THE B+ TREE INDEX

CS 564-Fall 2016

ACKs: Jignesh Patel, AnHai Doan

RECAP

* We have the following query:
SELECT *
FROM Sales
WHERE price > 100 ;

 How do we organize the file to answer this query
efficiently?

INDEXES

Two main types of indexes

* Hash index:
— good for equality search
— in expectation O(1) I/0 cost for search and insert

B+ treeindex:
— good for range and equality search
— O(logr(N)) 1/0 cost for search, insert and delete

THE B+ TREE INDEX

* adynamic tree-structured index
— adjusted to be always height-balanced

* supports efficient equality and range search
* widely used in many DBMSs

— SQLite uses it as the default index
— SQL Server,DB2, ...

B+ TREE INDEX BASICS

root node

a node corresponds
to a disk page

non-leaf nodes

leaf nodes — —

a
v
a
v

data entries
* existonlyin the leaf nodes
* aresorted according to the search key

B+ TREE BASICS

 disthe order of the tree

e Each node containsd <m < 2d entries
— minimum 50% occupancy at all times
* The rootcan contain 1 < m < 2d entries

NON-LEAF NODE

* Annon-leaf node with m entries has m+1 pointers to
lower-level nodes

\

pointer to a page pointer to a page
with values <k; pointer to a page with with values = k;,

ki< values <k,

LEAF NODE

e Aleafnode with m entries has

— m pointers to the data records (rids)

— pointers to the nextand previous leaves

Ky

Ky

K

pointer to the
previous page

record

record

record

pointer to the
next page

B+ TREES IN PRACTICE

typical order = 100
typical fill factor= 67%

— average node fanout = 133
typical B+ tree capacities:

— height4:133* = 312,900,700 records
— height3:1333= 2,352,637 records
[t can often store the top levelsin buffer pool:
— level 1 = 1page = 8KB
— level2= 133 pages = 1 MB
— level 3=17,689 pages = 133 MB

B+ TREE OPERATIONS

A B+ tree supports the following operations:
* equality search

* range search

* Insert

* delete

* bulk loading

B+ TREE: SEARCH

start from root

examine index entriesin non-leaf nodesto find the
correct child

traverse down the tree until a leafnode is reached

non-leaf nodes can be searched using a binary or a
linear search

B+ TREE: INSERT

 find correctleaf nodelL

* insertdata entryin L
— If L has enough space, DONE!
— Else, we must split L (into L and a new node L)
* redistribute entries evenly, copy up the middle key
* insertindex entry pointing to L' into parent of L

* This can propagate recursively to other nodes!

— to split a non-leaf node, redistribute entries evenly, but
push up the middle key

B+ TREE: DELETE

* find leafnode L where entry belongs

* remove the entry
— If L is at least half-full, DONE!

— If L has only d-1 entries,
* Try to re-distribute, borrowing from sibling

* If re-distribution fails, merge L and sibling

* If a merge occurred, we must delete an entry from
the parentof L

B+ TREE COST

The cost of an insert/delete operationin a B+ treeis
0(logF(N)) [/0s

* F=nodefanout (number of children)

» N =#leaf pages

DUPLICATES

* duplicate keys: many data entries with the same
key value
* Solution 1:
— All entries with a given key value reside on a single page
— Use overflow pages
* Solution 2:

— Allow duplicate key values in data entries

— Modify search operation

