STORING DATA: DISK AND FILES

CS 564- Fall 2015

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

ARCHITECTURE OF A DBMS

I [/0 access

-

ARCHITECTURE OF STORAGE MANAGER

P NN NN AN NN NN A AN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE g O MUMEAEERSS, QEEssssssEEl

EEmsssEssEEsssEEsEEEss, ssssEsssssssEsssEsssEns O

FesEsssssssEsssnEnEnEn, 2

Heap B+-tree :: |
i File :: Index i:¢

Concurrency

l [/0 access

-

CS 564 [Fall 2015] - Paris Koutris

DATA STORAGE

* How does a DBMS store and access data?
— disk
— main memory

* How do we move data from disk to main memory?
— pages

 How do we organize relational data into files?

MEMORY HIERARCHY

CPU cache

Main Memory

Flash Storage

Magnetic Hard Disk Drive

access speed

capacity

price

WHY NOT MAIN MEMORY?

* Relatively high cost
* Main memory is not persistent!
* Typical storage hierarchy:
— Main memory (RAM) for currently used data
— Disk for the main database (secondary storage)

— Tapesfor archiving older versions of the data
(tertiary storage)

DISK

CS 564 [Fall 2015] - Paris Koutris

DISKS

Secondary storage device of choice

Data is stored and retrieved in units called disk
blocks or pages

The time to retrieve a disk page varies depending
upon location on disk

— The placement of pages on disk has major impact on
DBMS performance!

COMPONENTS OF DISKS

-) .
platter: circular hard surface o Spindle
on which data is stored by AN (D
. . . (7
inducing magnetic changes NN
g g g /‘ f?eCtOI'

spindle: responsible for ., ~ —
rotating the platters 'v
RPM (Rotations Per Minute)

— 7200 RPM - 15000 RPM Platters

/

Disk arm

COMPONENTS OF DISKS

data is encoded in concentric O/‘Spindlemcks
circles of sectors called tracks Disichead <\,)
Ay,

disk head: mechanism to read /] SN 7

. o __ Sector
or write data \ —

| 4
The disk arm movesto v
position a head on a desired
tI‘a C k Platters
exactly one head reads/writes /
at any time

Disk Arm

COMPONENTS OF DISKS

block size : multiple of sector
size (which is fixed)

@‘

sector

CS 564 [Fall 2015] - Paris Koutris

spindle

track

11

ACCESSING THE DIsK (1)

access time = seek time + rotational delay + transfer time

rotational delay: time to wait for sector to rotate

under the disk head
- typical delay: 0 - 10ms
- average vs maximum delay

RPM Average delay
5,400 5.56
7,200 4.17

10,000 3.00
15,000 2.00

ACCESSING THE DISK (2)

access time = seek time + rotational delay + transfer time

seek time: time to move the arm to position disk
head on the right track

- typical seek time: ~9ms
- ~4ms for high-end disks

ACCESSING THE DISK (3)

access time = seek time + rotational delay + transfer time

data transfer time: time to move the data to/from
the disk surface

- typical rates: ~100MB/s
- access time is dominated by seek time and delay!

EXAMPLE: SPECS

Seagate HDD
Capacity 3TB
RPM 7,200

Average Seek Time | 9ms
Max Transfer Rate | 210 MB/s
Platters 3

What are the 1/0 rates for block size 4KB and:
- random workload (~ 0.3 MB/s)
- sequential workload (~ 210 MB/s)

ACCESSING THE DISK

* Blocks in a file should be arranged sequentially on
disk to minimize seek and rotational delay!!

* next block concept:
— blocks on same track, followed by
— blocks on same cylinder, followed by

— blocks on adjacent cylinder

MANAGING DISK SPACE

The disk space is organized into files
Files are made up of pages
Pages contain records

Data is allocated /deallocated in increments of
pages
Logically close pages should be nearby in the disk

BUFFER MANAGEMENT

BUFFER MANAGER

* Data must be in RAM for DBMS to operate on it
* All the pages may not fit into main memory

* Buffer manager:responsible for bringing pages
from disk to main memory as needed

— pages brought into main memory are in the buffer pool

— the buffer pool is partitioned into buffer frames: slots
for holding disk pages

BUFFER MANAGER

page request I

buffer pool

\

pase I buffer frame

disk @

CS 564 [Fall 2015] - Paris Koutris

20

REQUESTS TO BUFFER MANAGER

The higher level of the DBMS can:

* requesta page (w/oworryingifitis in memory)
* releaseapage when no longer needed

* notify when a page is modified

BOOKKEEPING

Bookkeeping per frame:
* pin count : # current users of the page
— pinning : increment the pin count
— unpinning : release the page (pin count is 0)
 dirty bit:indicates if the page has been modified
(so changes must be propagated to disk)

PAGE REQUEST

* Page in buffer pool:
— return the address to the frame

— increment the pin count

* Page notin the buffer pool:
— choose a frame for replacement
— if frame is dirty, write it to disk
— read requested page into chosen frame
— pin the page and return the address

BUFFER REPLACEMENT POLICY

 How do we choose a frame for replacement?
— LRU (Least Recently Used)
— Clock
— MRU (Most Recently Used)
-~ FIFO, random, ...

* The replacementpolicy has big impact on # of
[/O’s (depends on the access pattern)

LRU

LRU (Least Recently Used)
- queue of pointers to frames with pin count 0

- add to end of queue, grab frames from front of
queue

EXAMPLE

- Butffer pool with 3 frames
- 5 pagesindisk:A, B,C,D, E

- Sequence of requests:

— request A, modify A, request B, request B, release A,
request C, release B, request D, modify D, release B,
request A, request E

CLOCK

Variant of LRU with lower overhead
The N frames are organized into a cycle

Each frame has a referenced bit that is setto 1
when pin count is 0

A currentvariable points to a frame

When a frame is considered:
— If pin count > 0, increment current
— Ifreferenced =1, setto 0 and increment

— Ifreferenced = 0 and pin count = 0, choose the page

SEQUENTIAL FLOODING

* Nasty situation caused by LRU + repeated
sequential scans

— # buffer frames < # pagesinfile
— each page request causesan I/0 !!
— MRU much better in this situation

DBMS vs OS FILE SYSTEM

Why not let the OS handle disk management?
 DBMS better at predicting the reference patterns
* Buffer management in DBMS requires ability to:
— pin a page in buffer pool
— force a page to disk (for recovery & concurrency)

— adjust the replacement policy

— pre-fetch pages based on predictable access patterns
- can better control the overlap of [/O with computation

* can leverage multiple disks more effective

RECAP

How a DBMS stores data:
* disk, main memory
* files, pages

Buffer manager:

 Controls how the data moves between main
memory and disk

* Various replacementpolicies (LRU, Clock, etc)

