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PROBLEM STATEMENT

I Data: Given m sets X1,X2, ...,Xm comprised of items from a ground set U
I Observations: Coherently noisy pairwise transformations τ̃ij relating the

sets Xi and Xj such that

τ̃ij ⇒ Xi ∼ τ̃ij(Xj) ∀1 ≤ i, j ≤ m
I Find: Identify correct pairwise transformations between the sets by

reasoning globally with noisy pairwise information of transformations
I Why? Many applications in machine learning and computer vision:

Ranked data analysis and structure from motion

Strategy. Run diffusion process on this
graph with transformation-attributed
edges
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THIS PAPER

We present an algorithm for diffusion maps on this graph. In particular if:
I The transformation τ of interest is a member of a compact group G
I That is w.r.t the natural definition of multiplication, we have

(τ ′τ )(i) := (τ ′(τ (i))) τ, τ ′ ∈ G,
We show that the invariance properties of functions defined on the group G
provide a “certificate” of “consistent” association between X1,X2, ...,Xm.

STRUCTURE FROM MOTION

I Images are “related” by the matching between features i.e., τ̃ is a
permutation

I Set of all possible permutations of order n corresponds to a group – the
symmetric group Sn

I Presence of large repetitive structure introduce coherent errors and
downstream analysis yields highly unsatisfactory results

I For example – image match matrix of a cup with 180◦ visual symmetry
has large self-consistent erroneous match pairs.
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Figure : Visual cue image match matrix.

SYNCHRONIZATION BY PERMUTATION DIFFUSION

Proposition 1. Let G be any compact group with identity e and ρ : G →
Cdρ×dρ be a unitary representation of G. Then given an array of possibly noisy
and unsynchronized group elements (gji) and corresponding positive confi-
dence weights (wji), any synchronization loss function (assuming gii = e∀i)

E(h1, ..., hm) =

m∑
i,j=1

wji‖ρ(hjh−1
i )− ρ(gji)‖2

Frob h1, ..., hm ∈ G

can be written in the form E(h1, ..., hm) = V†LV , where

V =

ρ(h1)
...

ρ(hm)

 , L =

 di I −w21 ρ(g21) . . . −wm1 ρ(gm1)
... . . . ...

−w1m ρ(g1m) −w2m ρ(g2m) . . . dm I

 .

For SfM with large repetitive structure, we instantiate this proposition with
1. The observed but noisy matchings between images τ̃ij ∈ Sn

2. The appropriate unitary representation of the Sn

UNCERTAIN MATCHES AND DIFFUSION DISTANCE

I Each block of the V(i) correspond to a distribution pi(σ) over base
permutations characterized by

1. assignments of landmarks that are seen in image Ii

2. assignments of landmarks that are not seen in image Ii

I pi(σ) is agnostic with respect to the assignment of occluded landmarks

Occlusion induces an invariant structure in pi(σ)

INVARIANCE BASED CERTIFICATE OF ASSOCIATION

We used auto-correlation function to represent the invariances of pi(σ)
Permutation domain

ai(σ) =
∑
µ∈Sn

pi(σµ) pi(µ).

Fourier domain

âi(ρ) = p̂i(ρ) p̂†i (ρ).

For some unitary matrix C, V(i) can be expressed as direct sum of Fourier
components of pi(σ)

V(i) = C†
[⊕
λ∈Λ

p̂i(λ)
]
C

Re-writing auto-correlation in the new basis

âi(ρ) := C†
[⊕
λ∈Λ

âi(λ)
]
C = C†

[⊕
λ∈Λ

p̂i(λ) p̂i(λ)†
]
C = V(i) V(i)>

Define Permutation Diffusion Affinity (PDA), which compares the invariance
structure between some Ii and Ij

Π(i, j) =
(∑
σ∈Sn

ai(σ) aj(σ)
)1/2

= tr (V(i) V(i)>V(j) V(j)>)
1/2

SFM – CUP DATASET RECONSTRUCTION

Figure : Visual cue. Figure : PDA.

EXPERIMENTAL RESULTS

OATS Dataset

Figure : Representative images.

Figure : Visual cue. Figure : PDA.

STREET Dataset

Figure : Representative images.

Figure : Visual cue. Figure : PDA.
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