STORING DATA: DISK AND FILES

CS 564-Fall 2016

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

MANAGING DISK SPACE

* The disk space is organized into files

* Files are made up of pages

* Pages contain records

FILE ORGANIZATION

UNORDERED (HEAP) FILES

* Contains the recordsin no particular order

* As file grows/shrinks, disk pages are
allocated /deallocated

* Tosupportrecordlevel operations, we must keep
track of:
— the pagesin a file: page id (pid)
— free space on pages
— the records on a page: record id (rid)

HEAP FILE AS LINKED LIST

(heap file name, header page id) stored somewhere
* Each page has 2 pointers + data

* Pagesin the free space list have “some” free space

Data ’—’ Data -—* Data ’—'

e Full
/ Page — Page — Page — HH PASES

: Header

\ Data > Data : > Data ' P :
. : — ages with free space
: Page a—- : Page — Page : —

HEAP FILE AS PAGE DIRECTORY

« Each entry for a page keeps track of:

— is the page free or full?
— how many free bytes are?

* We can now locate pages for new tuples faster!

Header page

PN

PAGE ORGANIZATION

FILES OF RECORDS

* Page or block is OK for I/0, but higher levels
operate on records, and files of records

* File operations:

— insert/delete/modify record
— read arecord (specified using the record id)

— scan all records (possibly with some conditions
on the records to be retrieved)

PAGE FORMATS

A page is collection of records

Slotted page format

— A page is a collectionof slots
— Each slot contains a record

rid = <page id, slot number>
There are many slotted page organizations
We need to have supportfor:

— search, insert, delete records on a page

FIXED LENGTH RECORDS (1)

* packed organization: N records are always stored
in the first N slots
* problem when there arereferencesto records!

Slot1

Slot 2
Slot 3

free space

N,

I

number of records

FIXED LENGTH RECORDS (2)

* unpacked organization: use a bitmap to locate

recordsin the page

free space

Slot1

Slot 2

Slot 3

/

.10

1

0

1 ||M

/ 3 2 1
bitmap

number of slots

VARIABLE LENGTH RECORDS

P

offset

length in bytes

N

/

pointer to start
of free space

free space

N

3 2 1

number of slots

VARIABLE LENGTH RECORDS

e Deletion:
— offset is set to -1

* Insertion:
— use any available slot
— if no space is available, reorganize

* rid remains unchanged when we move the record
(since it is defined by the slot number)

RECORD FORMAT

 How do we organize the field within a record?
— fixed length
— variable length

* Information common to all records of a given type

is keptin the system catalog:
— number of fields
— field type

RECORD FORMAT: FIXED LENGTH

* All records have the same length and same
number of fields

* The address of any field can be computed from
info in the system catalog!

F1 FZ F3 F4_ F5 F6

L, =length of field F,

RECORD FORMAT: VARIABLE LENGTH (1)

 store fields consecutively
e use delimitersto denote the end of a field
* need a scan of the whole record to locate a field

RECORD FORMAT: VARIABLE LENGTH (2)

 store fields consecutively
* use an array of integer offsets in the beginning

A
N Fy JFZ F | Fs

BONUS: COLUMN STORES

e Considera table:
— Foo (a INTEGER, b INTEGER, c VARCHAR(255))

* and the query:
— SELECT a FROM Foo WHERE a > 160

 What could be the problem when we read using
the previousrecord formats?

BONUS: COLUMN STORES

* We can instead store data vertically !

* Each column of arelationis stored in a different
file (and can be compressed as well)

1234 |45 | Here goesa verylongsentence 1
4657 |2 Here goes a very long sentence 2
3578 |45 | Here goesa very long sentence 3

column-store

1234 | |45
4657 | |2
3578 | |45

row-store

Here goes a very long sentence 1

Here goes a very long sentence 2

Here goes a very long sentence 3

