TRANSACTION MANAGEMENT

CS 564- Fall 2015

ACKs: Jeff Naughton, Jignesh Patel, AnHai Doan

EXAMPLE

Read(A); e Start with $100

Check (A > $50); . \What happensif the DBMS
Pay($25); crashes right after we pay?
A := A - 25;

 What can happen if we
interleave the execution of
two such programs?

Write(A);

TRANSACTION MANAGEMENT

* Inconsistency can occur when:

— interleavingactions of different user programs
— system crash, user abort, ...

* Provide the users an illusion of a single-user
system

— Why not admit only one query into the system at any
time?
* lowerutilization: CPU/IO overlap

 long running queries starve other queries

TRANSACTION

* A collection of operations that form a single atomic
logical unit
BEGIN TRANSACTION
{SQL}
END TRANSACTION
* Operations:
— READ(X), WRITE(X): Xisa tuple
— Special actions: COMMIT, ABORT

* Transactions must leave the database in a
consistent state

THE ACID PROPERTIES

Atomicity: All actions in the transaction happen, or
none happen

Begin * Example:if the system
Read(A); crashes after Write(A), we
A := A - 25; undo the actions of the

Write(A); transactions
Read(B);

B := B + 25;

Write(B);

Commit

THE ACID PROPERTIES

Consistency: a database in a consistent state will
remainin a consistent state after the transaction

. * Example: A+B must remain
Begin

Read(A); the same after the transaction
A := A - 25; is executed

Write(A);

Read(B);

B := B + 25;

Write(B);
Commit

THE ACID PROPERTIES

Isolation: the execution of one transaction is
isolated from other (possibly interleaved)
transactions

 if T1, T2 are interleaved, the result should be the same as
executing first T1 then T2, or first T2 then T1

THE ACID PROPERTIES

Durability: if a transaction commits, its effects must
persist

* for example,if the system crashes after a commit, the
effects must remain

* what happens if the modified data is not written on disk?

SCHEDULES

Schedule: An interleaving of actions from a set of
transactions, where the actions of any one
transaction arein the original order

— complete schedule: each transaction ends in commit or
abort

— serial schedule: no interleaving of actions from different
transactions

WHAT IS A GOOD SCHEDULE?

Serializable schedule:

 final state is what some complete serial schedule of
committed transactions would have produced

 (Can different serial schedules have different final states?
— Yes, there is no specific ordering
e Aborted transactions?

— ignore them for a little while (can be made to
‘disappear’ using logging)

SERIALIZABILITY VIOLATIONS

When execution of transactions is interleaved, we
can have 3 different violations:

* Write-Read conflict (dirty read)
* Read-Write conflict (unrepeatableread)

* Write-Write conflict (overwriting uncommitted
data)

DIRTY READ

@Start (A,B) = (1000, 100)
 Interleaved execution:
— (990, 210)

e T1 - T2:

— (900, 200) - (990, 220)

e T2 - T1:

— (1100, 110) - (1000, 210)

T1: Transfer
$100 fromA to B

T2: Add 10%
interestto A & B

begin

begin

R(A); A-=100

W(A)
R(A); A*=1.1
W(A)
R(B); B*=1.1
W(B)
commit

R(B); B+=100

W(B)

commit

UNREPEATABLE READ

T1 readsvalue A: Ry (A)

T2 interleaves and overwrites the value: W, (A)

T1 readsagain: Ry; (A) but sees a different value!

OVERWRITING UNCOMMITTED DATA

e T2 overwrites what T1 wrote!

* Example:

— suppose that students in the same group must get the
same project grade

— T1: W (X=A), W (Y=A)

— T2: W (X=B), W(Y=B)

— W (X=A) = Wpp(X=B) = Wr,(Y=B) = Wy, (Y=A)

ABORTED TRANSACTIONS

* A serializable schedule is equivalent to a serial
schedule of committed transactions
— as if aborted transactions never happened!

* Twoissues:
— How does one undo the effects of a transaction?
* by logging/recovery
— What if another transaction sees these effects??
 Must undo that transaction as well!

CASCADING ABORTS

* cascading abort: when abort of T1 requires an
abort of T2

 What happensif T2 has already committed?

* recoverable schedule: Commit only after all
tranactions that supply dirty data have committed

. ACA (avoids cascading abort) schedule:
transaction only reads committed data
no cascading aborts can arise!

LOCKING

* Lockingis a technique for concurrency control

* Lock information maintained by a lock manager-:
— stores (TID, RID, Mode) triples

— Mode is either Shared (S) or Exclusive (X) - | S
J |
J |

X |~

 [f a transaction cannot get a lock, it has to waitin a
queue

STRICT 2 PHASE LOCKING

- Each transaction must obtain a S lock on object
before reading, and an X lock on object before
writing

- All locks held by a transaction are released only
when the transaction completes

- If a transaction holds an X lock on an object, no
other transaction can get a lock (S or X) on that
object

Strict 2PL guarantees serializability and ACA!

NON-STRICT 2 PHASE LOCKING

- Each transaction must obtain a S lock on object
before reading, and an X lock on object before
writing

 If the transactionreleases any lock, it can not
acquire any additional locks

Non-Strict 2PL guarantees serializability (but not
ACA)

EXAMPLE

Blackboard!

DEADLOCKS

Example:

X11(B), X12(A), S11(A), S12(B)
Deadlocks can cause the system to wait
forever

We need to detect deadlocks and break, or
prevent deadlocks

Simple mechanism: timeoutand abort
More sophisticated methods exist

PERFORMANCE OF LOCKING

* Locks have a performance penalty:
— blocked actions
— aborted transactions

* Because of blocking, we can not increase forever
the throughput of transactions

* At the point where the throughput cannot
increase, we say that the system thrashes

TRANSACTIONS IN SQL

* Transaction boundary

— begins implicitly when a statement is executed
— ends by COMMIT or ROLLBACK

* For long running transactions, we can use
SAVEPOINT

— we can then roll back to any previous savepoint

TRANSACTIONS IN SQL

* What object should we lock?
SELECT COUNT(*)
FROM Employee
WHERE age = 20 ;
* We can apply locking at different granularities:
— lock the whole table Employee
— lock only the rows with age = 20

THE PHANTOM PROBLEM

So far we have assumed the database to be a static
collection of elements (=tuples)

If tuples are inserted /deleted then the phantom
problem appears

Example: blackboard!

TRANSACTIONS IN SQL

Transaction characteristics:
 Access mode: READ ONLY, READ WRITE

* [solation level
— Serializable: default (Strict2PL)
— Repeatable reads: (R/W locks, but phantom can occur)
* Read only committed records

* Between two reads by the same transaction, no
updates by another transaction

— Read committed (W lockslongterm, R locks shortterm)
* Read only committed records
— Read uncommitted (only reads, no locks)

CRASH RECOVERY

Motivation:

* Atomicity: transactions may abort (rollback)
* Durability: the DBMS may crash

Buffer pool strategies:

* Force: every write goes to disk once committed
— poor response time
— provides durability

 Steal: buffer pool frames write to disk before
commit

STEAL AND FORCE

STEAL (why enforcing Atomicity is hard)

* To steal frame E, current page in F (say P) is written to disk;
some transaction holds lockon P

— What if the transaction with the lock on P aborts?

— Must remember the old value of P at steal time (to
support UNDOing the write to page P)

NO FORCE (why enforcing Durability is hard)

* whatif we crash before a modified page is written to disk?

* write as little as possible, in a convenient place, at commit
time, to support REDOing modifications.

LOGGING

* Record REDO and UNDO information for every
update in a log

* Log: An orderedlistof REDO/UNDO actions
* The Write-Ahead Logging (WAL) protocol:

— force the log record for an update before the
corresponding data page gets to disk (guarantees
atomicity)

— write all log records for a transaction before commit
(guarantees durability)

ARIES

* ARIES is a recovery algorithm that works with a
steal, no-force approach

* Three phases:
— Analysis
— UNDO
— REDO

* For more on crashes and recovery, take CS 764!

