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CAN WE ACCELERATE THE SOLUTION OF
QUADRATIC ASSIGNMENT PROBLEM (QAP)?

We propose a new approach for doing this by learning if (a) multiple
QAP instances of interest come from the same application, and (b) the
correct solution for a set of such QAP instances is given.

I Parameter learning problem is too general for arbitary y (target la-
bels). What if the label y has a specific algebraic structure? More
specifically, what if y is a candidate in the symmetric group Sn?

FOURIER TRANSFORM

Familiar Fourier transform provide a unifying mathematical approach
to study a complicated function f : R → C as a sum represented by∑

x∈R f (x)e2πixλ, where λ ∈ R describe the domain of analysis, and e2πixλ

is the irreducible representation of R.

Figure: (Left) Function defined on R, (right) Fourier transform of the function.

FOURIER TRANSFORM ON SYMMETRIC GROUP

For f : Sn → C is the expansion of f in terms of irreducible matrix
representation of Sn, realized over conjugacy classes (partitions of n).

f̂ (ρλ) =
∑
σ∈Sn

f (σ)ρλ(σ) ρλ ∈ R

Irreps Construction – Youngs Orthogonal Representation (YOR): Irreps
of Sn are indexed by partitions of n. A partition λ of n is a k-tuple
(λ1, · · · , λk) of integers such that λ1 ≥ · · · ≥ λk > 0 and λ1 + · · · +
λk = n. A Young diagram corresponds to a specific partition λ. Specific
strategy of filling in the boxes of a Young diagram: numbers increase
to the right across rows and down the columns, provide a combinatorial
object called Standard Young tableau.
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Figure: (Left) Young diagrams {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}, (right)
Standard Young tableau for λ = (3, 1)

Branching Rule and Adapted Representation: Describes the relation-
ship between irreducible representations of Sn and those of Sn−1. λ↑n

denote λ ` n obtained by adding one square to µ ` n− 1 which can be
shown graphically using Young diagrams. YOR is adapted to Sn ≥ Sn−1,
and ρλ↑n is called induced representation of Sn. Similary, YOR provide
ρµ↓n−1.

Coset Tree: Systematically split the entire Sn using a special permutation
called contiguous cycle.

[[i, j]](k)=


k + 1 for k = i, i + 1, · · · , j− 1
i for k = j
k otherwise

Properties of Cosets:
I Order of a coset is same as that of subgroup Sn−k

I Any two left (right) cosets are either disjoint or the same

PROBLEM STATEMENT

In applications that allow various ways of extracting features (hence pro-
vide various adjacency matrices), we define our goal as follows:

I Find a match such that edge (i, j) in G should be assigned to an edge
(i′, j′) in G′ that is of a similar length (or weight) simultaneously in
all adjacency matrices.

OUR APPROACH

I Standard quadratic assignment objective expressed as band-limited
function defined on Sn called Graph correlation,

f̂ (λ) =
1

(n− 2)!
f̂A(λ)f̂A′(λ)

where fA and fA′ are graph functions of G and G′. Graph function
on the adjacency matrix A of a graph G has useful sparsity pattern
in the Fourier domain [2].

I We define graph correlation function on each feature representation
as f d defined on (Ad,A′d) where d ∈ D.

I Parameterize each f d(σ) and write a base QAP objective for learning

f ω(σ) =

D∑
d=1

f d
ωd

(σ)

where ω ∈ Rd represents parameterization.
I Learning amounts to adjusting the ω appearing in base QAP ob-

jective using the true assignments σ∗ given for each training pair
(Gm,G′m).

ω∗ = arg min
ω

M∑
m=1

L(σ̂m(ω), σ∗m) + Ω(ω)

I Note that σm(ω) itself corresponds to solving a QAP objective given
a base QAP modulated by parameter ω.

ALGORITHM: LEARNING IN FOURIER SPACE

Fast Fourier transform of function f ω with respect to YOR:

f̂ ω(λ) =

n∑
i=1

ρλ([[i, n]])
⊕

µ∈λ↓n−1

f̂ ωi (µ)

I Fourier space bounds are defined as:
Bn→i =

∑
µ`n−1

‖f̂ ωi (µ)‖∗

Fourier space QAP solver compares Fourier space bounds at each
level in coset tree.

I Jensen’s Inequality: For parameterization f̂ ωi (µ) =
∑D

d=1ωdf̂ d
i (µ),

we write easy-to-optimize set of bounds,

‖f̂ ωi (µ)‖∗ = ‖
D∑

d=1

ωdf̂ d
i (µ)‖∗ ≤

D∑
d=1

ωd‖f̂ d
i (µ)‖∗

I Stochastic Gradient Descent Solver: For all examples, we minimize
relative bounds between correct nodes and their incorrect siblings at
each level in coset tree.

n∑
k=1

∑
i∈children((n−k+1)∗)

[
f̂ ωi (µ)− f̂ ωi∗n−k

(µ) + 1
]+

I For Ω(w) = ν
2‖ω‖

2
2, each update takes the form

ωd ← ωd − η

{
‖f̂ d

i (µ)‖∗ − ‖f̂ d
i∗n−k

(µ)‖∗ + ν
MO(n2)

ωd
ν

MO(n2)
ωd

EXPERIMENTAL RESULTS

Task: 2D image alignment using local features [1].
Features: (1) Edge–featutres, (2) Distance–features, (3) Shape Context–
features.
Dataset and Setup: (1) CMU House dataset, (2) CMU Hotel dataset, (3)
Silhouette dataset.

Figure: Ground truth (green) and the learnt correspondences (red). (Left) House
27− 97 frame. (Center) Hotel 58− 98 frame. (Right) Shear 66− 146 frame.

Figure: (Red) learning and (blue) no-learning. (Dashed) Delaunay, distance and 5
uninformative features. (Bold) Delaunay, distance and shape context features. (Left)
House, (Center) Hotel, and (Right) Silhouette.
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