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Solution of matching problem is a permutation matrix y

y =


0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

 σ := (51342)

such that yGy> = G′
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Quadratic Assignment Problem (QAP)

y∗ = arg max
y

∑
ii′

cii′yii′ +
∑
ii′jj′

dii′jj′yii′yjj′

Computationally expensive: n ≥ 40 infeasible in general.
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Supervised Learning

Given
Training data : ((x1, y1), ..., (xm, ym))

f ω(xi) ≈ yi

(x1, y1) : f ω(x1) ≈ y1

(x2, y2) : f ω(x2) ≈ y2

(x3, y3) : f ω(x3) ≈ y3

and so on .......

. . . and we will solve arg max f ω(x3) cheaply.
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Inspired in part by

Caetano et al., PAMI 2009
Structure learning approach to find most violated
constraints using linear assignment.

Xu et al., JMLR 2009
Use disciminative learning to acquire a domain–specific
heuristic for controlling beam–search.

Stobbe et al., AISTATS 2012
Fourier space sparsity to recover a set function from very
few samples.
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Structure of σ ∈ Sn

Harmonic Analysis
Fourier transform of a function f : R 7→ C

f̂ (λ) =
∑
x∈R

f (x)e2πixλ λ ∈ R,
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Structure of σ ∈ Sn

Harmonic Analysis on Symmetric Groups Sn

f̂ (ρλ) =
∑
σ∈Sn

f (σ)ρλ(σ) ρλ ∈ R

λ is the integer partition of n, λ ` n

ρλ(σ) is the irreducible representation of Sn

ρλ(σ) =

 ρ1,1 · · ρ1,dλ
· · · ·

ρdλ,1 · · ·


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Properties Sn

Convolution

(f ∗ g)(σ) =
∑
τ∈Sn

f (στ−1) g(τ) f̂ ∗ g(λ) = f̂ (λ)ĝ(λ)

Correlation

(f ? g)(σ) =
∑
τ∈Sn

f (στ)g(τ)∗ f̂ ? g(λ) = f̂ (λ)ĝ(λ)†

Sn−1 is a subgroup of Sn

The set σSn−1 is called a left coset of σ
Two left (right) cosets are either disjoint or the same
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Coset Tree

Cosets provide a partition of Sn:

213

S3

312

S2 S2S2

132 123321231
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f : Sn → C

Graph function of G

fA(σ) = Aσ(n),σ(n−1)

Properties:
Sn−2-invariant function on adjacency matrix A (Kondor,
2010)
Band-limited in Fourier domain (Rockmore, 2002)
Under relabeling, fAπ = f πA
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Graph Matching Problem

Standard QAP:
Given a pair of graphs

max
σ∈Sn

f (σ) =
n∑

i,j=1

Ai,jA′σ(i),σ(j)

Graph Correlation:

f (σ) =
1

(n− 2)!

∑
π∈Sn

fA(σπ)fA′(π)

(A,A′) could be weighted or unweighted adjacency matrices.
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Learning Graph Matching

Given: A training set of related graph pairs with D encodings
of adjacency matrices : (Gm,G′m), m = {1, · · · ,M}.

Goal: “Learn” parameters ω such that QAP procedure finds a
good solution (quickly) for the test case (unseen graph pairs).

Define parameter vector ω ∈ RD

QAP Objective for Learning: fω(σ) =
D∑

d=1

ωdf d(σ)

where f d(σ) = 1
(n−2)!

∑
π∈Sn

fAd(σπ)fA′d(π) =
∑

i,j

Ad
ijA
′d
σ(i)σ(j)
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Learning Correct bounds on Coset Tree

213

S3

312

S2 S2S2

132 123321231
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Fourier Domain QAP Solver

Fast Fourier Transform

f̂ ω(λ) =
n∑

i=1

dλ
ndµ

ρλ([[i, n]])
⊕

µ∈λ↓n−1

f̂ ωi (µ)

Fourier Space Bounds [Kondor et.al.]

Bn→i =
∑
µ`n−1

‖f̂ ωi (µ)‖∗
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Risk Minimization

Loss Function
n∑

k=1

∑
i∈children((n−k+1)∗)

[
‖f̂ ωi (µ)‖∗ − ‖f̂ ωi∗n−k

(µ)‖∗ + 1
]+

i∗n−k is the correct node at level n− k in coset tree.



Motivation Learning QAPs Algebra of Sn Algorithm Experiments

Risk Minimization

Jensen’s Inequality

For parameterization: f̂ ωi (µ) =
∑D

d=1 ωd f̂ d
i (µ)

‖f̂ ωi (µ)‖∗ = ‖
D∑

d=1

ωd f̂ d
i (µ)‖∗ ≤

D∑
d=1

ωd‖f̂ d
i (µ)‖∗

Fourier space Stochastic Gradient Descent Solver
Each update takes the form

ωd ← ωd − η

{
‖f̂ d

i (µ)‖∗ − ‖f̂ d
i∗n−k

(µ)‖∗ + ν
MO(n2)

ωd

ν
MO(n2)

ωd

Convergence: emulate proof for D-dimensional Perceptron.
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Experimental Results

Setup
Edge: Delaunay triangulation on interest points
Distance: Euclidean distance between interest points
Shape Context (60 in all): Similarities based on local
shape-based appearance of interest points

Task
Learn ω using training instances
Solve the learnt problem “cheaply” (e.g., greedy or linear
assignment)
Evaluate compromise on accuracy?
Evaluate improvements in running time?
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Experimental Results: CMU House

Figure: (Green) the ground truth and (red) the learnt correspondences.
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Experimental Results: CMU Hotel

Figure: (Green) the ground truth and (red) the learnt correspondences.
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Experimental Results: Silhouette

Figure: (Green) the ground truth and (red) the learnt correspondences.
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Accuracy vs. Offset: CMU House

Figure: Our method compared with no-learn baseline. (Red) learning
and (blue) no-learning.
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Accuracy vs. Offset: Silhouette

Figure: Our method compared with no-learn baseline. (Red) learning
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Conclusions

Incorporating domain knowledge help solving hard
problems.
Harmonic analysis provide nice structure for matching
problems.
Other parameterization schemes might provide further
insights.
Please come to the poster session. Poster 15 in
Informatics Forum.
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Thank You!


	Motivation
	Learning QAPs
	Algebra of Sn
	Algorithm
	Experiments

