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Abstract. Determining the underlying regulatory mechanism of genetic
networks is one of the central challenges of computational biology. Nu-
merous methods have been developed and applied to the important
but complex task of reverse engineering regulatory networks from high-
throughput gene expression data. However, many challenges remain. In
this paper, we are interested in learning rules that will reveal the causal
genes for the expression variation from various relational data sources
in addition to gene expression data. Following our previous work where
we showed that time series gene expression data could potentially un-
cover causal effects, we describe an application of an inductive logic
programming (ILP) system, to the task of identifying important reg-
ulatory relationships from discretized time series gene expression data,
protein-protein interaction, protein phosphorylation and transcription
factor data about the organism. Specifically, we learn rules for predicting
gene expression levels at the next time step based on the available rela-
tional data and then generalize the learned theory to visualize a pruned
network of important interactions. We evaluate and present experimen-
tal results on microarray experiments from Gasch et al on Saccharomyces
cerevisiae.

1 Introduction and Motivation

Gaining insight into the underlying regulation of genes within organisms is im-
portant not just for understanding the cause of diseases but also for developing
treatments. Viruses have been shown to cause cancer by affecting normal regu-
lation in cells, and gaining an understanding of the factors that determine the
ability of embryonic stem cells to maintain their self-renewal and pluripotency
can significantly advance developmental biology and stem cell research.

For nearly a decade now, DNA microarray technology has enabled the simul-
taneous measurement of mRNA abundance of genes in an organism under normal
conditions or under various treatments or perturbations. However, microarray



experiments still have many sources of error: sample preparation, hybridization,
scanning, image processing, normalization, etc. Because samples for microar-
ray data are usually obtained by pooling extracts from a population of cells
rather than a single cell, in addition to experimental variables and limitations of
the technology, the measurements obtained can be noisy. Noisy data inherently
makes it more difficult to reverse engineer the underlying regulatory network.

Despite the difficulty of deciphering genetic regulatory networks from mi-
croarray data, numerous approaches to the task have been quite successful.
Friedman et al. [5] were the first to address the task of determining properties of
the transcriptional program of S. cerevisiae (yeast) by using Bayesian networks
(BNs) to analyze gene expression data. Pe’er et al. [18] followed up that work
by using BNs to learn master regulator sets. Other approaches include Boolean
networks (Akutsu et al. [1], Ideker et al. [11]) and other graphical approaches
(Tanay and Shamir [26], Chrisman et al. [3]).

The methods above can represent the dependence between interacting genes,
but they cannot capture causal relationships. Pe’er et al. [19] ingeniously pro-
posed the use of microarray experiments in which specific genes have been deleted
(knockout) in yeast to obtain causality. The use of perturbations such as gene
deletion mutants can allow the BN learning algorithm to learn a directed edge
that suggests direct causal influence. This approach of combining observational
and interventional data delivered promising results. Unfortunately, a complete
library of gene knockouts are not yet available for organisms other than yeast.
The advent of small interfering RNA (siRNA) can be used to reduce the expres-
sion of a specific gene in organisms other than yeast, however, siRNA does not
guarantee complete silencing of the gene. In our previous work [16], we proposed
that the analysis of time series gene expression microarray data using Dynamic
Bayesian networks (DBNs) could allow us to learn potential causal relationships
(Figure 1).

DBN learning can provide more insight into causality than ordinary BNs. An
induced arc from gene X1 to gene X2 in an ordinary BN simply means that the
expression of gene X1 is a good predictor of the expression of gene X2 at the

same time (Figure 2a). While this good prediction may be because expression
of gene X1 influences expression of gene X2, it could just as easily be because
expression of gene X2 influences expression of gene X1 or expression of both gene
X1 and gene X2 are influenced by expression of another gene X3 (Figure 2b).
On the other hand, an induced arc from gene X1 to gene X2 in a DBN implies
that expression of gene X1 at one time slice is a consistently good predictor of
gene X2 at the next time slice. This good prediction is unlikely to be because
expression of gene X2 influences expression of gene X1; intuitively, it seems likely
to be because expression of gene X1 influences expression of gene X2.

5

5 An arc in a DBN does not establish causality definitively. Nevertheless, if a learned
DBN contains arcs that imply novel potential causal relationships, in some cases
biologists can test these novel relationships with additional, more focused (and time-
consuming) experiments.



Fig. 1. Simple DBN model. Labeled circles within a dotted oval represent our variables
in one time slice. Formally, arcs connecting variables from one time slice to variables
in the next have the same meaning as in a BN, but they intuitively carry a stronger
implication of causality. We note that in a DBN with more time slices, the arcs are
always the same, e.g., the arc from X1 at time slice 1 to X2 at time slice 2 is also
present from time slice t to time slice t + 1 for all 1 ≤ t < T where T is the last time
slice in the model. This constancy of the arcs is justified by an assumption that the
process being modeled is stationary though not static. While values of variables may
change over time, the manner in which the value of one variable influences the value
of a variable at the next time step (i.e., the parents and the conditional probability
distribution for the latter variable) will not change.

While temporal gene expression data contains causal information in the tem-
poral data sequence, the dependence on the appropriate sampling rate, the small
sample size, the large number of variables, and the presence of many hidden (sig-
naling and other molecular interactions for which we do not have measurements)
variables make it difficult for learning algorithms to completely determine the
network.

In this paper, our goal is to utilize the abundant information available from
many years of low-throughput as well as recent high-throughput research that are
currently available in public databases to infer new relationships that cannot be
learned from expression data alone. We are interested in discovering whether ILP
is able to infer theories for particular pathways from time series microarray data
and use other known relational information about the organism to refine what
is already known about that pathway. Specifically, we formulate the learning in
the same way as a DBN by learning theories of gene expression that are good
predictors of the expression of particular genes at the next time step.

Regulatory sequences control gene expression temporally as well as spatially
by cis-acting elements and trans-acting factors. Cis-acting elements are DNA
sequences in the vicinity of the target gene, usually within 200 base pairs up-
stream of the transcription start site. Trans-acting factors, bind to the cis-acting



Fig. 2. (a) X1 may be a good predictor of X2, but is X1 regulating X2? (b) Ground
truth might be any one of these or a more complicated variant.

sequences to control gene expression in several ways: the factor may (1) be ex-
pressed temporally (specific times in life cycle), (2) be expressed spatially (in a
specific location), (3) require modification (phosphorylation), (4) be activated
by ligand binding, (5) be sequestered until an environmental signal allows it to
interact with the nuclear DNA. Hence, by integrating temporal gene expression
data with additional information such as protein-protein interaction, transcrip-
tion factor and kinase-substrate (phosphorylation) information, we believe we
can capture some of these causal relationships and underlying mechanisms.

2 Related Work

Our goal in this paper is similar to that of Tu et al. [28]. We are interested
in determining whether ILP can learn the pathway links between causal genes
and target genes that explain the regulatory relationships between them. In the
past few years, we have seen an increase in the use of inductive logic program-
ming (ILP) methods for learning functional genomics [24, 13, 2, 20], metabolic
networks [25] and also predicting gene expression levels [17]. Papatheodorou et

al. [17] used Abductive logic programming (ALP) to learn rules that would ex-
plain how gene interactions can cause changes in gene expression levels.

Recently, Fröhler and Kramer [6], applied ILP to the task of predicting up-
and down-regulation of gene expression in S. cerevisiae under different environ-
mental stress conditions [8] with the use of additional information. Fröhler and
Kramer used the data from Middendorf at al. [14], where the presence of tran-
scription factor binding sites (pruned list of 354 after removing redundant and
rare sites) in the gene’s regulatory region and the expression levels of regulators
(selected list of 53, 50 of which were top ranking regulators identified by Segal
et al. [21]) are used to predict gene regulation.

Following Middendorf, Fröhler and Kramer consider 3 classes of gene activity:
up-regulation (> 1.2), down-regulation (< -1.2), and no change. The up- and
down-regulated genes consist of 5% of all the data points since 95% of the
expression were unstimulated. Their results report on discriminating between
up- and down-regulation, with excellent results, although the original work from
Middendorf’s showed that discriminating between the 3 classes is a much harder
task. We similarly discretize into 3 classes to reduce noise, but our up- and down-
regulated classes are about 20% of the total number of examples, so one would
expect the discrimination task in our case to be harder.



Our work differs from that of Fröhler and Kramer in four ways. First, we learn
rules to predict the up-regulation of a gene based on the activity and expression of
genes from the previous time step as in a DBN since we are interested in learning
causal relationships from the data. Secondly, we discretize the gene expression
data by comparing two consecutive time series measurements under the same
experimental condition and determining whether the change in expression was
up, down or same based on a threshold of greater than 0.3, less than -0.3, or
in between. Thirdly, we use information on transcription factors rather than
transcription factor binding sites and we do not restrict the transcription factor
or regulator set as our goal is to learn possible new players in the network.
Finally, we use Aleph instead of Tilde.

3 ILP and Aleph

Inductive logic programming (ILP) is a popular approach for learning first-order,
multi-relational concepts between data instances. ILP uses logic to induce hy-
potheses from observations (positive and negative examples) and background
(prior) knowledge by finding a logical description of the underlying data model
that differentiates between the positive and negative examples. The learned de-
scription is a set of easily interpretable rules or clauses.

There are many ILP systems available, but we chose to use Aleph [22] because
it has been shown to perform well even on fairly large datasets. This is because
Aleph implements the Progol algorithm [15], which learns rules from a pruned
space of candidate solutions. The Progol algorithm structures and limits the
search space in two steps. Initially, it selects a positive instance to serve as the
seed example and searches the background knowledge for the facts known to be
true about the seed example - the combination of these facts form the example’s
most specific or saturated clause. Then, Aleph defines the search space to be
clauses that generalize a seed example’s saturated clause, and performs a general
to specific search over this space. The key insight of the Progol algorithm is that
some of these facts explain the seed example’s classification, thus generalizations
of those facts could apply to other examples.

4 Data and Methodology

To test our hypotheses, we use time series gene expression data of environmen-
tal stress response experiments, including DNA-damaging agents from Gasch et

al. [8, 7]. We chose to use this dataset on yeast because yeast is a model organism
used for studying many basic cellular processes and there exists many publicly
accessible databases containing various sources of data from many years of re-
search. We focused our study on the DNA damage checkpoint pathway because
it is an important pathway that has been widely studied. There are about 6500
genes in yeast, 19 of which are considered to be in the “DNA damage checkpoint”
pathway based on a recent review by Harrison and Haber [10].



It is well known that a common problem with current microarray data is the
small number of sample points and the large number of features or genes. Nev-
ertheless, it is hoped that discretization as well as other sources of information
will permit useful results to be obtained. We determined the relative change in
expression from one time step to the next by comparing the expression levels
between two consecutive time series measurements. The time series data were
discretized into one of three possible discrete values by comparing two consec-
utive time series measurements: if the change increased by 0.3, we consider the
expression to be up-regulated, if the change decreased by 0.3, we consider the
expression to be down-regulated, otherwise we say the expression stayed the
same.

As alluded to earlier, there are many other spatial and molecular interactions
that are not captured by expression data. Known transcription factors for specific
genes can allow the learning algorithm to focus on specific proteins that are
known to interact with the DNA of the target gene. The learning algorithm
could also potentially discover combinations of transcription factors (pairs, trios,
etc.) required to trigger a change in expression of a particular set of genes.
Because transcription factors can also interact with other proteins or metabolites
on their way to activating gene expression, background knowledge of proteins
that are known to interact with each other can allow for the discovery of novel
proteins in the pathway. Furthermore, an estimated 30% of proteins need to be
phosphorylated in order to trigger a change in the protein’s function, activity,
localization and stability [12]. Thus, background knowledge about a large number
of protein phosphorylation in yeast was also included [4].

Recent technological advances have produced more high-throughput data
that capture different types of interactions. ChIP-chip (chromatin immunopre-
cipitation, a well-established procedure to investigate interactions between pro-
teins and DNA, coupled with whole-genome DNA microarrays), technology al-
lows one to determine the entire spectrum of in vivo DNA binding sites for
any given transcription factor or protein. Mass spectrometry, large-scale two-
hybrid screens, single-cell analysis of flow cytometry, and protein microarrays
have all been used to generate high-throughput measurements of certain types
of molecules such as proteins, metabolites, protein-protein interactions and also
signaling events such as phosphorylation within cells. Most of these data are also
known to be noisy especially those obtained through high-throughput methods
that were conducted in vitro (outside the organism). High-throughput protein-
protein interaction and phosphorylation data are especially noisy because the
conditions under which the data are collected differs quite significantly from
that in a cell, i.e. detecting interactions that would not actually occur in vivo
(inside the organism) or missing interactions that actually take place.

We aim to link known interactions with gene expression activity to possibly
learn new mechanisms. We do this by associating the up- or down-regulation of
specific genes from the previous time step with its transcription factor, a protein
it might interact with, or a phosphorylation event. We assume that an event in
the previous time step will contribute to the change in expression at the current



Fold 0 1 2 3 4 5 6 7 8 9 Average across all folds

Accuracy 0.73 0.87 0.81 0.72 0.83 0.84 0.73 0.79 0.75 0.78 0.79

Table 1. Cross validation accuracies

time. This assumption does not necessarily hold for all biological activity but a
similar assumption, that of using a gene’s expression level to approximate the
activity of other genes within the same pathway, have been used by others [29].

The MIPS Comprehensive Yeast Genome Database (CYGD) [9] provided
much of the information regarding yeast genes, their function, location, phe-
notype and disruption. We obtained protein-protein interaction data from Bi-
oGRID [23], transcription factor data from the YEASTRACT database [27], and
over 4000 yeast phosphorylation events from Ptacek et al. [4]. The ILP system,
Aleph [22], was used to learn rules from the data.

We first learn rules using inductive logic programming (ILP) to predict the
discretized gene expression level at the next time step as in a DBN. Then we use
the learned theory to generate a pruned network or graph that show interactions
corresponding to proofs for the rules.

5 Experiments and Results

We performed ten-fold cross validation experiments to learn theories for predict-
ing held-out gene expression values for genes in the DNA damage checkpoint
pathway at the next time step. The discretized microarray experiments were di-
vided into ten folds, grouping replicate experiments together to avoid bias, based
on the different experimental conditions.

We obtained an accuracy of 79% on predicting up-regulated examples aver-
aged over ten folds of the cross-validation procedure (see Table 1).

Examples of some of the rules learned across the folds are:

Rule 1 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt), interaction(tof1,GeneA),
up(tof1,Time1,Expt), function(GeneA,’CELL CYCLE AND DNA PROCESS-
ING:cell cycle:mitotic cell cycle and cell cycle control:cell cycle arrest’).

Rule 2 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt),
phosphorylates(GeneA,GeneE), up(GeneE,Time1,Expt),
transcriptionfactor(GeneF,GeneE), down(GeneF,Time1,Expt),
transcriptionfactor(GeneF,cdc20), down(cdc20,Time1,Expt).

Rule 3 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt),
interaction(GeneE,GeneA), down(GeneE,Time1,Expt),



interaction(GeneE,mms4), down(mms4,Time1,Expt),
function(GeneA,’METABOLISM’).

These rules all specify the activity of specific genes involved in the larger
DNA damage pathway. Tof1 is a subunit of a replication-pausing checkpoint
complex (Tof1p-Mrc1p-Csm3p) that acts at the stalled replication fork to pro-
mote sister chromatid cohesion after DNA damage, facilitating gap repair of
damaged DNA. Cdc20, which is regulated by cell-cycle genes, is an activa-
tor of anaphase-promoting complex/cyclosome (APC/C), which is required for
metaphase/anaphase transition. It is part of the DNA damage checkpoint path-
way and directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase
inhibitors. Finally, Mms4 is a subunit of the structure-specific Mms4p-Mus81p
endonuclease that cleaves branched DNA and is involved in recombination and
DNA repair.

The learned rules prove examples, and proofs generate paths between genes,
so using the theories in all the folds, we further generated graphs. The graphs
only show links that can be used in proofs for at least 5 examples (train+test).
The width of a line in the graph is an indication of the proportion of examples
used in the proof. Note that the graph only displays literals that were used in
successful proofs. Hence, paths in the graph correspond to proofs and the nodes
are examples of literals which were used to prove the rules. The learned graph
of interactions amongst the 19 genes in the DNA damage checkpoint pathway
are shown in Figure 3. A more detailed graph showing interactions amongst the
genes in the DNA damage checkpoint pathway as well as transcription factors
and phosphorylators can be seen in Figure 4.

6 Discussion

The DNA damage checkpoint monitors genome integrity, and ensures that dam-
age is corrected before cell division occurs. When DNA damage is detected, the
checkpoint network transmits signals that stall the progression of the cell cycle
and mobilize repair mechanisms. The graph resulting from our analysis recapit-
ulates many of the central aspects of this signaling network, and connects that
network temporally to the normal progression through the cell cycle.

DNA damage (often in the form of a double strand break) is first recognized
by MRX, a protein complex consisting of Mre11, Rad50 and Xrs2. These proteins
are shown to interact together slightly to the left of the middle of Figure 4,
with Mre11 linked to both Xrs2 and Rad50. The MRX complex coordinates the
restructuring of the damaged region. MRX stimulates the phosphorylation of
histones, H2A, in the region adjacent to the DNA double strand break (via Tel1)
and recruits an exonuclease to generate a stretch of single stranded DNA. Our
graph does not include physical interactions between Tel1 and the MRX complex,
however both are connected through Mec1 and through the DNA binding protein
Rap1. Rap1 can act as an inducer or a repressor, and is active in many disparate
elements of cell biology, including ribosome synthesis and telomere preservation.
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Once single stranded DNA is generated, it is bound by the heterotrimer
replication protein A (RPA) and two things occur. First, Mec1/Ddc2 binds and
activates the signaling cascade. Mec1 phosphorylates Rad9 (shown as physical
interaction in the graph), which in turn recruits Rad53. Ddc2 is conspicuously
absent from this graph due to the requirement that only links that can be used
in proofs for a certain number of examples are displayed. Next, the 9-1-1 clamp,
which consists of three proteins Rad17, Mec3 and Ddc1, binds and demarcates
the ssDNA/dsDNA junction, and facilitates some of the interactions described
above. The 9-1-1 clamp components are grouped at the left side of the graph,
linked by protein-protein interactions.

At the heart of the signaling network is Rad53, a well-connected, essential
yeast kinase. Rad53 phosphorylates Dun1, a kinase whose activity ultimately
controls much of the transcriptional response to DNA damage. Dun1 is also a
very central protein in this network, demonstrating interactions with the 9-1-1
clamp, Rad24, the MRX complex, Rad53 and Pds1, a cell cycle control gene.
Finally, Rad53 signals cell cycle arrest through Pds1 (via Cdc20), and Cdc5.
Pds1 governs entry into mitosis, and Cdc5 controls exit from mitosis. All of
these interactions are present in our results.

DNA damage is an inevitable consequence of DNA synthesis, and the graph
reveals that the expression of the gene responsible for signaling the induction
of DNA repair genes (Dun1) is coordinated by two transcription factors (Swi4
and Mbp1) that are active in the period just before DNA synthesis begins.
Likewise, the transcription factors Mcm1, Fhk1 and Fkh2 are known to control
the transition from G2 to mitosis, and in our graph these TFs are linked to Cdc5,
Cdc20 and Pds1, which govern this transition.

At a broader level, the results shown in Figure 4 illustrates the centrality of
Rad9, Rad53 and Dun1. These genes are instrumental in coordinating the various
aspects of this response: detection of damage, cell cycle arrest, and mobilization
of repair mechanisms.

7 Conclusions and Future Work

As a first step, we concentrated our experiments on learning the DNA damage
checkpoint pathway because it is a very important pathway that have been im-
plicated in cancer and aging, and because it has been very well studied. This
pathway plays an important role by responding to single and double-stranded
DNA breaks, and is therefore often activated in stressful environments. Hence,
it involves a lot of signaling kinases that phosphorylates proteins that are al-
ready present within the cell or that only require molecular amounts to trigger
a response.

After performing our analysis, we found that the phosphorylation dataset
from Ptacek et al. [4] did not specifically include any phosphorylation relation-
ships for the kinase and substrates in the DNA damage checkpoint pathway. The
results we obtained show that our method is quite good at learning important
pathway interactions and regulators despite the fact that the data may be noisy



or incomplete. This further emphasizes the utility of integrating different data
types, since many potential interactions, including those that were not evident
from single data sources were identified.

A possible next step will be to perform a comparison with DBNs. We could
also explore the larger network of genes that are connected with the core DNA
damage checkpoint genes by including more specific background knowledge. This
set is likely to include known targets of Dun1 activation, and genes that coordi-
nate the biological processes involved in cell division. It may also include genes
heretofore un-implicated in this process, and may provide good starting points
for future wet lab experimentation.

In the future, we also plan to study other pathways and organisms, incor-
porate other sources of relational data including knockout data, and integrate
these networks with probabilistic models.
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