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Announcements

- Projects Due Today

o T'll put links on course website tomorrow.
o Check out projects Courses before next week

- Presentations next Week

e 15 minutes total
* Leave a few minutes for questions
« 5 teams each day
« Presentations In order as they appear on website
« Email me any slides you want to use (or bring your own
laptop)

* Questions on final may be taken from presentations or
project web-sites

Annoucements
+ Things left in the course:
e Presentations next week

« Evaluate each-others projects (week after
presentations)

« 2 more lectures after presentations
- Reading:

e Chapter 20 section 6 and 7 on Support Vector
Machines

Things You Should Know

+ In Depth

* K-NN, Decision Trees, Perceptron, Neural
Network, Ensembles, Naive Bayes, Bayesian
Network, K-Means clustering

e Induction
o Inference
« How they Divide up feature space
e Important aspects of each model




Things You Should Know

« Overview

o Inductive Logic Programming
« FOIL
« PROGOL
« GOLEM
« Support Vector Machines
« Re-enforcement Learning
* Q-Learning
-+ Understand the important points of each model

e When are they used, how are the models more or less
expressive

* Important terms
« General Idea of how the algorithm works

What is a
Support Vector Machine?

- An optimally defined surface

- Typically nonlinear in the input space
- Linear in a higher dimensional space
- Implicitly defined by a kernel function

Acknowledgments: These slides combine and modify ones
provided by Andrew Moore (CMU), Glenn Fung (Wisconsin), and
Olvi Mangasarian (Wisconsin), and Chuck Dyer (Wisconsin)

What are Support Vector Machines
Used For?

- Classification
- Regression and data-fitting
- Supervised and unsupervised learning

Linear Classifiers
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classify this data?

Linear Classifiers
X

° denotes +1

° denotes -1

Any of these
would be fine ...

... but which is
best?




Classifier Margin
X

° denotes +1

¢ denotes -1

i e

f(x,w,b) = sign(w * x + b)

Define the margin
of a linear classifier
= as the width that
the boundary could
be increased by
before hitting a
oo data point

Maximum Margin
X
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The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

* denotes -1
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Maximum Margin
X

° denotes +1

° denotes -1

Support Vectors?” [~
are those data
points that the
margin pushes
up against

S R

f(x,w,b) = sign(w * x + b)

The maximum
margin linear

. = classifier is the
linear classifier
with the, um,
maximum margin.

This is the simplest
kind of SVM
(Called an LSVM)

Why Maximum Margin?

1. Intuitively this feels safest

2. If we've made a small error in the

° denotes +1 location of the boundary (it's been

* denotes -1 o e jolted in its perpendicular direction)
° this gives us least chance of causing a
1 - ° misclassification
L
- ° 3. Robust to outliers since the model is
Support VectorsZ < immune to change/removal of any

are those data non-support-vector data points
points that the ; .

margin pushes 4. There's some theory (using VC

up against dimension) that is related to (but not

the same as) the proposition that this
is a good thing

5. Empirically it works very well




Specifying a Line and Margin
¢

x Plus-Plane

Classifier Boundary
Minus-Plane

+ How do we represent this mathematically?
+ ... In minput dimensions?

Computing the Margin

w = Margin (width)

~ A" How do we compute
M in terms of w
and b?

Plus-plane = {wx+b=+1}
Minus-plane= {wx+b=-1}
Claim: The vector w is perpendicular to the Plus-Plane

Specifying a Line and Margin
¢

X

Plus-Plane

Classifier Boundary
Minus-Plane

Plus-plane = {w- x+b=+1}

Minus-plane= {w-x+b=-1}

Classify as.. +1 if w-x+b=x>1
-1 if w-x+b<-1
Universe if -l1<w-'x+b<l1
explodes

Computing the Margin

w = Margin

~ A" How do we compute
M in terms of w
g and b?

Plus-plane = {wx+b=+1}
Minus-plane= {wx+b=-1}
Claim: The vector w is perpendicular to the Plus Plane. Why?

Let uand v be two vectors on the

Plus Plane. Whatisw . (u—-v)?
And so of course the vector w is also
perpendicular to the Minus Plane




- The vector w is perpendicular to the Plus Plane

Computing the Margin
06594)‘{‘“‘4 = Margin

i How do we compute
Min terms of w
and b?

Plus-plane = {wx+b=+1}
Minus-plane= {wx+b=-1}

Any
Let x be any point on the minus plane !ocstion
in R™:
Let x* be the closest plus-plane-point to x- not
necess
arilya
datapoi
npint

Computing the Margin

\Q(eé\é
w i How do we compute
- m& M |Cr|1 t:erms of w
g and b?
W
Plus-plane = {wx+b=+1}

Minus-plane= {wx+b=-1}

- The vector w is perpendicular to the Plus Plane
Let x* be any point on the minus plane
Let x+ be the closest plus-plane-point to x-
Claim: x* = x* + A w for some value of A. Why?

- The vector w is perpendicular to the Plus Plane

Computing the Margin
XX“\M = Margin

The line from x- to x* is

e
v<e5‘6c %

W é perpendicular to the
hY o planes
E
N So to get from x- to x*

travel some distance in
direction w

Plus-plane = {wx+b=+1
Minus-plane= {wx+b=-1}

Let x* be any point on the minus plane
Let x+ be the closest plus-plane-point to x-
Claim: x* = x + A w for some value of A. Why?

Computing the Margin
3597)(&“

X
v<e5‘6c %

What we know:

- wxt+b=+1

- wx+b=-1
Xt=xX+Aw
Ixt-x|=M

It's now easy to get M
in terms of w and b




Computing the Margin

What we know:
- wxt+b=+1
- wx +b=-1
s Xr=xX+AW
Ixt-x|=M
It's now easy to get M 2
in terms of w and b A=——

Computing the Margin

What we know: XY ) 2

c WXt4+b=+1 60’6‘5‘"; w = Margin = 7w
¢ o

< wx + b= E

A2

xr=x +>()\“/'\ '\c‘c’\ast\e -
Pt - BT @ 19T M xr x| = Aw =
w
=Aw|=MNww
_2dww _ 2
w.w w.w

Learning the Maximum Margin Classifier

2
w = Margin = m

Nl
hS \asﬁﬁ
. m‘ﬁ
-

Given a guess S?Xw and b we can
- Compute whether all data points in the correct half-planes
- Compute the width of the margin

So now we just need to write a program to search the space of
w'’s and b’s to find the widest margin that matches all the
data points. How?

Learning via Quadratic Programming

+ QP is a well-studied class of optimization
algorithms to maximize a quadratic function of
some real-valued variables subject to linear
constraints




Learning the Maximum Margin Classifier
Y M= Given guess of w, b, we can
\m Compute whether all data

points are in the correct
half-planes

- Compute the margin width
Assume R datapoints, each (x,
,Y) wherey, = +/-1

What should our quadratic
optimization criterion be? have?

What should they be?

How many constraints will we

Learning the Maximum Margin Classifier
o M= Given guess of w , b we can
\m- Compute whether all data
points are in the correct
half-planes
- Compute the margin width
Assume R data points, each
(x,, y,) wherey, = +/- 1

What should our quadratic
optimization criterion be? have? R

How many constraints will we

Minimize ||w]|? What should they be?
wx +b=1ify =1

wx +b<-lify =-1

Uh-oh!  Thisis going to be a problem!
What should we do?

denotes +1

denotes -1

Uh-oh!  Thisis going to be a problem!
What should we do?

° denotes +1 Idea 1:

°_ denotes -1 Find minimum ||w| |2, while
. L minimizing number of
., training set errors
© e S Problem: Two things to

- E minimize makes for an

. ill-defined optimization




Uh-oh!

denotes +1

denotes -1

This is going to be a problem!
What should we do?
Idea 1.1:

Minimize

||w||2 + C (#train errors)

Tradeoff parameter

. There’s a serious practical

problem that’s about to make
us reject this approach. Can

you guess what it is?

This is going to be a problem!
What should we do?

Uh-oh!

Idea 1.1:

Minimize

° denotes +1

° denotes -1

° ||w||2 + C (#train errors)

4 - ° radeoff parameter
Can't be expressed as a Quadratic
° Programming problem.

Solving it may be too slow.

(Also, doesn't distinguish between
disastrous errors and near misses)
usTejeuar

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!
What should we do?
Idea 2.0:
Minimize
[|lw||z + C (distance of
error points to

their correct
place)

Learning Maximum Margin with Noise
M 3 Given guess of w, b, we can

// Jww Compute sum of distances

of points to their correct

_— zones
2N

W o + Compute the margin width
**Xv" Assume R datapoints, each (x,

,Y) wherey, = +/-1

What should our quadratic How many constraints will we
optimization criterion be? have?

What should they be?




Learnlng Maximum Margin with Noise
M 3 Given guess of w , b we can

\m Compute sum of distances
of points to their correct

.° zones
Compute the margin width

Assume R datapoints, each (x,

,Y) wherey, = +/-1

What should our quadratic ~ How many constraints will we
optimization criterion be? have? R
Minimize R What should they be?
EWW+CZ£‘< w.x +b>=1-¢ify, =1
w.x, +b<=-1+gify =-1

Learning Maximum Margi m = #input )ISE

dimensions e can

,\ /\M = Giveng
Jww Compute sum o\ \istances

Our original (noiseless data) QP had m+1
,\/ 5 variables: w;, w,, ... w,, and b.
w";,}, th
W Our new (noisy data) QP has m+1+R
w variables: w,, W,, ... W_, b, &, & ,... &
KTTK: TK T

What should our quadratic ~ How many constrai
optimization criterion be? have? R
Minimize R What should they be?
EWW+CZ£‘< w.x +b>=1-¢ify, =1
wW. X, +b<=-1+gify =-1

R= # records

Learning Maximum Margin with Noise

M 3 Given guess of w , b we can

Jww Compute sum of distances
of points to their correct
zones
Compute the margin width

Assume R datapoints, each

(X,,Y,) wherey, = +/- 1

What should our quadratic ~ How many constraints will we
optimization criterion be? have? R
Minimize 1 R What should they be?
= +CZ € b>=1sify, =1
2WW K W.X +b>=1-gify =
w_ X, + b <=-l+g ify, =-1

Learning Maximum Margin with Noise
M 3 Given guess of w , b we can
Jww Compute sum of distances
of points to their correct
zones
Compute the margin width
Assume R datapoints, each
(X,,Y,) wherey, = +/- 1

What should our quadratic ~ How many constraints will we
optimization criterion be? have? 2R
Minimize 1 What should they be?
EWW+CZ£‘< w.x +b>=1-gify, =1
wW. X, +b<=-1+gify =-1
g, >=0forall k




An Equivalent QP
Maximize iqk + i iqkq,Qk, where Qu =V, Y, (X,.X,)

k=1 1=1

R
Subjecttothese (Q<q, <C [k a =0
constraints: b kzzl ke

Then define:

Then classify with:

R
w = a .y, X
,; KTk f(x,w,b) = sign(w. x - b)

b=y @-&)— X Wy
whereK = argmaxa,
k

An Equivalent QP

R R R
Maximize o+ » o a,Q where Q =Y, ¥ (%, X,)
k=1

k=1 1=1

R
Subjecttothese Q<q, <C [k a =0
constraints: R kzzl ke

Then define: Datapoints with a, > 0

will be the support
vectors

R
W = zqkykxk . -b)
k=t ..so thissum only needs [—
to be over the

support vectors.

b=y @d-&)—XwW
whereK = argmaxa,
k

Why did I tell you about this
equivalent QP?

o It's a formulation that QP
packages can optimize more
quickly

« Because of further jaw-
dropping developments you're
about to learn.

Suppose we're in 1 Dimension

What would
SVMs do with
this data?




Suppose we're in 1 Dimension
Not a big surprise

L

);9 (
Positive “plane* Negative “plane”

|t

Harder 1-Dimensional Dataset

That's wiped the
smirk off SVM's
face

What can be
done about
this?

oo o

o
o

Harder 1-Dimensional Dataset

The Kernel Trick:
Preprocess the
data, mapping x
into higher
dimensional
space F(x)

x=0 Zk:(xk’xtf)

Harder 1-Dimensional Dataset

The Kernel Trick:
Preprocess the
data, mapping x
into higher
dimensional
space F(x)

y/n/ Zk:(xk’xlf)




Example: All Degree 2 Monomials

o R 5 R
(z1,32) = (21,22, 23) = (2, V2212, 73)

E. iy, 105, 3 Desemiter 3031

- Project examples into some higher dimensional space

where the data is linearly separable, defined by z = F(x)

- Training depends only on dot products of the form

F(x) - F(x)

- Example:

F(x) = (0¢,72%%,X2)

K(x, x)) = F(x) * F() = (% " x)?

Common SVM Basis Functions

z, = ( polynomial terms of x, of degree 1to q )

= ( radial basis functions of x, )
z,[i1=¢;(x,) = KerneIF;-éi|

z, = ( sigmoid functions of x; )

SVM Kernel Functions

+ K(a,b)=(a . b +1)! is an example of an SVM kernel

function

- Beyond polynomials there are other very high

dimensional basis functions that can be made
practical by finding the right kernel function

 Radial-Basis-style Kernel Function:

_ (a-b)* o, k and & are magic
K(ab)= ex% 262 parameters that must
be chosen by a model

« Neural-Net-style Kernel Function: | selection method
such as CV or VCSRM

K(a,b) =tanhkab-93)




The Federalist Papers

* Written in 1787-1788 by Alexander Hamilton, John
Jay, and James Madison to persuade the citizens of
New York to ratify the constitution

* Papers consisted of short essays, 900 to 350Gword
in length

.

Authorship of 12 of those papers have been in
dispute ( Madison or Hamilton); these papers are
referred to as the disputed Federalist papers

Description of the Data

e For every paper:
« Machine readable text was created using a scanner

« Computed relative frequencies of 70 words that Mosteller-
Wallace identified as good candidates for author-
attribution studies

« Each document is represented as a vector containing the
70 real numbers corresponding to the 70 word frequencies
* The dataset consists of 118 papers:
* 50 Madison papers
* 56 Hamilton papers
* 12 disputed papers

Function Words Based on Relative
Frequencies

1 a 15 do 20 is 13 or 57 this

2 ull 16 dowrn 30w A1 our 58 lo

3 also 17 even 31 its 45  shall 59 up

4 an 18 every 32 may 46 should 60 wpon

3 and 19 for 33 more 47 so 61 was

6 any 20 from 34 must 48 somc 62 were

7 arc 21 had 35 my 49 such 63 what

8 as 22 has 36 no 50 than 61 when

9 ul 23 have 37 nol 51 that 65 which
10 be 24 her 38 now 52 the 66 who
11 been 23 his 39 of 53  their 67 will
12 but 26 if 40 on B4 then 68 with
13 by 27 in 41 one B8 there 69 would
14 can 28 into 42 only 56 things 70 your

SLA Feature Selection for Classifying
the Disputed Federalist Papers

» Apply the SVM Successive Linearization
Algorithm for feature selection to:
 Train on the 106 Federalist papers with known astl
« Find a classification hyperplane that uses as fevdsy
as possible
» Use the hyperplane to classify the 12
disputed papers




Hyperplane Classifier Using 3 Words

» A hyperplane depending on three words
was found:

0.5370 + 24.6631pon + 2.953wvould = 66.616

» All disputed papers ended up on the
Madison side of the plane

Results: 3D Plot of Hyperplane

Separating Plans for the Federalists Papers — (Fung)

R
H s
Yd e
- PR 01“*
g s~ K v, +
s . f
2- RS SR
S, A

S p—
fovy Sy W
. -
L A :
¥

Multi-Class Classification

+ SVMs can only handle two-class outputs

+ What can be done?

+ Answer: for N-class problems, learn N SVM's:
e SVM 1 learns “Output=1"vs “Output # 1”

e SVM 2 learns “Output=2" vs “Output # 2"

e SVM N learns “Output=N" vs “Output # N”

+ To predict the output for a new input, just predict
with each SVM and find out which one puts the
prediction the furthest into the positive region

Summary

+ Learning linear functions

« Pick separating plane that maximizes margin

 Separating plane defined in terms of support
vectors only

+ Learning non-linear functions

 Project examples into higher dimensional space
e Use kernel functions for efficiency

- Generally avoids over-fitting problem
+ Global optimization method; no local optima
- Can be expensive to apply, especially for multi-

class problems




Case Study
- Handwritten digits important domain
« Automated sorting of mail (zip code recognition)
- NIST dataset of handwritten digits

« 60,000 labeled digits, 20x20=400 pixels in 8-bit
greyscale values

ol RIESET §Y
*LAZHELY VY

Cl1BadToe] ¥
0Fr23 &fgr 8 ?

Case Study -- Models

+ 3 Nearest Neighbor
+ ANN with 300 hidden units
+ ANN specially crafted for the domain (LeNet)

e Lots of work went into crafting this

- LeNet with Ensembles (Boosted LeNet)

+ SVM (almost no effort in creating the model)

+ Virtual SVM (specially crafted for the domain)

+ Shape Matching instead of standard distance in

3NN

+ Human (somewhere in the range of 0.2% error

rate and 2.5% error rate)

Case Study Results

3NN 300 LeNet Boosted SVM | Virtual
Hidden LeNet SWM

Shape
Match

Error Rate 24% | 16% 0.9% 0.7% 1.1% | 0.56%

0.63%

Runtime 1000 10 30 50 2000 | 200
(ms/digit)

Memory (MB) | 12 49 012 21 11

Training time 0 7 14 30 10

(days)

% rejected to | 8.1% | 3.2% 1.8% 0.5% 1.8%
reach 0.5%
accuracy




