1 Review of the last lecture

- Instructor’s name: AKI.

- Visit TA/Instructor’s office by Sep 10 to get 2 points.

- Location: Medical Science Center. North-West corner of Univ. Ave and Charter st.

- Ask questions anytime or visit TA/Instructor and get email rebate points! We count your effort.

- A plenty of rebate point will help you if your final total score is less than 1 point of the borders.

- Exams are all multiple choice. No partial points. Time to show your understanding!

- Sample exams will be provided with answers. (last year’s exams).

- All your score will be recorded in learnuw.

- Ch 4 and Ch 12 will be super difficult.

- HWs are for your understanding. You get full points once you submit.
• Discussion points (15 %) will be decided by your TA.

• You can switch discussions within the same TA. No need to tell me.

• Lecture notes and schedule are uploaded on the course HP. Please check it regularly.

• We encourage you to study and do HWs with friends.

• General advice for preparing the course: See the syllabus. 2 hours per week is too short, for sure!
2 Ch1 About Statistics

• 3 concepts (p6): Population, Sample, Unit

eg1) Population = All students in the world.
Sample = 30 students in UW Madison.
Unit = student.

eg2) Population = All banana in the world.
Sample = 10 banana I bought at Copps.
Unit = banana.

• Def: Population: The set of all records.

• Def: Sample: subset of population.

• Def: Unit: Single entity. This is usually a person or object

(p19) ”One goal of statistics is to understand and quantify
the variation in the data and, if possible, to identify sources
that contribute to this variation”

Why do we need to introduce the concept ”sample”? Why
don’t we just use population? Because in reality, it is im-
possible to get all information of population. Statistics will
give you some technique to guess population’s characteristics from sample which is partial information of population.

Q) Is Statistics useful all the time? If not, counter examples?

3 Ch2 Organizing Data and Describing Patterns

• (p26): Basic types of data.

Categorical (＝Qualitative)

Nominal (no relation between each letter)
eg) Blood type (O, A, B, AB).

Ordinal (some ordering is possible)
eg) Academic grade (A, B, C, D, E, F).

Measurement (=Quantitative)

Discrete (values in steps)
eg) Human height (170.0 cm, 170.5 cm, 171.0 cm, 171.5 cm etc) by digital measurement.

Continuous (values in interval)
eg) Human height (170 cm, 170.002 cm, 172.2 cm) by analogue measurement.

Note 1: As a nature, human height is continuous, but if you change experiment (i.e. use different measurement machine, it can be discrete.)

- For pie chart, see p30
- For dot diagram, see p35, p36.
- Histogram of the Frequency Distribution (Categorical data)

\[
\text{Relative frequency} = \frac{\text{Frequency in the category}}{\text{Total number of observations}}
\]

\(1\)

eg)

<table>
<thead>
<tr>
<th>Responses</th>
<th>Frequency</th>
<th>Relative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Oppose</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Table (Table 1 (p29) modified example)
Histogram of the frequency distribution is just a figure with x-axis = category, y-axis = relative frequency.

- Histogram of the Frequency Distribution (p36) (Continuous data) with equal class interval and unequal class interval

\[
\text{Relative frequency} = \frac{\text{Class frequency}}{\text{Total number of observations}}
\]
(2)
• **Equal class interval** case

<table>
<thead>
<tr>
<th>Class Interval</th>
<th>Frequency</th>
<th>Relative Frequency</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 5)</td>
<td>30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>[5, 10)</td>
<td>35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>[10, 15)</td>
<td>35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>
• UNEQUAL class interval case:

<table>
<thead>
<tr>
<th>Class Interval</th>
<th>Frequency</th>
<th>Relative Frequency</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 5)</td>
<td>30</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>[5, 10)</td>
<td>35</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>[10, 20)</td>
<td>35</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

\[
Height = \frac{Relative\ frequency}{Width\ of\ interval} \tag{3}
\]
• Total area=1 (must be).
 In the above example,
 \((5-0)*0.060 + (10-5)*0.070 + (20-10)*0.035=1\).

• p39 Fig 9 (a) is NOT histogram (because total area \(\neq 1\)).
 Fig 9 (b) is histogram.

• (p40) Stem-and-leaf display.
 eg) You have data: 31, 34, 35, 40, 42, 42, 67.
 Then stem-and-leaf display is

 \[
 \begin{array}{c|c}
 3 & \\
 4 & \\
 5 & \\
 6 & \\
 \end{array}
 \]