
SQL

CS	564- Fall	2016

ACKs:	Dan	Suciu,	Jignesh Patel,	AnHai Doan

MOTIVATION

• The	most	widely	used	database	language
• Used	to	query and	manipulate data

• SQL	stands	for	Structured	Query	Language
– many	SQL	standards:	SQL-92,	SQL:1999,	SQL:2011
– vendors	support	different	subsets	
– we	will	discuss	the	common	functionality

2CS	564	[Fall	2016]	- Paris	Koutris

BASIC SQL	QUERY

3CS	564	[Fall	2016]	- Paris	Koutris

SELECT			[DISTINCT] attributes
FROM one	or	more	tables
WHERE conditions	on	the	tables

optional

conditions	of	the	form:		Attr1	op	Attr2

EXAMPLE DATABASE

City (ID,	Name,	CountryCode,	District,	Population)

CountryLanguage (CountryCode,	Language,	IsOfficial,	
Percentage)

Country (Code,	Name,	Continent,		Region,	SurfaceArea,		
IndepYear,		Population,		LifeExpectancy,		GNP,		GNPOld,		
LocalName,		GovernmentForm,		HeadOfState,		Capital,		Code2)

4CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

What	is	the	population	of	USA?

SELECT Population
FROM Country
WHERE Code = 'USA';

5CS	564	[Fall	2016]	- Paris	Koutris

SEMANTICS

1. Think	of	a	tuple	variable ranging	over	each	tuple	
of	the	relation	mentioned	in	FROM

2. Check	if	the	current	tuple	satisfies	the	WHERE
clause

3. If	so,	compute	the	attributes	or	expressions	of	the	
SELECT clause	using	this	tuple

6CS	564	[Fall	2016]	- Paris	Koutris

*	IN SELECT CLAUSES

When	there	is	one	relation	in	the	FROM clause,	*	in	
the	SELECT clause	stands	for	“all	attributes	of	this	
relation”

7CS	564	[Fall	2016]	- Paris	Koutris

SELECT *
FROM City
WHERE Population >= '1000000'
AND CountryCode = 'USA';

RENAMING ATTRIBUTES

If	we	want	the	output	schema	to	have	different	
attribute	names,	we	can	use	AS <new	name>	to	
rename	an	attribute

8CS	564	[Fall	2016]	- Paris	Koutris

SELECT Name AS LargeUSACity
FROM City
WHERE Population >= '1000000'
AND CountryCode = 'USA';

ARITHMETIC EXPRESSIONS

We	can	use	any	arithmetic	expression	(that	makes	
sense)	in	the	SELECT clause

9CS	564	[Fall	2016]	- Paris	Koutris

SELECT Name,
(Population/ 1000000) AS PopulationInMillion
FROM City
WHERE Population >= '1000000’ ;

WHAT CANWE USE INWHERE CLAUSES?

• attribute	names	of	the	relations	that	appear	in	the	
FROM clause

• comparison	operators:		=,	<>,	<,	>,	<=,	>=
• arithmetic	operations	(+,	-,	/,	*)
• AND,	OR,	NOT to	combine	conditions
• operations	on	strings	(e.g.	concatenation)
• pattern	matching:			s LIKE p
• special	functions	for	comparing	dates	and	times

10CS	564	[Fall	2016]	- Paris	Koutris

PATTERN MATCHING

s	LIKE p:		pattern	matching	on	strings
– %		=	any	sequence	of	characters
– _			=	any	single	character

11CS	564	[Fall	2016]	- Paris	Koutris

SELECT Name, GovernmentForm
FROM Country
WHERE GovernmentForm LIKE '%Monarchy%';

USING DISTINCT

• The	default	semantics	of	SQL	is	bag semantics	
(duplicate	tuples	are	allowed	in	the	output)

• The	use	of	DISTINCT in	the	SELECT clause	
removes	all	duplicate	tuples	in	the	result,	and	
returns	a	set

12CS	564	[Fall	2016]	- Paris	Koutris

SELECT DISTINCT GovernmentForm
FROM Country;

ORDER BY

The	use	of	ORDER BY orders	the	tuples	by	the	
attribute	we	specify	in	decreasing	(DESC)	or	
increasing (ASC)	order

13CS	564	[Fall	2016]	- Paris	Koutris

SELECT Name, (Population / 1000000) AS
PopulationInMillion
FROM City
WHERE Population >= '5000000’
ORDER BY PopulationInMillion DESC;

LIMIT

• The	use	of	LIMIT <number>		limits	the	output	to	
be	only	the	specified	number	of	tuples

• It	can	be	used	with	ORDER BY to	get	the	
maximum	or	minimum	value	of	an	attribute!

14CS	564	[Fall	2016]	- Paris	Koutris

SELECT Name, (Population / 1000000) AS
PopulationInMillion
FROM City
ORDER BY PopulationInMillion DESC
LIMIT 2;

MULTIPLE RELATIONS

• We	often	want	to	combine	data	from	more	than	
one	relation

• We	can	address	several	relations	in	one	query	by	
listing	them	all	in	the	FROM clause

• If	two	attributes	from	different	relations	have	the	
same	name,	we	can	distinguish	them	by	writing	
<relation>.<attribute>

15CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

What	is	the	name	of	countries	that	speak	Greek?

SELECT Name
FROM Country, CountryLanguage
WHERE Code = CountryCode

AND Language = 'Greek';

16CS	564	[Fall	2016]	- Paris	Koutris

This	is	BAD style!!

EXAMPLE:	GOOD STYLE

SELECT Country.Name
FROM Country, CountryLanguage
WHERE Country.Code=CountryLanguage.CountryCode
AND CountryLanguage.Language = 'Greek';

SELECT C.Name
FROM Country C, CountryLanguage L
WHERE C.Code = L.CountryCode
AND L.Language = 'Greek';

17CS	564	[Fall	2016]	- Paris	Koutris

VARIABLES

Variables	are	necessary	when	we	want	to	use	two	
copies	of	the	same	relation	in	the	FROM clause

SELECT C.Name
FROM Country C, CountryLanguage L1,
CountryLanguage L2
WHERE C.Code = L1.CountryCode

AND C.Code = L2.CountryCode
AND L1.Language = 'Greek’
AND L2.Language = 'English';

18CS	564	[Fall	2016]	- Paris	Koutris

SEMANTICS:	SELECT-FROM-WHERE

1. Start	with	the	cross	product	of	all	the	relations	in	
the	FROM clause

2. Apply	the	conditions	from	the	WHERE clause
3. Project	onto	the	list	of	attributes	and	expressions	

in	the	SELECT clause
4. If	DISTINCT is	specified,	eliminate	duplicate	

rows

19CS	564	[Fall	2016]	- Paris	Koutris

SEMANTICS OF SQL:	NESTED LOOP

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

answer	:=	{}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then answer	:=	answer	∪ {(a1,…,ak)}

return answer

20CS	564	[Fall	2016]	- Paris	Koutris

SEMANTICS OF SQL

• The	query	processor	will	almost	never	evaluate	
the	query	this	way	

• SQL	is	a	declarative language
• The	DBMS	figures	out	the	most	efficient	way	to	
compute	it	(we	will	discuss	this	later	in	the	
course	when	we	talk	about	query	optimization)

21CS	564	[Fall	2016]	- Paris	Koutris

SEMANTICS OF SQL:	RA

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

corresponds	to	the	following	RA	query:

𝜋#$,#&,…,#((𝜎+,-./0/,-1(𝑅3×	𝑅6×⋯×	𝑅-))

22CS	564	[Fall	2016]	- Paris	Koutris

MORE SQL

• Union,	intersection,	and	difference	of	
relations	can	be	expressed:
– (subquery)	UNION (subquery)
– (subquery)	INTERSECT (subquery)
– (subquery)	EXCEPT (subquery)

• Duplicates	with	union,	except,	intersect
– SQL	default:	eliminate	the	duplicates
– use	ALL to	keep	duplicates	(e.g.		UNION ALL)

23CS	564	[Fall	2016]	- Paris	Koutris

DUPLICATES

• When	doing	projection:
– easier	to	avoid	eliminating	duplicates
– tuple-at-a-timeprocessing

• When	doing	intersection,	union	or	difference:
– more	efficient	to	sort the	relations	first
– at	that	point	you	may	as	well	eliminate	the	duplicates	
anyway

24CS	564	[Fall	2016]	- Paris	Koutris

NESTED QUERIES

25CS	564	[Fall	2016]	- Paris	Koutris

NESTED QUERIES

A	parenthesized	SELECT-FROM-WHERE	statement	
(subquery)	can	be	used	as	a	value	in	a	number	of	
places:
• in	FROM clauses
• in	WHERE clauses

26CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.code =

(SELECT C.CountryCode
FROM City C
WHERE C.name = 'Berlin');

Can	you	rewrite	this	query	without	a	subquery (unnesting)?

NESTED QUERIES

Find	all	countries	in	Europe	with	population	more	
than	50	million

27CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM (SELECT Name, Continent

FROM Country
WHERE Population >50000000) AS C

WHERE C.Continent = 'Europe' ;

Can	you	unnest this	query?

SET-COMPARISON OPERATOR:	IN

Find	all	countries	in	Europe	that	have	some city	with	
population	more	than	5	million

28CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND C.Code IN (SELECT CountryCode

FROM City
WHERE Population > 5000000);

SET-COMPARISON OPERATOR:	EXISTS

Find	all	countries	in	Europe	that	have	some city	with	
population	more	than	5	million

29CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND EXISTS (SELECT *

FROM City T
WHERE T.Population > 5000000
AND T.CountryCode = C.Code);

correlated	subquery

SET-COMPARISON OPERATOR:	ANY

Find	all	countries	in	Europe	that	have	some city	with	
population	more	than	5	million

30CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND 5000000 <= ANY (SELECT T.Population

FROM City T
WHERE T.CountryCode = C.Code);

SET-COMPARISON OPERATORS

Find	all	countries	in	Europe	that	have	all	cities	with	
population	less	than	1	million

31CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND NOT EXISTS (SELECT *

FROM City T
WHERE T.Population > 1000000
AND T.CountryCode = C.Code);

SET-COMPARISON OPERATORS:	ALL

Find	all	countries	in	Europe	that	have	all	cities	with	
population	less	than	1	million

32CS	564	[Fall	2016]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND 1000000 > ALL (SELECT T.Population

FROM City T
WHERE T.CountryCode = C.Code);

AGGREGATION

33CS	564	[Fall	2016]	- Paris	Koutris

AGGREGATION

• SUM,AVG,COUNT,MIN,MAX can	be	applied	to	a	
column	in	a	SELECT clause	to	produce	that	
aggregation	on	the	column

• COUNT(*) counts	the	number	of	tuples

SELECT AVG(Population)
FROM Country
WHERE Continent = ‘Europe’;

34CS	564	[Fall	2016]	- Paris	Koutris

AGGREGATION:	ELIMINATE DUPLICATES

Use	COUNT(DISTINCT <>) to	remove	duplicate	
tuples	before	counting!

SELECT COUNT (DISTINCT Language)
FROM CountryLanguage ;

35CS	564	[Fall	2016]	- Paris	Koutris

GROUP BY

• We	may	follow	a	SELECT-FROM-WHERE expression	
by	GROUP BY and	a	list	of	attributes

• The	relation	is	then	grouped	according	to	the	
values	of	those	attributes,	and	any	aggregation	is	
applied	only	within	each	group

SELECT GovernmentForm, COUNT(Code)
FROM Country
GROUP BY GovernmentForm ;

36CS	564	[Fall	2016]	- Paris	Koutris

RESTRICTIONS

If	any	aggregation	is	used,	then	each	element	
of	the	SELECT list	must	be	either:
– aggregated,	or
– an	attribute	on	the	GROUP BY list

37CS	564	[Fall	2016]	- Paris	Koutris

GROUP BY +	HAVING

• The HAVING <condition>	clause	follows	a	GROUP
BY clause	in	a	SQL	query

• The	HAVING condition:	
– applies	to	each	group,	and	groups	not	satisfying	the	
condition	are	removed

– can	refer	only	to	attributes	of	relations	in	the	FROM
clause,	as	long	as	the	attribute	makes	sense	within	a	
group

38CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

SELECT Language, COUNT(CountryCode) AS N
FROM CountryLanguage
WHERE Percentage >= 50
GROUP BY Language
HAVING N > 2
ORDER BY N DESC ;

39CS	564	[Fall	2016]	- Paris	Koutris

PUTTING IT ALL TOGETHER!

SELECT [DISTINCT] S
FROM R, S, T ,…
WHERE C1
GROUP BY attributes
HAVING C2
ORDER BY attribute ASC/DESC
LIMIT N ;

40CS	564	[Fall	2016]	- Paris	Koutris

CONCEPTUAL EVALUATION

1. Compute	the	FROM-WHERE part,	obtain	a	table	
with	all	attributes	in	R1,…,Rn

2. Group	by	the	attributes	in	the	GROUP BY
3. Compute	the	aggregates	and	keep	only	groups	

satisfying	condition	C2	in	the	HAVING clause
4. Compute	aggregates	in	S
5. Order	by	the	attributes	specified	in	ORDER BY
6. Limit	the	output	if	necessary

41CS	564	[Fall	2016]	- Paris	Koutris

NULL VALUES

42CS	564	[Fall	2016]	- Paris	Koutris

NULL VALUES

• tuples	in	SQL	relations	can	have	NULL as	a	value	
for	one	or	more	attributes

• The	meaning	depends	on	context:
– Missing	value:	e.g.	we	know	that	Greece	has	
some	population,	but	we	don’t	know	what	it	is

– Inapplicable:	e.g.	the	value	of	attribute	spouse
for	an	unmarried	person

43CS	564	[Fall	2016]	- Paris	Koutris

COMPLICATIONS

• The	logic	of	conditions	in	SQL	is	3-valued	logic:	
TRUE,	FALSE,	UNKNOWN

• When	any	value	is	compared	with	NULL,	the	truth	
value	is	UNKNOWN

• A query	produces	a	tuple	in	the	answer	only	if	its	
truth	value	for	the	WHERE clause	is	TRUE

44CS	564	[Fall	2016]	- Paris	Koutris

COMPLICATIONS

• What	happens	for	the	condition	IndepYear>1990 if	
it	is	NULL?
– answer	is	UNKNOWN

• What	about	the	following?

SELECT COUNT(*)
FROM Country
WHERE IndepYear > 1990 OR IndepYear <= 1990 ;

45CS	564	[Fall	2016]	- Paris	Koutris

TESTING FOR NULL

We	can	test	for	NULL explicitly:

– x IS NULL
– x IS NOT NULL

46CS	564	[Fall	2016]	- Paris	Koutris

LEFT OUTER JOINS

Include	the	tuple	from	the	left	relation	even	if	there’s	
no	match	on	the	right!

SELECT C.Name AS Country, MAX(T.Population)
FROM Country C LEFT OUTER JOIN City T

ON C.Code = T.CountryCode
GROUP BY C.Name

47CS	564	[Fall	2016]	- Paris	Koutris

OTHER OUTER JOINS

• Left	outer	join:
– include	the	left	tuple	even	if	there	is	no	match

• Right	outer	join:
– include	the	right	tuple	even	if	there	is	no	match

• Full	outer	join:
– include	the	both	left	and	right	tuples	even	if	
there	is	no	match

48CS	564	[Fall	2016]	- Paris	Koutris

RECAP

• SQL	basics
– SELECT … FROM … WHERE …
– Union,	Intersect,	Except

• Nested	Queries	in	SQL
– IN, EXISTS, ANY, ALL

• Aggregation	in	SQL
– GROUP BY, HAVING

• Nulls	&	Outer	Joins

49CS	564	[Fall	2016]	- Paris	Koutris

