RELATIONAL OPERATORS

CS 564-Fall 2016

ACKs: Jeff Naughton, Jignesh Patel, AnHai Doan

ARCHITECTURE OF A DBMS

I [/0 access

-

LOGICAL VS PHYSICAL OPERATORS

* Logical operators
— what they do
— e.g., union, selection, project, join, grouping

* Physical operators
— how they do it

— e.g., nested loop join, sort-merge join, hash join,
index join

EXAMPLE QUERY

SELECT P.buyer

FROM Purchase P, Person Q
WHERE P.buyer=0Q.name

AND Q.city=‘Madison’

* Assume that Person has a B+ tree index on city

EXAMPLE: LOGICAL PLAN
|

PROJECT
SELECT P.buyer on buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name JOIN
AND Q.city=‘Madison’ buyer = name
SELECT city = ‘Madison’

Purchase Person

EXAMPLE: PHYSICAL PLAN
|

Hash-based
Project

SELECT P.buyer

FROM Purchase P, Person Q
WHERE P.buyer=Q.name

AND Q.city=‘Madison’

Nested Loop Join

RN

Table Scan Index Scan

Purchase Person

CS 564 [Fall 2016] - Paris Koutris

RELATIONAL OPERATORS

We will see implementations for the following
relational operators:

* select

* project

* join

* aggregation
* setoperators

SELECT

CS 564 [Fall 2016] - Paris Koutris

SELECT OPERATOR

access path = way to retrieve tuples from a table

* File Scan
— scan the entire file
— [/0 cost: O(N), where N = #pages
* Index Scan:
— use an index available on some predicate
— [/0 cost: it varies depending on the index

INDEX SCAN COST

[/0 cost for index scan
* Hash index: O(1)
— but we can only use it with equality predicates
* B+ treeindex: O(loggN) + X
— X depends on whether the index is clustered or not:
* unclustered: X = # selected tuples
* clustered: X = (#selected tuples)/ (#tuples per page)

B+ TREE SCAN EXAMPLE

Example

e Arelationwith 1M records

* 100 recordson a page

* 500 (key, rid) pairs on a page

1% Selectivity 10% Selectivity
clustered 3+100 3+1000
unclustered 3+10,000 3+100,000
unclustered + sorting | 3+(~10,000) 3+(~10,000)

CS 564 [Fall 2016] - Paris Koutris

11

GENERAL SELECTION CONDITION

* So far we studied selection on a single attribute

* How do we use indexes when we have multiple
selection conditions?
— R.a = 10 AND R.b > 10
— R.a 10 OR R.b < 20

INDEX MATCHING

* We say that an index matches a selection predicate
if the index can be used to evaluate it

* Consider a conjunction-only selection. An index
matches (partof) a predicate if

- Hash: only equality operation & the predicate includes
all index attributes

- B+ Tree: the attributes are a prefix of the search key
(any ops are possible)

EXAMPLE

* ArelationR(a,b,c,d)

* Does the index match the predicate?

Predicate B+ tree on (a,b,c) Hash index on (a,b,c)
a=5 AND b=3 yes no

a>5 AND b<4 yes no

b=3 no no

a=5 AND c>10 yes no

a=5 AND b=3 AND c=1 yes yes

a=5 AND b=3 AND c=1 ANDd >9 yes yes

\

a=5 and b=3 and c=1 are primary conjuncts here

CS 564 [Fall 2016] - Paris Koutris

14

INDEX MATCHING

* A predicate can match more than one index
 Example:
— hash index on (a) and B+ tree index on (b, c)
— predicate:a=7 AND b=5 AND c=4

— which index should we use?
1. use eitherindex

2. use both indexes, then intersect the rid sets, and
then fetch the tuples

CHOOSING THE RIGHT INDEX

» Selectivity of an access path = fraction of data
pages that need to be retrieved

 We want to choose the most selective path!

» Estimating the selectivity of an access path is a
hard problem

ESTIMATING SELECTIVITY

* Predicate:a=3 AND b=4 AND c=5

* hash indexon (a,b,c)
— selectivity is approximated by #pages / #keys
— #Kkeysis known from the index

* hash indexon (b)

— multiply the reduction factors for each primary conjunct
— reduction factor = #pages/#keys

— if #keysis unknown, use 1/10 as default value

— this assumes independence of the attributes!

ESTIMATING SELECTIVITY

* Predicate:a > 10 AND a < 60

* If we have arange condition, we assume that the
values are uniformly distributed

interval

* The selectivity will be approximated by HoR=low

PREDICATES WITH DISJUNCTION

* hash index on (a) + hash index on (b)
— a=7 or b>5

— afile scan is required

* hash index on (a) + B+ tree on (b)
— a=7 or b>5

— scan or use both indexes (fetch rids and take the union)

* hash index on (a) + B+ tree on (b)
— (a=7 or ¢c>5) and b > 5

— we can use the B+ tree

PROJECT

CS 564 [Fall 2016] - Paris Koutris

20

PROJECT OPERATOR

Simple case: SELECT R.a, R.d
— scan the file and for each tuple output R.a, R.d

Hard case: SELECT DISTINCT R.a, R.d

— project out the attributes

— eliminate duplicate tuples (this is the difficult part!)

PROJECT: SORT-BASED

Naive algorithm:
1. scan the relation and project out the attributes
2. sort the resulting set of tuples using all attributes

3. scan the sorted set by comparing only adjacent
tuples and discard duplicates

RUNNING EXAMPLE

R(a,b, ¢ d, e)

* M=1000pages

B =20 buffer pages

* Each field in the tuple has the same size

* Suppose we want to project on attribute a

SORT-BASED COST ANALYSIS

initial scan =10001/0s

after projection T =(1/5)*1000 =200 pages
cost of writing T = 200 1/0s

sortingin 2 passes= 2*2*200=8001/0s
final scan =2001/0s

total cost =22001/0s

PROJECT: SORT-BASED

We can improve upon the naive algorithm by
modifying the sorting algorithm:

1. In Pass 0 of sorting, project out the attributes

2. In subsequent passes, eliminate the duplicates
while merging the runs

SORT-BASED COST ANALYSIS

* we can sortin 2 passes
 first pass costs 1000+ 200=12001/0s

* the second pass costs 200 1/0s (not counting
writing the resultto disk)

total cost=1400 I/0s

PROJECT: HASH-BASED

2-phase algorithm:
* partitioning

— project out attributes and split the input into B-1
partitions using a hash function h

* duplicate elimination

— read each partition into memory and use an in-memory
hash table (with a different hash function) to remove
duplicates

PROJECT: HASH-BASED

When does the hash table fit in memory?
* size of apartition=T / (B — 1), where T is #pages
after projection

* sizeofhashtable=f-T /(B —1),whereisa
fudge factor (typically ~ 1.2)

 So,itmustbeB > f-T/(B—1),o0r
approximatelyB > /f - T

HASH-BASED COST ANALYSIS

T =400 so the hash table fits in memory!
* partitioningcost=1000+200=12001/0s
* duplicate elimination cost = 2001/0s

total cost=14001/0s

COMPARISON

* Benefits of sort-based approach
— better handling of skew
— the resultis sorted

 Thel/O costs are the same if B> T
— 2 passes are needed by both algorithms

PROJECT: INDEX-BASED

* Index-onlyscan
— Projection attributes subset of index attributes
— apply projection algorithm only to data entries
* Ifanordered index contains all projection
attributes as prefix of search key:

1. retrieveindex data entries in order
2. discard unwanted fields

3. compare adjacent entries to eliminate duplicates

JOIN

CS 564 [Fall 2016] - Paris Koutris

32

JOIN OPERATOR

Algorithms for equijoin:

SELECT *
FROM R, S
WHERE R.a = S.a

Why can’t we compute it as cartesian product?

JOIN ALGORITHMS

Algorithms for equijoin:

* nested loopjoin

* blocknested loopjoin

* index nested loopjoin

* blockindex nested loop join
* sortmerge join

* hash join

NESTED LooOP JoOIN (1)

* for each page PrinR
* for each page Pcin S

* join the tuples on Py with the tuples in Pg

The I/0O costis My + Mg - M,
Mg =number of pages in R

* Mg =number of pagesinS

NESTED LOOP JOIN (2)

e Which relation should be the outer relationin
the loop?

— The smaller of the two relations

* How many buffer pages do we need?

— only 3 pages suffice

BLOCK NESTED LOOP JOIN (1)

» for each block of B-2 pages from R
* for each page Pcin S
* join the tuples from the block with the tuples
in P

The I/0O costis M, + Mg - [g

BLOCK NESTED LOOP JOIN (2)

* Toincrease CPU efficiency, create an in-memory
hash table for each block
— what will be the key of the hash table?

 What happensif R fits in memory?

INDEX NESTED LOOP JOIN

S has an index on the join attribute
* for each page P,inR
* for eachtuplerinR

* probe the index of S to retrieve any matching
tuples
TheI/O costis M, + |R| - I"

« ["depends on the type of index and whether it is
clustered or not

BLOCK INDEX NESTED LOOP JOIN

* for each block of B-Z pagesinR
 sort the tuples in the block
* for each tuple rin the block

* probe the index of S to retrieve any matching
tuples

* Why do we need to sort here?

SORT MERGE JOIN (1)

The simple version:
* sort R and S on the join attribute

* readthe sorted relationsin the buffer and merge

The 1/0 costis sort(R) + sort(S) + M, + Mg

e careful when a join value appears many times!

SORT MERGE JOIN (2)

e Generatesorted runs of size Bfor Rand S

* Merge the sorted runs for Rand S

— while merging check for the join condition

The I/0 costis 3(M, + Ms)

» the algorithm worksonly if B > L, whereL is
the number of pages of the largestrelation!

HASH JoOIN (1)

Start with a hash function h on the join attribute
* partition R and S into k partitions using h

* join each partition of R with the corresponding

partition of S (using an in-memory hash table)

The I/0 costis 3(M, + Ms)

* but only if it fits in memory

HASH JOIN (2)

 k=B-1
* The hash table has fudge factor f

 [f we construct the hash tuble for the smaller
relation of size M:

M

— So approximatelyB > /fM

COMPARISON OF JOIN ALGORITHMS

Hash Join vs Block Nested Loop Join
* the same if smaller table fits into memory

* otherwise, hash join is much better

COMPARISON OF JOIN ALGORITHMS

Hash Join vs Sort Merge Join

* Suppose My > M

* Todo atwo-passjoin, SM] needs B > \/M_R
— the 10 costis: 3(My + My)

* Todo atwo-passjoin, Hf needs B > \/VS
— the 10 cost is: 3(My + My)

GENERAL JOIN CONDITIONS

* Equalities over multiple attributes
— e.g., Rsid=S.sidand R.rname=S.sname
— for Index NL
. index on <sid, sname>
- index on sid or sname

— for SMJ and HJ, we can sort/hash on combination of join
attributes

GENERAL JOIN CONDITIONS

* Inequality conditions
— e.g.,, R.-rname < S.sname
— For Index NL, need (clustered) B+ tree index
-~ SMJ and HJ not applicable
— Block NL likely to be the winner (why?)

SET OPERATIONS & AGGREGATION

SET OPERATIONS

Intersection is a special case of a join
Union and difference are similar
Sorting:

— sort both relations (on all attributes)

— merge sorted relations eliminating duplicates
Hashing:

— partitionR and S

— build in-memory hash table for partition R;
— probe with tuples in S;, add to table if not a duplicate

AGGREGATION: SORTING

* sorton group by attributes (if any)

* scan sorted tuples, computing running aggregate
— max/min: max/min

— average: sum, count

* when the group by attribute changes, output
aggregate result

* cost = sorting cost

AGGREGATION: HASHING

Hash on group by attributes (if any)

— Hash entry = group attributes + running

aggregate
Scan tuples, probe hash table, update hash entry
Scan hash table, and output each hash entry
cost = scan relation

What happensif we have many groups?

AGGREGATION: INDEX

* Without grouping
— Can use B+ tree on aggregate attribute(s)
* With grouping
— B+ tree on all attributes in SELECT, WHERE and GROUP
BY clauses
* Index-only scan

* If group-by attributes prefix of search key, the data
entries/tuples are retrieved in group-by order

RECAP

Implementation of relational operators:

* select, project, join, set operators, aggregation

Key ideas:

* sort-based methods

* hash-based methods

* indexescan help in certain cases

