)
- SVM (almost no effort in creating the model)
- Virtual SVM (specially crafted for the domain)
- Shape Matching instead of standard distance in 3NN
- Human (somewhere in the range of 0.2% error rate and 2.5% error rate)

	Case Study Results													
	3 NN	300 Hidden	LeNet	Boosted LeNet	SVM	Virtual SVM	Shape Match							
Error Rate	2.4%	1.6%	0.9%	0.7%	1.1%	0.56%	0.63%							
Runtime (ms/digit)	1000	10	30	50	2000	200								
Memory (MB)	12	.49	.012	.21	11									
Training time (days)	0	7	14	30	10									
% rejected to reach 0.5% accuracy	8.1%	3.2%	1.8%	0.5%	1.8%									