
SQL:	MODIFICATIONS,	CONSTRAINTS
&	TRIGGERS

CS	564- Fall	2016

ACKs:	Dan	Suciu,	Jignesh Patel,	AnHai Doan

DATABASE MODIFICATIONS

2CS	564	[Fall	2016]	- Paris	Koutris

MODIFYING THE DB

• A	modification	command	does	not	return	a	result,	
but	it	changes the	database

• There	are	3	kinds	of	modifications:
1. insert tuple(s)
2. delete tuple(s)
3. update the	value(s)	of	existing	tuple(s)

3CS	564	[Fall	2016]	- Paris	Koutris

INSERT

• To	insert	a	single	tuple:
INSERT INTO <relation>
VALUES (<list	of	values>);

• We	may	add	to	the	relation	name	a	list	of	
attributes	(if	we	forget	the	order)

• We	may	insert	the	entire	output	of	a	SQL	query	
into	a	relation:

INSERT INTO <relation>
(<subquery>);

4CS	564	[Fall	2016]	- Paris	Koutris

DELETE

• To	delete	tuples:
DELETE FROM <relation>
WHERE <condition>	;

• How	do	we	delete	everything?
DELETE FROM <relation>	;

• Be	careful: all tuples	that	satisfy	the	WHERE clause	
are	deleted	from	the	relation!

5CS	564	[Fall	2016]	- Paris	Koutris

UPDATE

• To	change	certain	attributes	in	certain	tuples	of	a	
relation:

UPDATE <relation>
SET <list	of	attribute	assignments>
WHERE <condition>	;

• Example
UPDATE CountryLanguage
SET IsOfficial = 'T’
WHERE CountryCode = 'USA'
AND Language = 'Spanish';

6CS	564	[Fall	2016]	- Paris	Koutris

VIEWS

7CS	564	[Fall	2016]	- Paris	Koutris

VIEW DEFINITION

• A	view is	a	virtual	table,	a	relation	that	is	defined	
in	terms	of	the	contents	of	other	tables	and	views

• To	create	a	view:

CREATE VIEW <name>	AS <query>	;

• In	contrast,	a	relation	whose	value	is	really	stored	
in	the	database	is	called	a	base	table

8CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

9CS	564	[Fall	2016]	- Paris	Koutris

CREATE VIEW OfficialCountryLanguage AS
SELECT C.Name AS CountryName,

L.Language AS Language
FROM CountryLanguage L, Country C
WHERE L.CountryCode = C.Code

AND L.IsOfficial = 'T' ;

HOW TO USE VIEWS

• You	may	query	a	view	as	if	it	were	a	base	table
• BUT there	is	a	limited	ability	to	modify	views!
• The	DBMS	interprets	the	query	as	if	the	view	were	
a	base	table

• The	queries	defining	any	views	used	by	the	query	
are	replaced	by	their	algebraic	equivalents,	and	
added	to	the	expression	tree	for	the	query

10CS	564	[Fall	2016]	- Paris	Koutris

CONSTRAINTS &	TRIGGERS

11CS	564	[Fall	2016]	- Paris	Koutris

CONSTRAINTS &	TRIGGERS

• An	integrity	constraint is	a	relationship	among	
data	elements	that	the	DBMS	is	required	to	
enforce
– Example:	keys,	foreign	keys

• A	trigger is	a	procedure that	is	executed	when	a	
specified	condition	occurs	(e.g.	tuple	insertion)

12CS	564	[Fall	2016]	- Paris	Koutris

INTEGRITY CONSTRAINTS (IC)

• keys	(primary	or	unique)
• foreign-key	
• domain	constraints
– e.g.	NOT	NULL	

• tuple-based	constraints
• assertions:	any	SQL	boolean expression

13CS	564	[Fall	2016]	- Paris	Koutris

KEYS

• To	define	a	primary	key:			
CREATE TABLE Author(

authorid INTEGER PRIMARY KEY,
name TEXT) ;

• We	can	also	define	a	unique	key:	a	subset	of	attributes	that	
uniquely	defines	a	row	(i.e.	superkey):

CREATE TABLE Author(
authorid INTEGER UNIQUE,
name TEXT) ;

• There	can	be	only	one	primary	key,	but	many	unique	keys!

14CS	564	[Fall	2016]	- Paris	Koutris

FOREIGN KEY

• Use	the	keyword	REFERENCES,	as:

FOREIGN KEY (<list	of	attributes>)
REFERENCES <relation>	(<attributes>)

• Referenced	attributes	must	be	declared	PRIMARY
KEY or	UNIQUE

15CS	564	[Fall	2016]	- Paris	Koutris

FOREIGN KEY

CREATE TABLE Author(
authorid INTEGER PRIMARY KEY,
name TEXT) ;

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES
Author(authorid));

16CS	564	[Fall	2016]	- Paris	Koutris

ENFORCING FOREIGN KEY CONSTRAINTS

If	there	is	a	foreign-keyconstraint from	attributes	of	
relation	R to	the	primary	key	of	relation	S,	two	
violations	are	possible:
1. An	insert	or	update	to	R introduces	values	not	

found	in	S
2. A	deletion	or	update	to	S causes	some	tuples	of	R

to	dangle

There	are	3	ways	to	enforce	foreign	key	constraints!

17CS	564	[Fall	2016]	- Paris	Koutris

ACTION 1:	REJECT

• The	insertion/deletion/update	query	is	rejected
and	not	executed	in	the	DBMS

• This	is	the	default	action	if	a	foreign	key	constraint	
is	declared

18CS	564	[Fall	2016]	- Paris	Koutris

ACTION 2:	CASCADE UPDATE

• When	a	tuple	referenced	is	updated,	the	update	
propagates to	the	tuples	that	reference	it

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES
Author(authorid)
ON UPDATE CASCADE);

19CS	564	[Fall	2016]	- Paris	Koutris

ACTION 2:	CASCADE DELETE

• When	a	tuple	referenced	is	deleted,	the	deletion	
propagates to	the	tuples	that	reference	it

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES
Author(authorid)
ON DELETE CASCADE);

20CS	564	[Fall	2016]	- Paris	Koutris

ACTION 3:	SET NULL

• When	a	delete/update	occurs,	the	values	that	
reference	the	deleted	tuple	are	set	to	NULL

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES
Author(authorid)
ON UPDATE SET NULL);

21CS	564	[Fall	2016]	- Paris	Koutris

WHAT SHOULD WE CHOOSE?

• When	we	declare	a	foreign	key,	we	may	choose	
policies	SET NULL or	CASCADE independently for	
deletions	and	updates

ON [UPDATE,	DELETE]	[SET	NULL,	CASCADE]

• Otherwise,	the	default	policy	(reject)	is	used

22CS	564	[Fall	2016]	- Paris	Koutris

DOMAIN CONSTRAINTS

• A	constraint	on	the	value	of	a	particular	attribute:
CHECK (<condition>)	

23CS	564	[Fall	2016]	- Paris	Koutris

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY CHECK(bookid >= 0),
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES Author(authorid));

DOMAIN CONSTRAINTS

• A	check	is	checked only	when	a	value	for	that	
attribute	is	inserted or	updated

• We	can	also	add	more	complex	constraints:

24CS	564	[Fall	2016]	- Paris	Koutris

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
author INTEGER,
FOREIGN KEY (author) REFERENCES Author(authorid)
CHECK (bookid >= 0 OR title IS NOT NULL)

);

ASSERTIONS

• Defined	by:
CREATE ASSERTION <name>
CHECK (<condition>);

• The	condition	may	refer	to	any	relation	or	
attribute	in	the	database	schema

25CS	564	[Fall	2016]	- Paris	Koutris

CREATE ASSERTION LowPrice CHECK (
NOT EXISTS (

SELECT * FROM Book
WHERE price <= 20 AND authorid = 111)

) ;

ASSERTIONS

• In	principle,	we	must	check	every	assertion	after	
every	modification	to	any	relation	of	the	database

• A	clever	system	can	observe	that	only	certain	
changes	could	cause	a	given	assertion	to	be	
violated	and	check	only	these

26CS	564	[Fall	2016]	- Paris	Koutris

TRIGGERS:	MOTIVATION

• Checks	have	limited	capabilities
• Assertions	are	sufficiently	general	for	most	
constraint	applications,	but	they	are	hard	to	
implement	efficiently

• A	trigger allows	the	user	to	specify	when	the	check	
occurs

27CS	564	[Fall	2016]	- Paris	Koutris

TRIGGERS

Procedure	that	starts	automatically if	specified	
changes	occur	to	the	DBMS
• Three	parts:

– Event (activates	the	trigger)
– Condition (tests	whether	the	triggers	should	run)
– Action (what	happens	if	the	trigger	runs)

28CS	564	[Fall	2016]	- Paris	Koutris

TRIGGER SYNTAX

CREATE TRIGGER <Trigger name>
{BEFORE | AFTER} {INSERT | DELETE | UPDATE}

[OF <columns>] ON <Table name>

[REFERENCING {OLD | NEW} {ROW | TABLE}
<reference name>]

[FOR EACH {ROW | STATEMENT}]
[WHEN (search condition)]

SQL statement |
BEGIN ATOMIC {SQL statements} END

29CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

CREATE TRIGGER addAuthor
AFTER INSERT ON Book
FOR EACH ROW
WHEN (NEW.author NOT IN
(SELECT authorid FROM Author))

BEGIN
INSERT INTO Author

VALUES (NEW.author, 'NewAuthor') ;
END ;

30CS	564	[Fall	2016]	- Paris	Koutris

TRIGGER:	CONDITION

{BEFORE | AFTER}
• defines	when	the	trigger	action	is	executed	relative	
to	the	trigger	event

{INSERT | DELETE | UPDATE} ON
• defines	the	SQL	modification	that	will	activate	the	
trigger

• in	the	case	of	update,	we	can	specify	the	columns	
that	when	changed	will	activate	the	update

31CS	564	[Fall	2016]	- Paris	Koutris

TRIGGER:	REFERENCING

• INSERT statements	imply	a	new	tuple	or	new	set	
of	tuples	

• DELETE implies	an	old	tuple	or	table
• UPDATE implies	both
• We	can	refer	to	these	by	using	the	REFERENCING
clause	to	create	aliases:
REFERENCING {NEW|OLD}{TUPLE|TABLE} <name>

32CS	564	[Fall	2016]	- Paris	Koutris

TRIGGER:	FOR EACH

Triggers	are	either	row-level	or	statement-level

• FOR EACH ROW indicates	row-level
• Row	level	triggers	are	executed	once	for	each	
modified	tuple

• FOR EACH TABLE (or	absence	of	FOR EACH)	
indicates	statement-level

• Statement-level	triggers	execute	once	for	an	SQL	
statement,	regardless	of	how	many	tuples	are	
modified

33CS	564	[Fall	2016]	- Paris	Koutris

TRIGGER:	ACTION

• There	can	be	more	than	one	SQL	statement	in	the	
action	clause
– Surround	by	BEGIN ATOMIC . . . END

• SQL	queries	make	no	sense	as	an	action,	so	we	are	
essentially	limited	to	modifications!

34CS	564	[Fall	2016]	- Paris	Koutris

TRIGGERS VS CONSTRAINTS

• Both	maintain	data	consistency	
• Constraints	are	declarative,	triggers	are	
operational

• Triggers	are	more	expressive,	constraints	are	
easier	to	understand

• Trigger	use	cases:
– complex	app	actions	(e.g.,	enforce	credit	limits)
– auto-complete	forms
– generate	logs

35CS	564	[Fall	2016]	- Paris	Koutris

RECAP

• SQL	modifications
– INSERT, DELETE, UPDATE

• Views	
• Integrity	Constraints	
– primary/unique	key
– foreign	key
– domain	constraints
– assertions

• Triggers

36CS	564	[Fall	2016]	- Paris	Koutris

