
EXTERNAL SORTING

CS	564- Fall	2016

ACKs:	Dan	Suciu,	Jignesh Patel,	AnHai Doan

WHY SORTING?

• users	often	want	the	data	sorted	(ORDER BY)
• first	step	in	bulk-loading	a	B+	tree	
• used	in	duplicate	elimination
• the	sort-merge	join	algorithm	(later	in	class)	
involves	sorting	as	a	first	step

2CS	564	[Fall	2016]	- Paris	Koutris

SORTING IN DATABASES

• Why	don’t	the	standard	sorting	algorithms	work	
for	databases?
– merge	sort
– quick	sort
– heap	sort

• The	data	typically	does	not	fit	in	memory!

3CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE:	MERGE SORT

• Sorting	n tuples	needs	𝑛	𝑙𝑜𝑔(𝑛) comparisons
• If	we	do	a	record-based	sorting,	we	will	need	
	𝑛	𝑙𝑜𝑔(𝑛) I/Os

• Key	idea:	sort	based	on	pages	and	not	records!	

4CS	564	[Fall	2016]	- Paris	Koutris

THE SORTING PROBLEM

• M available	memory	pages
• a	relation	R	of	size	N pages	(where	N >	M)	
• SORTING:	output	a	relation	R’	that	is	sorted	on	a	
given	sort	key

• Desiderata:
– sort	large	relations	with	small amounts	of	memory
– minimize	the	number	of	disk	I/Os
– use	sequential	I/Os rather	than	random	I/Os
– Overlap	I/O	with	CPU	operations	&	minimize	CPU

5CS	564	[Fall	2016]	- Paris	Koutris

WARM UP:	2-WAY SORT

• run:	a	sorted	sub-file	generated	in	intermediate	
steps	of	the	sorting	algorithm

• Pass	0:	{requires	1	buffer	page}
– read	a	page,	sort	it,	write	it	

• Pass	1,	2,	3,	…	:	{requires	3	buffer	pages}
– read	2	runs,	merge	them	into	one	run

6CS	564	[Fall	2016]	- Paris	Koutris

2-WAY SORT:	ANALYSIS

• #	passes	=	 𝑙𝑜𝑔(𝑁 + 1

• I/Os per	pass	=	2𝑁

• Total	I/Os	=			2𝑁(𝑙𝑜𝑔(𝑁 + 1)

7CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

Sorting	a	relation	Rwith:
• 1,000,000	records
• each	record	has	32	bytes
• each	page	has	8KB
• the	sort	key	is	4	bytes

8CS	564	[Fall	2016]	- Paris	Koutris

CAN WE DO BETTER?

• The	2-way	merge	algorithm	only	uses	3	buffer	
pages

• How	can	we	utilize	the	fact	that	we	have	more	
available	memory?

• Key	idea:	use	as	much	memory	as	possible	in	
every	pass!
– reducing	the	number	of	passes	reduces	I/O

9CS	564	[Fall	2016]	- Paris	Koutris

GENERAL EXTERNAL SORT

• B buffer	pages	available
• Pass	0:	

– read	B	buffer	pages	at	a	time	and	sort
– produces	 𝑁/𝐵 runs

• Pass	1,	2,	3,	…:
– load	B-1 runs	and	merge	them	into	one	run

10CS	564	[Fall	2016]	- Paris	Koutris

GENERAL EXTERNAL SORT:	ANALYSIS

• #	passes	=	 𝑙𝑜𝑔/01 𝑁/𝐵 + 1

• I/Os per	pass	=	2𝑁

• Total	I/Os	=			2𝑁(𝑙𝑜𝑔/01 𝑁/𝐵 + 1)

11CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

• 1,000,000	records
• each	record	has	32	bytes
• each	page	has	8KB
• sort	key	is	4	bytes

• Memory	has	100	pages	available

12CS	564	[Fall	2016]	- Paris	Koutris

NUMBER OF PASSES

13CS	564	[Fall	2016]	- Paris	Koutris

N B=3 B=17 B=257
100 7 2 1
10,000 13 4 2
1,000,000 20 5 3
10,000,000 23 6 3
100,000,000 26 7 4
1,000,000,000 30 8 4

IMPROVEMENT:	REPLACEMENT SORT

• used	as	an	alternative	for	sorting	in	pass	0
• creates	runs of	average size	2𝐵
• Algorithm:
– read	B-2 pages	in	memory	(keep	as	sorted	heap)
– move	smallest	record	(that	is	greater	than	the	largest	
element	in	buffer)	to	output	buffer

– read	a	new	record	r and	insert into	the	sorted	heap

14CS	564	[Fall	2016]	- Paris	Koutris

IMPROVEMENT:	BLOCKED I/O

• reading	a	block of	pages	sequentially	is	faster!
• Make	each	buffer	slot	be	a	block of	pages

– reduces	per	page	I/O	cost.	Side-effect?
• Analysis

– Pass	0:	creates	 𝑁/2𝐵 runs	
– can	merge	𝐹 =	 𝐵/𝑏 − 1,	where	b is	block	size
– #	passes:	 𝑙𝑜𝑔6 𝑁/2𝐵 + 1
– however,	less	I/O	per	pass!

15CS	564	[Fall	2016]	- Paris	Koutris

IMPROVEMENT:	DOUBLE BUFFERING

• So	far	we	have	considered	only	I/O	costs
• But	CPU	may	have	to	wait	for	I/O!
• Idea:	keep	a	second	set	of	buffers	so	that	I/O	and	
CPU	overlap

16CS	564	[Fall	2016]	- Paris	Koutris

USING B+	TREES TO SORT

• Can	the	data	be	already	sorted?
– yes,	if	we	have	created	a	B+	tree	index	for	the	key!
– the	leaves	have	the	entries	in	sorted	order

• There	are	two	possibilities	here:
– clustered	B+	tree
– unclustered B+	tree

17CS	564	[Fall	2016]	- Paris	Koutris

SORTING WITH CLUSTERED B+	TREE

• Retrieve	the	leftmost	entry
• Sweep	through	the	leaf	pages	in	order
• For	each	leaf	page,	read	the	data	pages
• Cost:
– If	data	is	in	not	the	index:	

Height	+	#pages	in	index	+	#data	pages
– If	data	is	in	the	index:

Height	+	#pages	in	index

18CS	564	[Fall	2016]	- Paris	Koutris

SORTING WITH UNCLUSTERED B+	TREE

• In	the	worst-case,	I/Os can	be	as	many	as	the	
number	of	records!

• Even	in	average	case	slower	than	external	sorting

19CS	564	[Fall	2016]	- Paris	Koutris

