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PROBLEM STATEMENT

» Data: Given m sets X, X», ..., X, comprised of items from a ground set U

» Observations: Coherently noisy pairwise transtformations 7;; relating the

sets X; and X; such that

» Find: Identify correct pairwise transformations between the sets by
reasoning globally with noisy pairwise information of transformations

» Why? Many applications in machine learning and computer vision:
Ranked data analysis and structure from motion
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THIS PAPER

We present an algorithm for diffusion maps on this graph. In particular if:
» The transformation 7 of interest 1s a member of a compact group G
» That 1s w.r.t the natural definition of multiplication, we have

{ (7'7)(i) = (7' (r(i))) 7,7 €G, }

We show that the invariance properties of functions defined on the group G
provide a “‘certificate” of “‘consistent’” association between X, Xo, ..., Xj,.

STRUCTURE FROM MOTION

» Images are “related” by the matching between features 1.e., 7 1s a
permutation

» Set of all possible permutations of order n corresponds to a group — the
symmetric group o,

» Presence of large repetitive structure introduce coherent errors and
downstream analysis yields highly unsatistactory results

» For example — 1image match matrix of a cup with 180° visual symmetry
has large selt-consistent erroneous match pairs.
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Figure : Representative images.

Figure : Visual cue image match matrix.

SYNCHRONIZATION BY PERMUTATION DIFFUSION

SFM — CUP DATASET RECONSTRUCTION

C%*4 be a unitary representation of G. Then given an array of possibly noisy
and unsynchronized group elements (g;;) and corresponding positive confi-
dence weights (w);), any synchronization loss function (assuming g;; = Vi)
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"Proposition 1. Let G be any compact group with identity e and p: G —
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For SIM with large repetitive structure, we instantiate this proposition with

1. The observed but noisy matchings between images 7;; € S,
2. The appropriate unitary representation of the S,

Figure : Visual cue. Figure : PDA.

EXPERIMENTAL RESULTS

UNCERTAIN MATCHES AND DIFFUSION DISTANCE

» Each block of the V(i) correspond to a distribution p;(c) over base
permutations characterized by

1. assignments of landmarks that are seen in 1mage Z;
2. assignments of landmarks that are not seen in 1mage Z;

» pi(o) is agnostic with respect to the assignment of occluded landmarks

[ Occlusion induces an invariant structure in p;(o) ]

INVARIANCE BASED CERTIFICATE OF ASSOCIATION

We used auto-correlation function to represent the invariances of p;(o)
Permutation domain Fourier domain

— Zpi(a,u) pil ) ai(p) = pi(p) ﬁj(ﬂ)
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For some unitary matrix C, V(i) can be expressed as direct sum of Fourier

components of p;(o)
V(i) = CT [P p(N)]C
AEA

Re-writing auto-correlation in the new basis

)= CPDa]c = Prn pN]C =
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Define Permutation Diffusion Affinity (PDA), which compares the invariance
structure between some Z; and Z;
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OATS Dataset

Figure : Visual cue. Figure : PDA.

STREET Dataset

Figure : Visual cue.

Figure : PDA.
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