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THE UNIVERSITY

CAN WE ACCELERATE THE SOLUTION OF
(QUADRATIC ASSIGNMENT PROBLEM (QAP)?

Coset Tree: Systematically split the entire S,, using a special permutation

We propose a new approach for doing this by learning if (a) multiple
QAP instances of interest come from the same application, and (b) the
correct solution for a set of such QAP instances 1s given.

» Parameter learning problem 1s too general for arbitary y (target la-
bels). What 1t the label y has a specific algebraic structure? More
specifically, what if y is a candidate in the symmetric group S,,?
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FOURIER TRANSFORM

Familiar Fourier transform provide a unifying mathematical approach
to study a complicated function f : R — C as a sum represented by
> crf(x)e*™A where A € R describe the domain of analysis, and ¢*™**
1s the 1rreducible representation of RR.
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Figure: (Left) Function defined on R, (right) Fourier transform of the function.

FOURIER TRANSFORM ON SYMMETRIC GROUP

For f : 5, — C is the expansion of f in terms of irreducible matrix
representation of S,, realized over conjugacy classes (partitions of n).
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Irreps Construction — Youngs Orthogonal Representation (YOR): Irreps
of 5, are indexed by partitions of n. A partition A of n is a k-tuple
(A1, -+, Ar) of integers such that Ay > --- > A\ > Oand A\ + - +
M. = n. A Young diagram corresponds to a specific partition A. Specific
strategy of filling in the boxes of a Young diagram: numbers increase
to the right across rows and down the columns, provide a combinatorial
object called Standard Young tableau.
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Figure: (Left) Young diagrams {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)}, (right)
Standard Young tableau for A = (3, 1)

Branching Rule and Adapted Representation: Describes the relation-
ship between irreducible representations of S, and those of 5,,_1. A1”"
denote A - n obtained by adding one square to 1 = n — 1 which can be
shown graphically using Young diagrams. YOR is adapted to S,, > S,,_1,
and py 18 called induced representation of S,,. Similary, YOR provide
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called contiguous cycle.
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Properties of Cosets:
» Order of a coset 1s same as that of subgroup S,_;
» Any two left (right) cosets are either disjoint or the same

PROBLEM STATEMENT

In applications that allow various ways of extracting features (hence pro-
vide various adjacency matrices), we define our goal as follows:
» Find a match such that edge (i, j) in G should be assigned to an edge
(',j') in G’ that is of a similar length (or weight) simultaneously in
all adjacency matrices.

OUR APPROACH

» Standard quadratic assignment objective expressed as band-limited
function defined on S,, called Graph correlation,
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where f4 and fy are graph functions of G and G’. Graph function
on the adjacency matrix A of a graph G has useful sparsity pattern
1n the Fourier domain [2].

» We define graph correlation function on each feature representation
as f defined on (A%, A’Y) where d € D.
» Parameterize each f¢(o) and write a base QAP objective for learning

flo) =) fi(o)

where w € R represents parameterization.

» Learning amounts to adjusting the w appearing in base QAP ob-
jective using the true assignments o given for each training pair

(G, G)-

M
w* = arg min ZL(&m(w), o)+ Qw)
m=1
» Note that 0,,(w) itself corresponds to solving a QAP objective given
a base QAP modulated by parameter w.

ALGORITHM: LEARNING IN FOURIER SPACE

Fast Fourier transform of function f* with respect to YOR:
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» Fourier space bounds are defined as:
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Fourier space QAP solver compares Fourier space bounds at each
level 1n coset tree.
» Jensen’s Inequality: For parameterization f(p) = S0 wafé(10),
we write easy-to-optimize set of bounds,

1l = 11 Y waf ()l < D wallf (1)l

» Stochastic Gradient Descent Solver: For all examples, we minimize
relative bounds between correct nodes and their incorrect siblings at

each level 1n coset tree.
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EXPERIMENTAL RESULTS

Task: 2D 1mage alignment using local tfeatures [1].
Features: (1) Edge—featutres, (2) Distance—features, (3) Shape Context—

features.
Dataset and Setup: (1) CMU House dataset, (2) CMU Hotel dataset, (3)

Silhouette dataset.
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Figure: round trut Egreen) and the learnt correspondences (red). (Left) House
27 — 97 frame. (Center) Hotel 58 — 98 frame. (Right) Shear 66 — 146 frame.
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Figure: (Red) learning and (blue) no-learning. (Dashed) Delaunay, distance and S

uninformative features. (Bold) Delaunay, distance and shape context features. (Left)

House, (Center) Hotel, and (Right) Silhouette.
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