
THE B+	TREE INDEX

CS	564- Fall	2016

ACKs:	Jignesh Patel,	AnHai Doan

RECAP

• We	have	the	following	query:
SELECT *
FROM Sales
WHERE price > 100 ;

• How	do	we	organize	the	file	to	answer	this	query	
efficiently?

2CS	564	[Fall	2016]	- Paris	Koutris

INDEXES

Two	main	types	of	indexes
• Hash	index:	
– good	for	equality	search	
– in	expectation	𝑂(1) I/O	cost	for	search	and	insert

• B+	tree	index:	
– good	for	range	and	equality	search
– 𝑂(𝑙𝑜𝑔((𝑁)) I/O	cost	for	search,	insert	and	delete

3CS	564	[Fall	2016]	- Paris	Koutris

THE B+	TREE INDEX

• a	dynamic	tree-structured	index
– adjusted	to	be	always	height-balanced

• supports	efficient	equality and	range search
• widely	used	in	many	DBMSs
– SQLite	uses	it	as	the	default	index
– SQL	Server,	DB2,	…

4CS	564	[Fall	2016]	- Paris	Koutris

B+	TREE INDEX BASICS

non-leaf	nodes

leaf	nodes

CS	564	[Fall	2016]	- Paris	Koutris 5

root	node

data	entries	
• exist	only in	the	leaf	nodes	
• are	sorted	according	to	the	search	key

a	node	corresponds	
to	a	disk	page

B+	TREE BASICS

• d is	the	order of	the	tree

• Each	node	contains	𝑑	 ≤ 𝑚	 ≤ 2𝑑 entries
– minimum	50%	occupancy	at	all	times

• The	root	can	contain	1	≤ 𝑚	 ≤ 2𝑑 entries

6CS	564	[Fall	2016]	- Paris	Koutris

NON-LEAF NODE

7CS	564	[Fall	2016]	- Paris	Koutris

• An	non-leaf	node	with	m entries	has	m+1 pointers	to	
lower-level	nodes

k1 k2 … km

pointer	to	a	page	
with	values	<	k1 pointer	to	a	page	with	

k1≤	values	<	k2

pointer	to	a	page	
with	values	≥	km

LEAF NODE

• A	leaf	node	with	m entries	has	
– m pointers	to	the	data	records	(rids)
– pointers	to	the	next and	previous leaves

8CS	564	[Fall	2016]	- Paris	Koutris

r1 k1 r2 k2 … rm km
pointer	to	the	
previous	page

pointer	to	the	
next	page

record record record

B+	TREES IN PRACTICE

• typical	order	=	100		
• typical	fill	factor =		67%

– average	node	fanout =	133
• typical	B+	tree	capacities:

– height	4:	1334 =	312,900,700	records
– height	3:	1333 =					2,352,637	records

• It	can	often	store	the	top	levels	in	buffer	pool:
– level	1	=											1	page		 =					8	KB
– level	2	=						133	pages	 =					1	MB
– level	3	=	17,689	pages	=	133	MB

9CS	564	[Fall	2016]	- Paris	Koutris

B+	TREE OPERATIONS

A	B+	tree	supports	the	following	operations:
• equality	search
• range	search
• insert
• delete
• bulk	loading

10CS	564	[Fall	2016]	- Paris	Koutris

B+	TREE:	SEARCH

• start	from	root
• examine	index	entries	in	non-leaf	nodes	to	find	the	
correct	child

• traverse	down	the	tree	until	a	leaf	node	is	reached
• non-leaf	nodes	can	be	searched	using	a	binary	or	a	
linear	search

11CS	564	[Fall	2016]	- Paris	Koutris

B+	TREE:	INSERT

• find	correct	leaf	node	L
• insert	data	entry	in	L

– If	L has	enough	space,	DONE!
– Else,	we	must	split L (into	L and	a	new	node	L’)

• redistribute	entries	evenly,	copy	up	the middle	key
• insert	index	entry	pointing	to	L’ into	parent	of	L

• This	can	propagate	recursively to	other	nodes!
– to	split	a	non-leaf	node,	redistribute	entries	evenly,	but	
push	up	the	middle	key

12CS	564	[Fall	2016]	- Paris	Koutris

B+	TREE:	DELETE

• find	leaf	node	Lwhere	entry	belongs
• remove	the	entry

– If	L is	at	least	half-full,	DONE!	
– If	L has	only	d-1 entries,

• Try	to	re-distribute,	borrowing	from	sibling
• If	re-distribution	fails,	merge L and	sibling

• If	a	merge	occurred,	we	must	delete	an	entry	from	
the	parent	of	L

13CS	564	[Fall	2016]	- Paris	Koutris

B+	TREE COST

The	cost	of	an	insert/delete	operation	in	a	B+	tree	is	
𝑂 𝑙𝑜𝑔(𝑁 I/Os
• F =	node	fanout (number	of	children)
• N =	#	leaf	pages

14CS	564	[Fall	2016]	- Paris	Koutris

DUPLICATES

• duplicate	keys:	many	data	entries	with	the	same	
key	value

• Solution	1:	
– All	entries	with	a	given	key	value	reside	on	a	single	page
– Use	overflow	pages

• Solution	2:	
– Allow	duplicate	key	values	in	data	entries
– Modify	search	operation

15CS	564	[Fall	2016]	- Paris	Koutris

