SQL: MODIFICATIONS, CONSTRAINTS
& TRIGGERS

CS 564- Fall 2015

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

NULL VALUES

CS 564 [Fall 2015] - Paris Koutris

NULL VALUES

* Tuplesin SQL relations can have NULL as a value
for one or more attributes

* The meaning depends on context:

— Missing value : e.g. we know that Greece has
some population, but we don’t know whatitis

— Inapplicable : e.g., the value of attribute spouse
for an unmarried person

COMPLICATIONS

* The logic of conditions in SQL is 3-valued logic:
TRUE, FALSE, UNKNOWN

 When any value is compared with NULL, the truth
value is UNKNOWN

* A query produces a tuple in the answer only if its
truth value for the WHERE clause is only TRUE

COMPLICATIONS

 What happens for the condition IndepYear>1990 if
itis NULL?
— answer is UNKNOWN!

 What about the following?

SELECT COUNT (*)

FROM Country
WHERE IndepYear > 1990 OR IndepYear <= 1990 ;

TESTING FOR NULL

We can test for NULL explicitly:

— x IS NULL
—x ISNOT NULL

LEFT OUTER JOINS

* Include the tuple from the left relation even if
there’s no match on the right!

SELECT C.Name AS Country, MAX(T.Population)
FROM Country C LEFT OUTER JOIN City T

ON C.Code = T.CountryCode
GROUP BY C.Name

OTHER OUTER JOINS

* Left outer join:

— include the left tuple even if there is no match
* Right outer join:

— include the right tuple even if there is no match
* Full outer join:

— include the both left and right tuples even if
there is no match

DATABASE MODIFICATIONS

MODIFYING THE DB

A modification command does not return a result,
but it changes the database

* There are 3 kinds of modifications:
1. Insert tuple(s)
2. Delete tuple(s)
3. Update the value(s) of existing tuple(s)

INSERT

* Toinserta single tuple:

INSERT INTO <relation>
VALUES (<list of values>);

 We may add to the relation name a list of
attributes (if we forget the order)

 We may insert the entire result of a query into a
relation:

INSERT INTO <relation>
(<subquery>);

DELETE

* Todelete tuples:

DELETE FROM <relation>
WHERE <condition> ;

* How do we delete everything?
DELETE FROM <relation>;

* Be careful! All tuples that satisfy the WHERE
clause are deleted!

UPDATE

* To change certain attributes in certain tuples of a
relation:

UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition>;

VIEWS

CS 564 [Fall 2015] - Paris Koutris

14

VIEW DEFINITION

 Aviewis a virtual table, a relation that is defined
in terms of the contents of other tables and views

e To create one:

CREATE VIEW <name> AS <query>;

* In contrast, a relation whose value is really stored
in the database is called a base table

EXAMPLE

CREATE VIEW OfficialCountryLanguage
SELECT C.Name AS CountryName,

L.Language AS Language
FROM CountrylLanguage L, Country C
WHERE L.CountryCode = C.Code
AND L.IsOfficial = 'T'

J

AS

How To USE VIEWS

You may query a view as if it were a base table
BUT there is a limited ability to modify views!

The DBMS interprets the query as if the view were
a base table

The queries defining any views used by the query
are replaced by their algebraic equivalents, and
added to the expression tree for the query

CONSTRAINTS & TRIGGERS

CONSTRAINTS & TRIGGERS

* An integrity constraintis a relationship among
data elements that the DBMS is required to
enforce

— Example: keys, foreign keys

* Atriggerisaprocedure that is executed when a
specified condition occurs (e.g. tuple insertion)

INTEGRITY CONSTRAINTS (IC)

key
foreign-key, or referential-integrity
domain constraints
—e.g. NOT NULL
tuple-based constraints
assertions: any SQL boolean expression

FOREIGN KEY

* Use the keyword REFERENCES, as:

FOREIGN KEY (<list of attributes>)
REFERENCES <relation> (<attributes>)

 Referenced attributes must be declared PRIMARY
KEY or UNIQUE

FOREIGN KEY

CREATE TABLE Author(
authorid INTEGER PRIMARY KEY,
name TEXT) ;

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,

FOREIGN KEY (author) REFERENCES
Author (authorid));

ENFORCING FOREIGN KEY CONSTRAINTS

[f there is a foreign-key constraintfrom attributes of
relation R to the primary key of relation S, two
violations are possible:

1. Aninsert or update to R introduces values not
found in §

2. A deletion or update to S causes some tuples of R
to dangle

There are 3 ways to enforce foreign key constraints!

ACTION 1: REJECT

* This is the defaultaction if a foreign key is
declared

* Theinsertion/deletion/updateisrejected and not
executed

ACTION 2: CASCADE UPDATE

 When a tuple referenced is updated, the update
propagates to the tuples that reference it

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,

FOREIGN KEY (author) REFERENCES
Author(authorid)

ON UPDATE CASCADE);

ACTION 2: CASCADE DELETE

 When atuple referenced is deleted, the deletion
propagates to the tuples that reference it

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,

FOREIGN KEY (author) REFERENCES
Author(authorid)

ON DELETE CASCADE);

ACTION 3: SET NULL

 When a delete/update occurs, the values that
reference the deleted tuple are set to NULL

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,

FOREIGN KEY (author) REFERENCES
Author(authorid)

ON UPDATE SET NULL);

WHAT TO CHOOSE

 When we declare a foreign key, we may choose

policies SET NULL or CASCADE independently for
deletions and updates

ON [UPDATE, DELETE] [SET NULL, CASCADE]
* Otherwise, the default (reject) is used

DOMAIN CONSTRAINTS

* A constrainton the value of a particular attribute:
CHECK (<condition>)

* We can use the attribute, but any other relation or
attribute name must be in a subquery

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY CHECK(bookid >= 0),
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES Author(authorid));

DOMAIN CONSTRAINTS

* A checkis checked only when a value for that
attribute is inserted or updated

* We can also add more complex constraints:

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,

FOREIGN KEY (author) REFERENCES Author(authorid)
CHECK (bookid >= 0 ortitle ISNOT NULL)

ASSERTIONS

Defined by:
CREATE ASSERTION <name>
CHECK (<condition»>);

* The condition may refer to any relation or
attribute in the database schema

CREATE ASSERTION LowPrice CHECK (
NOT EXISTS (
SELECT * FROM Book
WHERE price <= 20 AND authorid = 111)

)

ASSERTIONS

* In principle, we must check every assertion after
every modification to any relation of the database

* A clever system can observe that only certain
changes could cause a given assertion to be
violated and check only these

TRIGGERS: MOTIVATION

Checks have limited capabilities

* Assertions are sufficiently general for most
constraint applications, but they are hard to
implement efficiently

* Atrigger allows the user to specify when the check
OCCUrS

TRIGGERS

Procedure that starts automatically if specified
changes occur to the DBMS

* Three parts:
— Event (activates the trigger)

— Condition (tests whether the triggers should run)

— Action (what happens if the trigger runs)

EXAMPLE

CREATE TRIGGER addAuthor
AFTER INSERT ON Book
FOR EACH ROW
WHEN (NEW.author NOT IN
(SELECT authorid FROM Author))
BEGIN
INSERT INTO Author
VALUES (NEW.author, 'NewAuthor') ;
END ;

TRIGGER: CONDITION

 AFTER / BEFORE.
— Also INSTEAD OF if the relationis a view

 INSERT / DELETE / UPDATE

— UPDATE can be UPDATE... ON a particular
attribute!

TRIGGER: FOR EACH Row

Triggers are either row-level or statement-level

FOR EACH ROW indicates row-level; its absence
indicates statement-level

Row level triggers are executed once for each
modified tuple

Statement-level triggers execute once for an SQL
statement, regardless of how many tuples are
modified

TRIGGER: REFERENCING

INSERT statements imply a new tuple (for row-
level) or new set of tuples (for statement-level)

DELETE implies an old tuple or table
UPDATE implies both
Refer to these by

INEW OLD|[TUPLE TABLE] AS <name>

TRIGGER: ACTION

 There can be more than one SQL statement in the
action

— Surround by BEGIN ... END

* But queries make no sense in an action, so we are
essentially limited to modifications

