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Abstract

Consistently matching keypoints across images, and the related problem of find-
ing clusters of nearby images, are critical components of various tasks in Com-
puter Vision, including Structure from Motion (SfM). Unfortunately, occlusion
and large repetitive structures tend to mislead most currently used matching al-
gorithms, leading to characteristic pathologies in the final output. In this paper
we introduce a new method, Permutations Diffusion Maps (PDM), to solve the
matching problem, as well as a related new affinity measure, derived using ideas
from harmonic analysis on the symmetric group. We show that just by using it as
a preprocessing step to existing SfM pipelines, PDM can greatly improve recon-
struction quality on difficult datasets.

1 Introduction

Structure from motion (SfM) is the task of jointly reconstructing 3D scenes and camera poses from
a set of images. Keypoints or features extracted from each image provide correspondences between
pairs of images, making it possible to estimate the relative camera pose. This gives rise to an
association graph in which two images are connected by an edge if they share a sufficient number of
corresponding keypoints, and the edge itself is labeled by the estimated matching between the two
sets of keypoints. Starting with these putative image to image associations, one typically uses the so-
called bundle adjustment procedure to simultaneously solve for the global camera pose parameters
and 3-D scene locations, incrementally minimizing the sum of squares of the re-projection error.

Despite their popularity, large scale bundle adjustment methods have well known limitations. In
particular, given the highly nonlinear nature of the objective function, they can get stuck in bad lo-
cal minima. Therefore, starting with a good initial matching (i.e., an informative image association
graph) is critical. Several papers have studied this behavior in detail [1], and conclude that if one
starts the numerical optimization from an incorrect “seed” (i.e., a subgraph of the image associa-
tions), the downstream optimization is unlikely to ever recover.

Similar challenges arise commonly in other fields, ranging from machine learning [2] to compu-
tational biology. For instance, consider the de novo genome assembly problem in computational
biology [3]. The goal here is to reconstruct the original DNA sequence from fragments without a
reference genome. Because the genome may have many repeated structures, the alignment problem
becomes very hard. In general, reconstruction algorithms start with two maximally overlapping se-
quences and proceed by selecting the next fragment using a similar criterion. This procedure runs
into the same type of issues as described above [4]. It will be useful to have a model that reasons
globally over all pairwise information to provide a more robust metric for association. The efficacy
of global reasoning will largely depend on the richness of the representation used for encoding pu-
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tative pairwise information. The choice of representation is specific to the underlying application,
so in this paper, to make our presentation as concrete as possible, we restrict ourselves to describing
and evaluating our global association algorithm in the context of the structure from motion problem.

In large scale structure from motion, several authors [5, 6, 7] have recentely identified sit-
uations where setting up a good image association graph is particularly difficult, and there-
fore a direct application of bundle adjustment yields highly unsatisfactory results. For exam-
ple, consider a scene with a large number of duplicate structures (Fig. 1). The preprocessing

(a) (b)

Figure 1: HOUSE sequence. (a) Representative images. (b) Folded
reconstruction by traditional SfM pipeline [8, 9].

step in a standard pipeline will
match visual features and set
up the associations accordingly.
A key underlying assumption
in most (if not all) approaches
is that we observe only a sin-
gle instance of any structure.
This assumption is problematic
where scenes have numerous ar-
chitectural components or recur-
ring patterns, such as windows,
bricks, and so on.

In Figure 1(a) views that look
exactly the same do not necessarily represent the same physical structure. Some (or all) points in
one image are actually occluded in the other image. Typical SfM methods will not work well when
initialized with such image associations, regardless of which type of solver we use. In our example,
the resulting reconstruction will be folded (Figure 1(b)). In other cases [5], we get errors ranging
from phantom walls to severely superimposed structures yielding nonsensical reconstructions.

Related Work. The issue described above is variously known in the literature as the SfM dis-
ambiguation problem or the data/image association problem in structure from motion. Some of
the strategies that have been proposed to mitigate it impose additional conditions, such as in
[10, 11, 12, 13, 14, 15], but this also breaks down in the presence of large coherent sets of in-
correctly matched pairs. One creative solution in recent work is to use metadata alongside images.
“Geotags” or GIS data when available have been shown to be very effective in deriving a better
initialization for bundle adjustment or as a post-processing step to stitch together different compo-
nents of a reconstruction. In [6], the authors suggest using image timestamps to impose a natural
association among images, which is valuable when the images are acquired by a single camera in a
temporal sequence but difficult to deploy otherwise. Separate from the metadata approach, in con-
trolled scenes with relatively less occlusion, missing correspondences yield important local cues to
infer potentially incorrect image pairs [6, 7]. Very recently, [5] formalized the intuition that incor-
rect feature correspondences result in anomalous structures in the so-called visibility graph of the
features. By looking at a measure of local track quality (from local clustering), one can reason about
which associations are likely to be erroneous. This works well when the number of points is very
large, but the authors of [5] acknowledge that for datasets like those shown in Fig. 1, it may not help
much.

In contrast to the above approaches, a number of recent algorithms for the association (or disam-
biguation) problem argue for global geometric reasoning. In [16], the authors used the number
of point correspondences as a measure of certainty, which was then globally optimized to find a
maximum-weight set of consistent pairwise associations. The authors in [17] seek consistency of
epipopolar geometry constraints for triplets, whereas [18] expands it over larger consistent cliques.
The procedure in [16] takes into account loops of associations concurrently with a minimal spanning
tree over image to image matches. In summary, the bulk of prior work suggests that locally based
statistics over chained transformations will run into problems if the inconsistencies are more global
in nature. However, even if the objectives used are global, approximate inference is not known to be
robust to coherent noise which is exactly what we face in the presence of duplicate structures [19].

This paper. If we take the idea of reasoning globally about association consistency using triples
or higher order loops to an extreme, it implies deriving the likelihood of a specific image to image
association conditioned on all other associations. The maximum likelihood expression does not fac-
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tor out easily and explicit enumeration quickly becomes intractable. Our approach will make the
group structure of image to image relationships explicit. We will also operate on the association
graph derived from image pairs but with a key distinguishing feature. The association relationships
will now be denoted in terms of a ‘certificate’, that is, the transformation which justifies the rela-
tionship. The transformation may denote the pose parameters derived from the correspondences or
the matching (between features) itself. Other options are possible — as long as this transformation
is a group action from one set to the other. If so, we can carry over the intuition of consistency over
larger cliques of images desired in existing works and rewrite those ideas as invariance properties
of functions defined on the group. As an example, when the transformation is a matching, each
edge in the graph is a permutation, i.e., a member of the symmetric group, Sn. It follows then that
a special form of the Laplacian of this graph, derived from the representation theory of the group
under consideration, encodes the symmetries of the functions on the group.

The key contribution of this paper is to show that the global inference desired in many existing
works falls out nicely as a diffusion process using such a Laplacian. We show promising results
demonstrating that for various difficult datasets with large repetitive patterns, results from a simple
decomposition procedure are, in fact, competitive with those obtained using sophisticated optimiza-
tion schemes with/without metadata. Finally, we note that the proposed algorithm can either be used
standalone to derive meaningful inputs to a bundle adjustment procedure or as a pre-conditioner to
other approaches (especially, ones that incorporate timestamps and/or GPS data).

2 Synchronization

Consider a collection ofm images {I1, I2, . . . , Im} of the same object or scene taken from different
viewpoints and possibly under different conditions, and assume that a keypoint detector has detected
exactly n landmarks (keypoints) {xi1, xi2, . . . , xin} in each Ii. Given two images Ii and Ij , the
landmark matching problem consists of finding pairs of landmarks xip ∼ xjp in the two images
which correspond to the same physical feature. This is a critical component of several classical
computer vision tasks, including structure from motion.

Assuming that both images contain exactly the same n landmarks, the matching between Ii and Ij
can be described by a permutation τji : {1, 2, . . . , n} → {1, 2, . . . , n} under which xip ∼ xjτji(p).
An initial guess for the τji matchings is usually provided by local image features, such as SIFT
descriptors. However, these matchings individually are very much prone to error, especially in
the presence of occlusion and repetitive structures. A major clue to correcting these errors is the
constraint that matchings must be consistent, i.e., if τji tells us that xip corresponds to xjq , and τkj
tells us that xjq corresponds to xkr , then the permutation τki between Ii and Ik must assign xip to xkr .
Mathematically, this is a reflection of the fact that if we define the product of two permutations σ1

and σ2 in the usual way as

σ3 = σ2σ1 ⇐⇒ σ3(i) = σ2(σ1(i)) i = 1, 2, . . . , n,

then the n! different permutations of {1, 2, . . . , n} form a group. This group is called the symmetric
group of order n and denoted Sn. In group theoretic notation, the consistency conditions require
that for any Ii, Ij , Ik, the relative matchings between them satisfy τkjτji = τki. An equivalent
condition is that to each Ii we can associate a base permutation σi so that τji = σjσ

−1
i for any (i, j)

pair. Thus, the problem of finding a consistent set of τji’s reduces to that of finding just m base
permutations σ1, . . . , σm.

Problems of this general form, where given some (finite or continuous) groupG, one must estimate a
matrix (gji)

m
j,i=1 of group elements obeying consistency relations, are called synchronization prob-

lems. Starting with the seminal work of Singer et al. [20] on synchronization over the rotation group
for aligning images in cryo-EM, followed by synchronization over the Euclidean group [21], and
most recently synchronization over Sn for matching landmarks [22][23], problems of this form have
recently generated considerable interest.

2.1 Vector Diffusion Maps

In the context of synchronizing three dimensional rotations for cryo-EM, Singer and Wu [24] have
proposed a particularly elegant formalism, called Vector Diffusion Maps, which conceives of syn-
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chronization as diffusing the base rotation Qi from each image to its neighbors. However, unlike
in ordinary diffusion, as Qi diffuses to Ij , the observed Oji relative rotation of Ij to Ii changes
Qi to OjiQi. If all the (Oji)i,j observations were perfectly synchronized, then no matter what path
i→ i1→ i2→ . . . → j we took from i to j, the resulting rotation Oj,ip . . . Oi2,i1Oi1,iQi would be
the same. However, if some (in many practical cases, the majority) of the Oji’s are incorrect, then
different paths from one vertex to another contribute different rotations that need to be averaged
out. A natural choice for the loss that describes the extent to which the Q1, . . . , Qm imputed base
rotations (playing the role of the σi’s in the permutation case) satisfy the Oji observations is

E(Q1, . . . , Qm) =

m∑
i,j=1

wij‖Qj −OjiQi ‖2Frob =

m∑
i,j=1

wij‖QjQ>i −Oji ‖2Frob, (1)

where the wij edge weight descibes our confidence in the rotation Oji. A crucial observation is that
this loss can be rewritten in the form E(Q1, . . . , Qm) = V >LV , where

V =

Q1

...
Qm

 , L =

 di I −w21O21 . . . −wm1Om1

...
. . .

...
−w1mO1m −w2mO2m . . . dm I

 , (2)

and di =
∑
j 6=i wij . Note that since wij = wji, and Oij = O−1

ji = O>ji, the matrix L is symmetric.
Furthermore, the above is exactly analogous to the way in which in spectral graph theory, (see,
e.g.,[25]) the functional E(f) =

∑
i,j wi,j(f(i)− f(j))2 describing the “smoothness” of a function

f defined on the vertices of a graph with respect to the graph topology can be written as f>Lf in
terms of the usual graph Laplacian

Li,j =

{
−wi,j i 6= j∑
k 6=i wi,k i= j

.

The consequence of the latter is that (constraining f to have unit norm and excluding constant func-
tions), the function minimizing E(f) is the eigenvector of L with (second) smallest eigenvalue.
Analogously, in synchronizing rotations, the steady state of the diffusion system, where (1) is min-
imal, can be computed by forming V from the 3 lowest eigenvalue eigenvectors of L, and then
identifying Qi with V (i), by which we denote its i’th 3× 3 block. The resulting consistent array
(QjQ

>
i )i,j of imputed relative rotations minimizes the loss (1).

3 Permutation Diffusion

Its elegance notwithstanding, the vector diffusion formalism of the previous section seems ill suited
for our present purposes of improving the SfM pipeline for two reasons: (1) synchronizing over
Sn, which is a finite group, seems much harder than synchronizing over the continuous group of
rotations; (2) rather than an actual synchronized array of matchings, what is critical to SfM is to
estimate the association graph that captures the extent to which any two images are related to one-
another. The main contribution of the present paper is to show that both of these problems have
natural solutions in the formalism of group representations.

Our first key observation (already briefly mentioned in [26]) is that the critical step of rewriting
the loss (1) in terms of the Laplacian (2) does not depend on any special properties of the rotation
group other than the fact (a) rotation matrices are unitary (in fact, orthogonal) (b) if we follow one
rotation by another, their matrices simply multiply. In general, for any group G, a complex valued
function ρ : G→ Cdρ×dρ which satisfies ρ(g2g1) = ρ(g2)ρ(g1) is called a representation of G. The
representation is unitary if ρ(g−1) = (ρ(g))−1 = ρ†, where M† denotes the Hermitian conjugate
(conjugate transpose) of M . Thus, we have the following proposition.
Proposition 1. Let G be any compact group with identity e and ρ : G → Cdρ×dρ be a unitary
representation of G. Then given an array of possibly noisy and unsynchronized group elements,
(gji)i,j and corresponding positive confidence weights (wji)i,j , the synchronization loss (assuming
gii = e for all i)

E(h1, . . . , hm) =

m∑
i,j=1

wji
ww ρ(hjh

−1
i )− ρ(gji)

ww2

Frob h1, . . . , hm ∈G
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can be written in the form E(h1, . . . , hm) = V †LV , where

V =

 ρ(h1)
...

ρ(hm)

 , L =

 di I −w21 ρ(g21) . . . −wm1 ρ(gm1)
...

. . .
...

−w1m ρ(g1m) −w2m ρ(g2m) . . . dm I

 . (3)

To synchronize putative matchings between images, we instantiate this proposition with the appro-
riate unitary representation of the symmetric group. The obvious choice is the so-called defining
representation, whose elements are the familiar permutation matrices

ρdef(σ) = P (σ) [P (σ)]p,q =

{
1 σ(q) = p

0 otherwise,

since the corresponding loss function is

E(σ1, . . . , σm) =

m∑
i,j=1

wji‖P (σjσ
−1
i )− P (τji) ‖2Frob. (4)

The squared Frobenius norm in this expression simply counts the number of mismatches between
the observed but noisy permutations τji and the inferred permutations σjσ−1

i . Furthermore, by the
results of the previous section, letting Pi ≡ P (σ(i)) and P̂ji ≡ P (τji) for notational simplicity, (4)
can be written in the form V >LV with

V =

P1

...
Pm

 , L =

 di I −w21 P̂21 . . . −wm1 P̂m1

...
. . .

...
−w1m P̂1m −w2m P̂2m . . . dm I

 , (5)

Therefore, similarly to the rotation case, synchronization over Sn can be solved by forming V from
the first dρdef = n lowest eigenvectors of L, and extracting each Pσi from its i’th n × n block.
Here we must take a little care because unless the τji’s are already synchronized, it is not a priori
guaranteed that the resulting block will be a valid permutation matrix. Therefore, analogously to the
procedure described in [22], each block V (i) must be first be multiplied by V (1)>, and then a linear
assignment procedure used to find the estimated permutation matrix σ̂i. The resulting algorithm we
call Synchronization by Permutation Diffusion.

4 Uncertain matches and diffusion distance

The obvious limitation of our framework, as described so far, is that it assumes that each keypoint
in each image has a single counterpart in every other image. This assumption is far from being
satisfied in realistic scenarios due to occlusion, repetitive structures, and noisy detections. Most
algorithms, including [23] and [22], deal with this problem simply by setting the Pij entry of the
Laplacian matrix in (5) equal to a weighted sum of all possible permutations. For example, if
landmarks number 1. . . 20 are present in both images, but landmarks 21 . . . 40 are not, then the
effective Pij matrix will have a corresponding 20 × 20 block of all ones in it, rescaled by a factor
of 1/20. The consequence of this approach is that each block of the V matrix derived from L by
eigendecomposition will also correspond to a distribution over base permutations.

In principle, this amounts to replacing the single observed matching τji by an appropriate distribu-
tion tji(τ) over possible matchings, and concomitantly replacing each σi with a distribution pi(σ).
However, if some set of landmarks {u1, . . . , uk} are occluded in Ii, then each tji will be agnostic
with respect to the assignment of these landmarks, and therefore pi will be invariant to what labels
are assigned to them. Defining µu1...uk as any permutation that maps 1 7→ u1, . . . , k 7→ uk, and
regarding Sk as the subgroup of permutations that permute 1, 2, . . . , k amongst themselves but leave
k + 1, . . . , n fixed, any set of permutations of the form {µu1...ukγ ν | γ ∈ Sk} for some ν ∈ Sn is
called a right Sk–coset, and is denoted µu1...ukSk ν. If {u1, . . . , uk} are occluded in Ii, then pi is
constant on each µu1...ukSk ν (i.e., for any choice of ν).

Whenever there is occlusion, such invariances will spontaneously appear in the V matrix formed
from the eigenvectors, and since they are related to which set of landmarks are hidden or uncertain,
the invariances are an important clue about the viewpoint that the image was taken from. An affinity
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score based on this information is sometimes even more valuable than the synchronized matchings
themselves.

The invariance structure of pi can be read off easily from its so-called autocorrelation function

ai(σ) =
∑
µ∈Sn

pi(σµ)pi(µ). (6)

In particular, if σ is in the coset µu1...ukSkµ−1
u1...uk

, then whatever µ is, σµ will fall in the
same µu1...ukSk ν coset, so for any such σ, ai(σ) =

∑
µ∈Sn pi(µ)2, which is the maximum

value that ai can attain. However, W (i) := V (i)V (1)> only reveals a weighted sum p̂i(ρ) :=∑
σ∈Sn pi(σ)ρ(σ) = W (i), rather than the full function pi, so we cannot compute (6) directly.

Recent years have seen the emergence of a number of applications of Fourier transforms on the
symmetric group, which, given a function f : Sn → R, is defined

f̂(λ) =
∑
σ∈Sn

f(σ) ρλ(σ), λ ` n,

where the ρλ are special, so-called irreducible, representations of Sn, indexed by the λ integer
partitions. Due to space restrictions, we leave the details of this construction to the literature, see,
e.g., [27, 28, 29]. Suffice to say that while V (i) is not exactly a Fourier component of pi, it can be
expressed as a direct sum of Fourier components

V (i) = C†
[⊕
λ∈Λ

p̂i(λ)
]
C

for some unitary matrix C that is effectively just a basis transform. One of the properties of
the Fourier transform is that if h is the cross-correlation of two functions f and g (i.e., h(σ) =∑
µ∈Sn f(σµ)g(µ)), then ĥ(λ) = f̂(λ) ĝ(λ)†. Consequently, assuming that V (1) has been normal-

ized to ensure that V (1)>V (1) = I ,

âi(ρ) := C†
[⊕
λ∈Λ

âi(λ)
]
C = C†

[⊕
λ∈Λ

p̂i(λ) p̂i(λ)†
]
C = (V (i)V (1))(V (i)V (1))> = V (i)V (i)>

is an easily computable matrix that captures essentially all the coset invariance structure encoded
in the inferred distribution pi. To compute an affinity score between some Ii and Ij it remains
to compare their coset invariance structures, for example, by computing (

∑
σ∈Snai(σ)aj(σ))1/2.

Omitting certain multiplicative constants arising in the inverse Fourier transform, again using the
correlation theorem, one finds that this is equivalent to

Π(i, j) = tr(V (i)V (i)>V (j)V (j)>)
1/2
,

which we call Permutation Diffusion Affinity (PDA). Remarkably, PDA is closely related to the
notion of diffusion similarity derived in [24] for rotations, using entirely different, differential geo-
metric tools. Our experiments show that PDA is surprisingly informative about the actual distance
between image viewpoints in physical space, and, as easy it is to compute, can greatly improve the
performance of the SfM pipeline.

5 Experiments

In our experiments we used Permutation Diffusion Maps to infer the image association matrix of
various datasets described in the literature. Geometric ambiguities due to large duplicate structures
are evident in each of these datasets, in up to 50% of the matches [6], so even sophisticated SfM
pipelines run into difficulties. Our approach is to precede the entire SfM engine with one sim-
ple preprocessing step. If our preprocessing step generates good image association information,
an existing SfM pipeline which is a very mature software with several linear algebra toolboxes
and vision libraries integrated together, can provide good reconstructions. While our primary in-
terest is SfM, to illustrate the utility of PDM, we also present experimental results for scene sum-
marization for a set of images [30]. Additional experiments are available on the project website
http://pages.cs.wisc.edu/∼pachauri/pdm/.
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Structure from Motion (SfM). We used PDM to generate an image match matrix which is then
fed to a state-of-the-art SfM pipeline for 3D reconstruction [8, 9]. As a baseline, we provide these
images to a Bundle Adjustment procedure which uses visual features for matching and already has
a built-in heuristic outlier removal module. Several other papers have used a similar set of com-
parisons [6]. For each dataset, SIFT was used to detect and characterize landmarks [31, 32]. We
compute putative pairwise matchings (τij)

m
i,j=1 by solving

(
m
2

)
linear independent assignments [33]

based on their SIFT features. Image Match Matrix: Permutation matrix representation is used for
putative matchings (τij)

m
i,j=1. Here, n is relative large, on the order of 1000. Ideally n is the total

number of distinct keypoints in the 3D scene but n is not directly observable. In the experiments,
the maximum of keypoints detected across the complete dataset was used to estimate n. Eigenvector
based procedure computes weighted affinity matrix. While specialized methods can be used to ex-
tract a binary image matrix (such that it optimizes a specified criteria), we used a simple thresholding
procedure. 3D reconstruction: We used binary match matrix as an input to a SfM library [8, 9].
Note that we only provide this library the image association hypotheses, leaving all other modules
unchanged. With (potentially) good image association information, the SfM modules can sample
landmarks more densely and perform bundle adjustment, leaving everything else unchanged. The
baseline 3D reconstruction is performed using the same SfM pipeline without intervention.

The HOUSE sequence has three instances of similar looking houses, see Figure 1. The diffusion
process accumulates evidence and eventually provides strongly connected images in the data associ-
ation matrix, see Figure 2(a). Warm colors correspond to high affinity between pairs of images. The
binary match matrix was obtained by applying a threshold on the weighted matrix, see Figure 2(b).
We used this matrix to define the image matching for feature tracks. This means that features are
only matched between images that are connected in our match matrix. The SfM pipeline was given
these image matches as a hypotheses to explain how the images are “connected”. The resulting
reconstruction correctly gives three houses, see Figure 2(c). The same SfM pipeline when allowed
to track features automatically with an outlier removal heuristic, resulted in a folded reconstruction,
see Figure 1(b). One may ask if more specialized heuristics will do better, such as time stamps,
as suggested in [6]. However, experimental results in [5] and others, strongly suggest that these
datasets still remain challenging.

(a) (b) (c)
Figure 2: House sequence: (a) Weighted image association matrix. (b) Binary image match matrix. (c) PDM
dense reconstruction.

The CUP dataset has multiple images of a 180 degree symmetric cup from all sides, Figure 3(a).
PDM reveals a strongly connected component along the diagonal for this dataset, shown in warm
colors in Figure 3(b). Our global reasoning over the space of permutations substantially mitigates
coherent errors. The binary match matrix was obtained by thresholding the weighted matrix, see
Figure 3(c). As is evident from the reconstructions, the baseline method only reconstruct a “half
cup”. Due to the structural ambiguity, it also concludes that the cup has two handles, Figure 4(b).
PDM reconstruction gives a perfect reconstruction of the “full cup” with one handle as expected,
see Figure 4(a). The OAT dataset contains two instances of a red oat box, one on the left of the

(a) (b) (c)
Figure 3: (a) Representative images from CUP dataset. (b) Weighted data association matrix. (c) Binary data
association matrix.
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(a) (b)

Figure 4: CUP dataset. (a) PDM dense reconstruction. (b) Baseline dense reconstruction.

wheat things, and another on the right, see Figure 5(a). The PDM weighted match matrix and binary
match matrix successfully discover strongly connected components, see Figure 5(b-c). The baseline
method confused the two oat boxes as one, and reconstructed only a single box, see Figure 6(b).
Moreover, the structural ambiguity splits the wheat thins into two pieces. On the other hand, PDM
gives a nice reconstruction of the two oat boxes with the entire wheat things in the middle, Fig-
ure 6(a). Several more experiments (with videos), can be found on the project website.

(a) (b) (c)
Figure 5: (a) Representative images from OAT dataset. (b) Weighted data association matrix. (c) Binary data
association matrix.

(a) (b)

Figure 6: OAT dataset. (a) PDM dense reconstruction. (b) Baseline dense reconstruction.

6 Conclusions

Permutation diffusion maps can significantly improve the quality of the correspondences found in
image association problems, even when a large number of the initial visual feature matches are erro-
neous. Our experiments on a variety of challenging datasets from the literature give strong evidence
supporting the hypothesis that deploying the proposed formulation, even as a preconditioner, can
significantly mitigate problems encountered in performing structure from motion on scenes with
repetitive structures. The proposed model can easily generalize to other applications, outside com-
puter vision, involving multi-matching problems.
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