EXTERNAL SORTING

CS 564- Fall 2015

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

WHY SORTING?

* users usually want data sorted (ORDER BY)
* first step in bulk-loadinga B+ tree
* used in duplicate elimination (how?)

* the sort-merge join algorithm (laterin class)
involves sorting as a first step

SORTING IN DATABASES

 Why don’t the standard sorting algorithms work
for databases?
— merge sort
— quick sort
— heap sort

* The data typically does not fit in memory!

EXAMPLE: MERGE SORT

* Sorting n tuples needs n log(n) comparisons
* If we doarecord-based sorting, we will need
nlog(n) 1/0s

 Keyidea: sort based on pages and not records!

THE SORTING PROBLEM

M available memory pages
a relation R of size N pages (where N > M)

SORTING: output a relation R’ that is sorted on a
given sort key

Desiderata:

— sort large relations with small amounts of memory
— minimize the number of disk I/0s

— use sequential I/Osrather than random I/Os

— Overlap /O with CPU operations & minimize CPU

WARM UP: 2-WAY SORT

* run: a sorted sub-file generated in intermediate
steps of the sorting algorithm

* Pass 0: {requires 1 buffer page}
— read a page, sort it, write it

 Pass 1, 2,3, ...: {requires 3 buffer pages}
— read 2 runs, merge them into one run

2-WAY SORT: ANALYSIS

* # passes=|[log,N|+ 1

 [/Osperpass=2N

 Totall/Os= 2N(|log,N|+ 1)

EXAMPLE

1,000,000records

each record has 32 bytes
each page has 8KB

sort key is 4 bytes

CAN WE DO BETTER?

* The 2-way merge algorithm only uses 3 buffer
pages

* How can we utilize the fact that we have more
available memory?

 Keyidea: use as much memory as possible in
every pass!

— reducing the number of passes reduces /0

GGENERAL EXTERNAL SORT

* B buffer pages available
- Pass 0:

— read B buffer pages at a time and sort
— produces [N/B] runs

- Pass 1,2 3, ...

— load B-1 runs and merge them into one run

GGENERAL EXTERNAL SORT: ANALYSIS

* # passes= [logB_l[N/Bﬂ + 1
 [/Osperpass=2N

- Totall/Os= 2N(|logs_1[N/B]| + 1)

EXAMPLE

1,000,000records

each record has 32 bytes
each page has 8KB

sort key is 4 bytes

Memory has 10 pages available

IMPROVEMENT: REPLACEMENT SORT

* used as an alternative for sorting in pass 0
* createsaverageruns of size 2B
e Algorithm:
— read B-Z pages in memory (keep as sorted heap)

— move smallest record (that is greater than the largest
element in buffer) to output buffer

— read a new recordr and insert into the sorted heap

IMPROVEMENT: BLOCKED 1/0

* readinga block of pages sequentially is faster!

» Make each buffer slot be a block of pages
— reduces per page [/0 cost. Side-effect?
- Analysis
— Pass 0: creates [N /2B] runs
- canmerge F = |B/b| — 1, where b is block size

— # passes: [logF[N/ZBﬂ + 1

-~ however,less /0 per pass!

IMPROVEMENT: DOUBLE BUFFERING

* So far we have considered only I/0 costs
* But CPU may have to wait for /0!

* Idea: keep a second set of buffers so that /0 and
CPU overlap

USING B+ TREES TO SORT

* Can the data be already sorted?
— yes, if we have created a B+ tree index for the key!

— the leaves have the entries in sorted order

* There are two possibilities here:
— clustered B+ tree
— unclustered B+ tree

SORTING WITH CLUSTERED B+ TREE

Retrieve the leftmost entry
Sweep through the leaf pages in order
For each leaf page, read the data pages

Cost:
— If data is in not the index:
Height + #pages in index + #data pages
— If data is in the index:
Height + #pages in index

SORTING WITH UNCLUSTERED B+ TREE

* In worst-case, [/Os can be as many as the number
of records!

* Even in average case slower than external sorting

