SQL

CS 564- Fall 2015

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan



MOTIVATION

* The most widely used database language
* Usedto query and manipulate data

* SQL stands for Structured Query Language
— many SQL standards: SQL-92, SQL:1999, SQL:2011
— vendors support different subsets
— we will discuss the common functionality



BASIC SQL QUERY

optional

/

SELECT |[DISTINCT] attributes
FROM one or more tables
WHERE conditions on the tables

\

conditions of the form: Attrl op Attr2



EXAMPLE DATABASE

City (ID, Name, CountryCode, District, Population)

CountryLanguage (CountryCode, Language, IsOfficial,
Percentage)

Country (Code, Name, Continent, Region, SurfaceArea,
IndepYear, Population, LifeExpectancy, GNP, GNPOId,
LocalName, GovernmentForm, HeadOfState, Capital, Code2)



EXAMPLE

What is the population of USA?

SELECT Population
FROM Country
WHERE Code = "USA';



SEMANTICS

1. Think of a tuple variable ranging over each tuple
of the relation mentioned in FROM

2. Check if the current tuple satisfies the WHERE
clause

3. If so, compute the attributes or expressions of the
SELECT clause using this tuple



* IN SELECT CLAUSES

When there is one relation in the FROM clause, * in
the SELECT clause stands for “all attributes of this
relation”

SELECT *

FROM City

WHERE Population >= '1000000'
AND CountryCode = 'USA';



RENAMING ATTRIBUTES

If we want the output schema to have different
attribute names, we can use AS <new name> to
rename an attribute

SELECT Name AS LargeUSACity
FROM City

WHERE Population >= '1000000'
AND CountryCode = 'USA';



ARITHMETIC EXPRESSIONS

We can use any arithmetic expression (that makes
sense) in the SELECT clause

SELECT Name,

(Population/ 1000000) AS PopulationInMillion
FROM City
WHERE Population >= '1000000° ;



WHAT CAN WE USE IN WHERE CLAUSES?

 attribute names of the relation(s) used in the
FROM clause

* comparison operators: =,<>,<, >, <=,>=
 arithmetic operations

« AND, OR, NOT to combine conditions

* operationson strings (e.g. concatenation)

* pattern matching: s LIKE p

* special stuff for comparing dates and times



PATTERN MATCHING

s LIKE p: pattern matching on strings

— % =any sequence of characters
— _ =any single character

SELECT Name, GovernmentForm
FROM Country
WHERE GovernmentForm LIKE '7%Monarchy?%’

J



USING DISTINCT

* The default semantics of SQL is bag semantics

* The use of DISTINCT in the SELECT clause
removes all duplicate tuples in the result, and

returns a set

SELECT DISTINCT GovernmentForm
FROM Country;



ORDER BY

The use of ORDER BY orders the tuples by the
attribute we specify in decreasing (DESC) or
increasing (ASC) order

SELECT Name, (Population / 1000000) AS
PopulationInMillion

FROM City

WHERE Population >= '5000000°

ORDER BY PopulationInMillion DESC;



LIMIT

The use of LIMIT <number> limits the output to be

only the specified number of tuples

* can be used with ORDER BY to get a maximum or
minimum value!

SELECT Name, (Population / 1000000) AS
PopulationInMillion

FROM City
ORDER BY PopulationInMillion DESC

LIMIT 2;



MULTIPLE RELATIONS

« We often want to combine data from more than
one relation

 We can address several relations in one query by
listing them all in the FROM clause

e [ftwo attributes from differentrelations have the

same name, we can distinguish them by writing
<relation>.<attribute>



EXAMPLE

What is the name of countries that speak Greek?

SELECT Name

FROM Country, CountrylLanguage
WHERE Code = CountryCode

AND Language = 'Greek';

This is BAD style!!



EXAMPLE: GOOD STYLE

SELECT Country.Name

FROM Country, CountrylLanguage

WHERE Country.Code=CountrylLanguage.CountryCode
AND CountrylLanguage.Language = 'Greek';

SELECT C.Name

FROM Country C, CountrylLanguage L
WHERE C.Code = L.CountryCode
'Greek';

AND L.Language



VARIABLES

Variables are necessary when we want to use two
copies of the same relation!

SELECT C.Name

FROM Country C, CountrylLanguage L1,
CountryLanguage L2

WHERE C.Code = L1.CountryCode
AND C.Code = L2.CountryCode
AND L1.Language = 'Greek’
AND L2.Language = 'English’;



SEMANTICS

1. Start with the cross product of all the relationsin
the FROM clause

2. Apply the conditions from the WHERE clause

3. Project onto the list of attributes and expressions
in the SELECT clause

4. If DISTINCT is specified, eliminate duplicate
rows



SEMANTICS OF SQL: NESTED LooP

SELECT a,;, a,, .., ay
FROM R, AS Xx,, R, AS X,, .., R, AS X,
WHERE Conditions

answer := {}
for x; in R; do
for x,in R, do

for x,in R, do
if Conditions
then answer := answer U {(a,,...,a;)}
return answer



SEMANTICS OF SQL

* The query processor will almost never evaluate
the query this way

* SQLis a declarative language

 The DBMS the system figures out what is the
most efficient to compute it (optimization)



SEMANTICS OF SQL: RA

SELECT a,, a,, .., ay
FROM Ry AS X;, R, AS X,, .., R, AS X,
WHERE Conditions

Ta,,a;,...a5 (UCOnditions (Rl X RZ XX Rn))



MORE SQL

 Union, intersection, and difference of

relations can be expressed:

— (subquery) UNION (subquery)

— (subquery) INTERSECT (subquery)
— (subquery) EXCEPT (subquery)

* Duplicates with union, except, intersect

— default: eliminate duplicates!
— use ALL to keep duplicates



DUPLICATES

 When doing projection:
— easier to avoid eliminating duplicates
— tuple-at-a-time processing

 When doing intersection, union or difference:
— more efficient to sort the relations first

— at that point you may as well eliminate the duplicates
anyway



NESTED QUERIES




NESTED QUERIES

A parenthesized SELECT-FROM-WHERE statement
(subquery) can be used as a value in a number of
places:

e in FROM clauses

e in WHERE clauses SELECT C.Name

FROM Country C
WHERE C.code =
(SELECT C.CountryCode
FROM City C
WHERE C.name = 'Berlin');

Can you rewrite this query without a subquery (unnesting)?



NESTED QUERIES

Find all countries in Europe with population more
than 50 million

SELECT C.Name
FROM (SELECT Name, Continent

FROM Country

WHERE Population >50000000) AS C
WHERE C.Continent = 'Europe' ;

Can you unnest this query?



SET-COMPARISON OPERATOR: IN

Find all countries in Europe that have some city with
population more than 5 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’

AND C.Code IN (SELECT CountryCode

FROM City
WHERE Population > 5000000);



SET-COMPARISON OPERATOR: EXISTS

Find all countries in Europe that have some city with
population more than 5 million

SELECT C.Name correlated subquery
FROM Country C

WHERE C.Continent = 'Europe’

AND EXISTS (SELECT *
FROM City T
WHERE T.Population > /5000000
AND T.CountryCode = C.Code);



SET-COMPARISON OPERATOR: ANY

Find all countries in Europe that have some city with
population more than 5 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’

AND 5000000 <= ANY (SELECT T.Population
FROM City T
WHERE T.CountryCode = C.Code);



SET-COMPARISON OPERATORS

Find all countries in Europe that have all cities with
population less than 1 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’
AND NOT EXISTS (SELECT *

FROM City T
WHERE T.Population > 1000000

AND T.CountryCode = C.Code);



SET-COMPARISON OPERATORS: ALL

Find all countries in Europe that have all cities with
population less than 1 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’

AND 1000000 > ALL (SELECT T.Population
FROM City T
WHERE T.CountryCode = C.Code);



AGGREGATION

CS 564 [Fall 2015] - Paris Koutris

33



AGGREGATION

 SUM, AVG, COUNT, MIN, MAX can be applied to a
column in a SELECT clause to produce that
aggregation on the column

 COUNT(*) counts the number of tuples

SELECT AVG(Population)
FROM Country
WHERE Continent = f‘Europe’;



AGGREGATION: ELIMINATE DUPLICATES

* COUNT(DISTINCT ) to remove duplicate tuples
before counting!

SELECT COUNT (DISTINCT Language)
FROM CountrylLanguage ;



GROUP BY

* We may follow a SELECT-FROM-WHERE
expression by GROUP BY and a list of attributes

* The relationis then grouped according to the
values of those attributes, and any aggregation is
applied only within each group

SELECT GovernmentForm, COUNT(Code)
FROM Country
GROUP BY GovernmentForm ;



RESTRICTIONS

[f any aggregation is used, then each element
of the SELECT list must be either:

— aggregated, or

— an attribute on the GROUP BY list



GROUP BY + HAVING

e The HAVING <condition> can follow a GROUP BY
clause

* The condition

— applies to each group, and groups not satisfying the
condition are removed

— canrefer only to attributes of relations in the FROM
clause, as long as the attribute makes sense within a

group



EXAMPLE

SELECT Language, COUNT(CountryCode) AS N
FROM CountrylLanguage

WHERE Percentage >= 50

GROUP BY Language

HAVING N > 2

ORDER BY N DESC ;



PUTTING IT ALL TOGETHER!

SELECT [DISTINCT] S

FROM R, S, T ,..

WHERE C1

GROUP BY attributes

HAVING C2

ORDER BY attribute ASC/DESC
LIMIT N ;



CONCEPTUAL EVALUATION

1. Compute the FROM-WHERE part, obtain a table
with all attributes in R4,...,R,,

2. Group by the attributes in the GROUP BY

3. Compute the aggregates and keep only groups
satisfying condition C2

4. Compute aggregatesin S

5. Order by the attributes specified



