INDEXING

CS 564-Fall 2016

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan



FILE ORGANIZATION

* So far we have seen heap files
— store unordered data
— fast for scanning all recordsin a file
— fast for retrieving by record id (rid)

* But we need alternative organizations of a file!



MOTIVATION

* Consider the following SQL query:
SELECT *
FROM Sales
WHERE Sales.date = “02-11-2016"

* For a heap file, we have to scan all the pages of the
file to return the correct result



ALTERNATIVE FILE ORGANIZATIONS

* We can speed up the query execution by better
organizing the datain afile

* There are many alternatives:
— sorted files
— indexes
* B+ tree
* hash index



INDEX BASICS

CS 564 [Fall 2016] - Paris Koutris



INDEXES

* Index: data structure that organizesrecords to
optimize retrieval

— speeds up searches for a subset of records,
based on values in certain (search key) fields

— any subset of the fields of a relation can be the
search key

— a search key is not the same as the primary key

* An index contains a collection of data entries (each
entry with enough info to locate the records)



HASH INDEX

A hash indexis a collection of buckets
— bucket = primary page plus overflow pages
— buckets contain data entries

uses a hash function h
— h(r) = bucketin which (data entry for) record r belongs
good for equality search

not so good for range search (use tree indexes
instead)



B+ TREE INDEX

Non-leaf
Pages °<-

A A EA EA

<o o o > < o o > o o o > o o o

Leaf Pages (sorted by search key)

- Leaf pages contain data entries, and are chained (prev & next)
- Non-leaf pages have data entries



DATA ENTRIES

* The actual data may not be in the same file as the
index

* In a data entry with search key k we have 3
alternatives of what to store:

1. the record with key value k
2. <K, rid of record with search key value k>
3. <K, list of rids of records with search key k>

 The choice of alternative for data entries is
independent of the indexing technique



ALTERNATIVES FOR DATA ENTRIES

Alternative #1:
- index structure is a file organization for records

- atmost one index on a given collection of data
records should use #1 (why?)

- if data recordsare very large, the number of pages
containing data entries is high (slower search)



ALTERNATIVES FOR DATA ENTRIES

Alternatives #2 and #3:

- Data entries are typically much smaller than data
records. So, better than #1 with large data

records, especially if search keys are small

- #3 is more compact than #2, but leads to variable
sized data entries even if search keys are of fixed
length



MORE ON INDEXES

A file can have several indexes

* Index classification:
— primary vs secondary

— clustered vs unclustered



PRIMARY VS SECONDARY

If the search key contains the primary key, it is
called a primary index

Any other index s called a secondary index

[f the search key contains a candidate key, it is
called a unique index

* aunique index can return no duplicates



EXAMPLE

Sales (sid, product, date, price)

1. Anindexon (sid)isa primary and unique index

2. Anindexon (date)is a secondary, but not unique,
index



CLUSTERED INDEXES

o If the orderofrecordsis the same as, or close to/

)

the order of data entries, it is a clustered index

alternative #1 implies clustered
in practice, clustered also implies #1
a file can be clustered on at most one search key

the cost of retrieving data records through the index
varies greatly based on whether index is clustered or
not



INDEXES IN PRACTICE




CHOOSING INDEXES

« What indexes should we create?
— which relations should have indexes?
— what field(s) should be the search key?
— should we build several or one index?
 For each index, whatkind of an index should it be?
— clustered
— hash or tree



CHOOSING INDEXES

* Consider the best plan using the currentindexes,
and see if a better planis possible with an
additional index

* One must understand how a DBMS evaluates
queries and creates query evaluation plans

- Important trade-offs:
— queries go faster, updates are slower
— more disk space is required



CHOOSING INDEXES

» Attributes in WHERE clause are candidates for
index keys
— exact match condition suggests hash index
— indexes also speed up joins (later in class)
— range query suggests tree index (B+ tree)

* Multi-attribute search keys should be considered
when a WHERE clause contains several conditions

— order of attributes is important for range queries

— such indexes can enable index-only strategies for
queries



COMPOSITE INDEXES

Composite search keys: search on a combination of
fields (e.g. <date, price>)

* equality query: every field value is equal to a
constant value

— date="02-20-2015"and price =75

* range query: some field value is not a constant
— date="02-20-2015"
— date="02-20-2015" and price > 40



INDEXES IN SQL

CREATE INDEX index_name
ON table name (column_name);

Example of simple search key:

CREATE INDEX index1
ON Sales (price);



INDEXES IN SQL

CREATE UNIQUE INDEX index2
ON Sales (sid);

A unique index does not allow any duplicate
values to be inserted into the table

It can be used to check integrity constraints (a
duplicate value will not be allowed to be
inserted)



INDEXES IN SQL

CREATE INDEX index3
ON Sales (date, price);

* Indexes with composite search keys are larger and
more expensive to update

* They can be used if we have multiple selection
conditions in our queries



RECAP

e Indexes

— alternative file organization

* Index classifications:
— hash vs tree
— clustered vs unclustered
— primary vs secondary



