RELATIONAL ALGEBRA

CS 564- Fall 2015

RELATIONAL QUERY LANGUAGES

- manipulation and retrieval of data from a database
- 2 types:
 - Declarative: Tuple Relational Calculus (TRC)
 Domain Relational Calculus (DRC)
 - describe what a user wants, rather than how to compute it
 - Procedural: Relational Algebra (RA)
 - operational, useful for representing execution plans

QUERY VS PROGRAMMING LANGUAGES

Query Languages:

- are not "Turing complete"
- are not intended to be used for complex calculations
- support easy, efficient access to large data sets

WHAT IS RELATIONAL ALGEBRA?

- algebra: mathematical system consisting of
 - operands: variables or values from which new values can be constructed
 - operators: symbols denoting procedures that construct new values from given values
- relational algebra: an algebra whose operands are relations or variables that represent relations
 - operators do the most common things that we need to do with relations in a database
 - can be used as a query language for relations

RELATIONAL ALGEBRA PRELIM

Query:

- Input: relational instances
- Output: relational instances
- specified using the schemas
 - may produce different results for different instances
 - the schema of the result is fixed

Positional vs named-field notation:

- C.name or
- 2

RELATIONAL ALGEBRA PRELIM

- Basic operations:
 - *Selection* $\{\sigma\}$: selects a subset of rows
 - Projection $\{\pi\}$: deletes columns
 - Cross-product {×}: combines two relations
 - Set-difference {−}, Union {∪}
- When the relations have named fields:
 - Renaming $\{\rho\}$
- Additional operations:
 - Intersection, join, division

BASIC OPERATIONS

SELECTION

Notation: $\sigma_C(R)$

- C is a condition that refers to the attributes of R
- outputs the rows of R that satisfy C
- output schema: same as input schema

Example

- $\sigma_{age>24}(Person)$
- $\sigma_{age>24 \ and \ age\leq28}(Person)$
- $\sigma_{age>24 \ and \ name="Paris"}(Person)$

SELECTION EXAMPLE

Person

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	25	206-473-8221

$$\sigma_{age>24}(Person)$$

SSN	name	age	phoneNumber
123123645	John	30	608-321-1163
384475687	Arun	25	206-473-8221

PROJECTION

Notation: $\pi_{A_1,A_2,...,A_n}(R)$

- outputs only the columns $A_1, A_2, ..., A_n$
- removes any duplicate tuples (why?)
- output schema: $R(A_1, A_2, ..., A_n)$

Example

- $\pi_{SSN,age}(Person)$
- $\pi_{SSN,phoneNumber,age}(Person)$

PROJECTION EXAMPLE

Person

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

 $\pi_{SSN,name}(Person)$

SSN	name
934729837	Paris
123123645	John
384475687	Arun

Union

Notation: $R_1 \cup R_2$

- outputs all tuples in R_1 or R_2
- both relations must have the same schema!
- output schema: same as input

A	В
a ₁	b_1
a_2	b_1
a_2	b_2

U

A	В
a_1	b_1
a_3	b_1
a ₄	b_4

 $\begin{array}{ccc}
 a_1 & b_1 \\
 a_2 & b_1 \\
 a_2 & b_2 \\
 a_3 & b_1
 \end{array}$

 a_4

B

 b_4

DIFFERENCE

Notation: $R_1 - R_2$

- outputs all tuples in R_1 and not in R_2
- both relations must have the same schema!
- output schema: same as input

A	В		Α	В		A	В
a_1	b_1		a_1	b_1		a ₂	b_1
a_2	b_1	_	a_3	b_1	_	a_2	b_2
a_2	b_2		a_4	b ₄			

CROSS-PRODUCT

Notation: $R_1 \times R_2$

- matches each tuples in R_1 with each tuple in R_2
- input schema: $R_1(A_1, A_2, ..., A_n)$, $R_2(B_1, B_2, ..., B_m)$
- output schema: $R(A_1, ..., A_n, B_1, ..., B_m)$

CROSS-PRODUCT EXAMPLE

Person

SSN	name
934729837	Paris
123123645	John

Dependent

depSSN	depname
934729837	Helen
934729837	Bob

 $Person \times Dependent$

SSN	name	depSSN	depname
934729837	Paris	934729837	Helen
123123645	John	934729837	Bob
934729837	Paris	934729837	Helen
123123645	John	934729837	Bob

RENAMING

Notation: $\rho_{A_1,A_2,...,A_n}(R)$

- does not change the instance, only the schema!
- input schema: $R(B_1, B_2, ..., B_n)$
- output schema: $R(A_1, ..., A_n)$

Why is it necessary?

RENAMING EXAMPLE

Person

SSN	name
934729837	Paris
123123645	John

Dependent

SSN	name
934729837	Helen
934729837	Bob

 $Person \times \rho_{depSSN,depname}$ (Dependent)

SSN	name	depSSN	depname
934729837	Paris	934729837	Helen
123123645	John	934729837	Bob
934729837	Paris	934729837	Helen
123123645	John	934729837	Bob

DERIVED OPERATIONS

INTERSECTION

Notation: $R_1 \cap R_2$

- outputs all tuples in R_1 and R_2
- output schema: same as input
- can be expressed as: $R_1 (R_1 R_2)$

A	В
a_1	b_1
a_2	b_1
a_2	b_2

	Α	В
_	a ₁	b_1
1	a_3	b_1
	a_4	b_4

A	В
a_1	b_1

Join (Theta Join)

Notation:
$$R_1 \bowtie_C R_2 = \sigma_C(R_1 \times R_2)$$

- cross-product followed by a selection
- C can be any boolean-valued condition
- might have less tuples than the cross-product!

THETA JOIN EXAMPLE

Person

SSN	name	age
934729837	Paris	26
123123645	John	22

Dependent

dSSN	dname	dage
934729837	Helen	23
934729837	Bob	28

 $Person \bowtie_{Person.age>Dependent.dage} Dependent$

SSN	name	age	dSSN	dname	dage
934729837	Paris	26	934729837	Helen	23

EQUI-JOIN

Notation: $R_1 \bowtie_C R_2$

- special case of join where the condition C contains only equalities!
- output schema: similar to cross-product, but only one copy for the fields in the equality

Example for R(A,B), S(C,D)

- $R \bowtie_{B=C} S$
- output schema: T(A, B, D)

NATURAL JOIN

Notation: $R_1 \bowtie R_2$

equi-join on all the common fields

Person

SSN	name	age
934729837	Paris	26
123123645	John	22

Dependent

SSN	dname
934729837	Helen
934729837	Bob

$Person \bowtie Dependent$

SSN	name	age	dname
934729837	Paris	26	Helen
934729837	Paris	26	Bob

NATURAL JOIN

Natural Join $R \bowtie S$

- Input schema: R(A, B, C, D), S(A, C, E)
 - Output schema?
- Input schema: R(A, B, C), S(D, E)
 - Output schema?
- Input schema: R(A, B, C), S(A, B, C)
 - Output schema?

SEMI-JOIN

Notation: $R_1 \ltimes R_2$

• natural join followed by projection on the attributes of R_1

Example:

- R(A,B,C),S(B,D)
- $R \bowtie S = \pi_{A,B,C}(R \bowtie S)$
- output schema?

DIVISION

Notation: R_1/R_2

- suppose $R_1(A,B)$ and $R_2(B)$
- the output contains all A-tuples such that for every B-tuple in R_2 , there exists an (A,B) tuple in R_1
- output schema: *R*(*A*)

DIVISION EXAMPLE

A

Α	В
a_1	b_1
a_1	b_2
a_1	\mathbf{b}_3
a ₂	b_1

 B_1

Bb₂
b₃
b₁

 \mathbf{B}_2

B b₁

 A/B_1 $\begin{vmatrix} A \\ a_1 \end{vmatrix}$

 A/B_2 A a_1

 a_2

COMBINING RA OPERATORS

- We can build more complex queries by combining RA operators together
 - e.g. standard algebra: $(x + 1) * y z^2$
- There are 3 different notations:
 - sequence of assignment statements
 - expressions with operators
 - expression trees

COMBINING RA OPERATORS

Input schema: R(B,C), S(A,B)

expressions with operators

$$\pi_A(\sigma_{C=1}(R)\bowtie S)$$

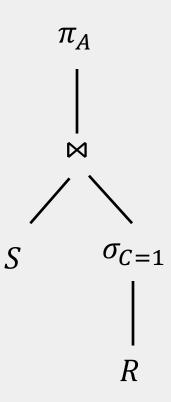
sequence of assignment statements

$$R' = \sigma_{C=1}(R)$$

$$R'' = R' \bowtie S$$

$$R''' = \pi_A(R'')$$

expression trees



EXPRESSIVE POWER

• RA cannot express transitive closure!

Edges

From	То
а	b
b	С
а	d
С	d

Transitive closure computes all pairs of nodes connected by a directed path

EXAMPLES

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

Q1: What are the names of the sailors who have reserved boat #100?

Q2: What are the names of the sailors who have reserved a red boat?

EXAMPLES

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

Q3: Find the names of the sailors who have reserved in a green **or** red boat

Q4: Find the names of the sailors who have reserved in a green **and** a red boat

EXAMPLES

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

Q5: Find the names of the sailors who have reserved all '470' boats

MORE EXAMPLES

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Company (cid, name, country)
Person (ssn, name, phone, city)

Q6: Find the phone numbers of people who bought iPads from Fred (the salesman)

Q7: Find the names of people who bought products from the USA

More Examples

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Company (cid, name, country)
Person (ssn, name, phone, city)

Q8: Find the names of people who bought products from the USA, but not from Greece

Q9: Find the names of people who bought products from the USA, and live in Madison

RECAP

- Relational Algebra
 - query language for relations
- Basic Operations
 - selection, projection
 - difference, union
 - cross-product, renaming
- Derived Operations
 - join, natural join, equi-join, division, etc