
RELATIONAL OPERATORS

CS	564- Fall	2016

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan



ARCHITECTURE OF A DBMS

2CS	564	[Fall	2016]	- Paris	Koutris

query

Query	Execution

data	access

Storage	Manager

I/O	access



LOGICAL VS PHYSICAL OPERATORS

• Logical	operators
– what they	do
– e.g.,	union,	selection,	project,	join,	grouping

• Physical	operators
– how they	do	it
– e.g.,	nested	loop	join,	sort-merge	join,	hash	join,	
index	join

3CS	564	[Fall	2016]	- Paris	Koutris



EXAMPLE QUERY

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’ 

• Assume	that	Person	has	a	B+	tree	index	on	city

4CS	564	[Fall	2016]	- Paris	Koutris



EXAMPLE:	LOGICAL PLAN

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’ 

5CS	564	[Fall	2016]	- Paris	Koutris

SELECT
SELECT
city	=	‘Madison’

JOIN
buyer	=	name

PROJECT
on	buyer

Purchase Person



EXAMPLE:	PHYSICAL PLAN

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’ 

6CS	564	[Fall	2016]	- Paris	Koutris

Table	Scan Index	Scan

Nested	Loop	Join

Hash-based	
Project

Purchase Person



RELATIONAL OPERATORS

We	will	see	implementations	for	the	following	
relational	operators:
• select
• project
• join
• aggregation
• set	operators

7CS	564	[Fall	2016]	- Paris	Koutris



SELECT

8CS	564	[Fall	2016]	- Paris	Koutris



SELECT OPERATOR

access	path =	way	to	retrieve	tuples	from	a	table
• File	Scan
– scan	the	entire	file
– I/O	cost:	O(N),	where	N	=	#pages

• Index	Scan:	
– use	an	index	available	on	some	predicate
– I/O	cost:	it	varies	depending	on	the	index

9CS	564	[Fall	2016]	- Paris	Koutris



INDEX SCAN COST

I/O	cost	for	index	scan
• Hash	index:	O(1)	
– but	we	can	only	use	it	with	equality	predicates

• B+	tree	index:	O(logFN)	+	X
– X	depends	on	whether	the	index	is	clustered	or	not:

• unclustered:	X	=	#	selected	tuples
• clustered:	X	=	(#selected	tuples)/	(#tuples	per	page)

10CS	564	[Fall	2016]	- Paris	Koutris



B+	TREE SCAN EXAMPLE

Example
• A	relation	with	1M	records
• 100	records	on	a	page
• 500	(key,	rid)	pairs	on	a	page

11CS	564	[Fall	2016]	- Paris	Koutris

1%	Selectivity 10%	Selectivity

clustered 3+100 3+1000

unclustered 3+10,000 3+100,000

unclustered +	sorting 3+(~10,000) 3+(~10,000)



GENERAL SELECTION CONDITION

• So	far	we	studied	selection	on	a	single	attribute
• How	do	we	use	indexes	when	we	have	multiple	
selection	conditions?
– R.a = 10 AND R.b > 10
– R.a = 10 OR R.b < 20

12CS	564	[Fall	2016]	- Paris	Koutris



INDEX MATCHING

• We	say	that	an	index	matches a	selection	predicate	
if	the	index	can	be	used	to	evaluate	it

• Consider	a	conjunction-only	selection.	An	index	
matches	(part	of)	a	predicate	if
– Hash:	only	equality	operation	&	the	predicate	includes	
all index	attributes

– B+	Tree:	 the	attributes	are	a	prefix	of	the	search	key
(any	ops	are	possible)

13CS	564	[Fall	2016]	- Paris	Koutris



EXAMPLE

14CS	564	[Fall	2016]	- Paris	Koutris

• A	relation	R(a,b,c,d)
• Does	the	index	match	the	predicate?

Predicate B+	tree	on (a,b,c) Hash	index	on	(a,b,c)
a=5	AND b=3 yes no

a>5	AND b<4	 yes no

b=3 no no

a=5	AND c>10 yes no

a=5	AND b=3	AND c=1 yes yes

a=5	AND b=3	AND c=1 AND d	>6 yes yes

a=5	and	b=3	and	c=1	 are	primary	conjuncts	here



INDEX MATCHING

• A	predicate	can	match	more	than	one	index
• Example:
– hash	index	on	(a)	and	B+	tree	index	on	(b,	c)	
– predicate:	a=7 AND b=5 AND c=4
– which	index	should	we	use?

1. use	either	index
2. use	both	indexes,	then	intersect	the	rid	sets,	and	

then	fetch	the	tuples

15CS	564	[Fall	2016]	- Paris	Koutris



CHOOSING THE RIGHT INDEX

• Selectivity of	an	access	path	=	fraction of	data	
pages	that	need	to	be	retrieved

• We	want	to	choose	the	most	selective	path!
• Estimating	the	selectivity	of	an	access	path	is	a	
hard	problem

16CS	564	[Fall	2016]	- Paris	Koutris



ESTIMATING SELECTIVITY

• Predicate:	a=3 AND b=4 AND c=5
• hash	index	on	(a,b,c)
– selectivity	is	approximated	by	#pages	/	#keys
– #keys	is	known	from	the	index

• hash	index	on	(b)
– multiply	the	reduction	factors	for	each	primary	conjunct
– reduction	factor	=	#pages/#keys
– if	#keys	is	unknown,	use	1/10	as	default	value
– this	assumes	independence	of	the	attributes!

17CS	564	[Fall	2016]	- Paris	Koutris



ESTIMATING SELECTIVITY

• Predicate:	a > 10 AND a < 60
• If	we	have	a	range	condition,	we	assume	that	the	
values	are	uniformly	distributed

• The	selectivity	will	be	approximated	by		 !"#$%&'(
)!*+,-./

18CS	564	[Fall	2016]	- Paris	Koutris



PREDICATES WITH DISJUNCTION

• hash	index	on	(a)	+ hash	index	on	(b)	
– a=7 or b>5
– a	file	scan	is	required

• hash	index	on	(a)	+ B+	tree	on	(b)	
– a=7 or b>5
– scan	or	use	both	indexes	(fetch	rids	and	take	the	union)

• hash	index	on	(a)	+ B+	tree	on	(b)	
– (a=7 or c>5) and b > 5
– we	can	use	the	B+	tree

19CS	564	[Fall	2016]	- Paris	Koutris



PROJECT

20CS	564	[Fall	2016]	- Paris	Koutris



PROJECT OPERATOR

Simple	case:	SELECT R.a, R.d
– scan	the	file	and	for	each	tuple	output	R.a,	R.d

Hard	case:	SELECT DISTINCT R.a, R.d
– project	out	the	attributes	
– eliminate	duplicate	tuples	(this	is	the	difficult	part!)

21CS	564	[Fall	2016]	- Paris	Koutris



PROJECT:	SORT-BASED

Naïve	algorithm:
1. scan	the	relation	and	project	out	the	attributes
2. sort	the	resulting	set	of	tuples	using	all	attributes
3. scan	the	sorted	set	by	comparing	only	adjacent	
tuples	and	discard	duplicates

22CS	564	[Fall	2016]	- Paris	Koutris



RUNNING EXAMPLE

R(a,	b,	c,	d,	e)
• M	=	1000	pages
• B	=	20	buffer	pages
• Each	field	in	the	tuple	has	the	same	size
• Suppose	we	want	to	project	on	attribute	a

23CS	564	[Fall	2016]	- Paris	Koutris



SORT-BASED COST ANALYSIS

• initial	scan	=	1000	I/Os
• after	projection	T	=(1/5)*1000	=	200	pages
• cost	of	writing	T	=	200	l/Os
• sorting	in	2	passes	=		2	* 2	*	200	=	800	l/Os
• final	scan	=	200	I/Os

total	cost	=	2200	I/Os

24CS	564	[Fall	2016]	- Paris	Koutris



PROJECT:	SORT-BASED

We	can	improve	upon	the	naïve	algorithm	by	
modifying	the	sorting	algorithm:
1. In	Pass	0 of	sorting,	project	out	the	attributes
2. In	subsequent	passes,	eliminate	the	duplicates	
while	merging	the	runs

25CS	564	[Fall	2016]	- Paris	Koutris



SORT-BASED COST ANALYSIS

• we	can	sort	in	2	passes	
• first	pass	costs	1000	+	200	=	1200	I/Os
• the	second	pass	costs	200	I/Os (not	counting	
writing	the	result	to	disk)	

total	cost	=	1400		I/Os

26CS	564	[Fall	2016]	- Paris	Koutris



PROJECT:	HASH-BASED

2-phase	algorithm:
• partitioning	
– project	out	attributes	and	split	the	input	into	B-1	
partitions	using	a	hash	function	h

• duplicate	elimination
– read	each	partition	into	memory	and	use	an	in-memory	
hash	table	(with	a	differenthash	function)	to	remove	
duplicates

27CS	564	[Fall	2016]	- Paris	Koutris



PROJECT:	HASH-BASED

When	does	the	hash	table	fit	in	memory?
• size	of	a	partition	=	𝑇	/	(𝐵 − 1),	where	T	is	#pages	
after	projection

• size	of	hash	table	=	𝑓 : 𝑇	/	(𝐵 − 1),	where	is	a	
fudge	factor	(typically	~	1.2)

• So,	it	must	be	𝐵	 > 	𝑓 : 𝑇	/	(𝐵 − 1),	or	
approximately	𝐵 > 	 𝑓 : 𝑇

28CS	564	[Fall	2016]	- Paris	Koutris



HASH-BASED COST ANALYSIS

• T	=	400	so	the	hash	table	fits	in	memory!
• partitioning	cost	=	1000	+	200	=	1200	I/Os
• duplicate	elimination	cost	=	200	I/Os

total	cost	=	1400	I/Os

29CS	564	[Fall	2016]	- Paris	Koutris



COMPARISON

• Benefits	of	sort-based	approach	
– better	handling	of	skew
– the	result	is	sorted

• The	I/O	costs	are	the	same	if	B2 >	T
– 2	passes	are	needed	by	both	algorithms

30CS	564	[Fall	2016]	- Paris	Koutris



PROJECT:	INDEX-BASED

• Index-only	scan
– Projection	attributes	subset	of	index	attributes
– apply	projection	algorithm	only	to	data	entries	

• If	an	ordered index contains	all	projection	
attributes	as	prefix of	search	key:
1. retrieve	index	data	entries	in	order
2. discard	unwanted	fields
3. compare	adjacent	entries	to	eliminate	duplicates

31CS	564	[Fall	2016]	- Paris	Koutris



JOIN

32CS	564	[Fall	2016]	- Paris	Koutris



JOIN OPERATOR

Algorithms	for	equijoin:

SELECT *
FROM R, S
WHERE R.a = S.a

Why	can’t	we	compute	it	as	cartesian product?

33CS	564	[Fall	2016]	- Paris	Koutris



JOIN ALGORITHMS

Algorithms	for	equijoin:
• nested	loop	join
• block	nested	loop	join
• index	nested	loop	join
• block	index	nested	loop	join
• sort	merge	join
• hash	join

34CS	564	[Fall	2016]	- Paris	Koutris



NESTED LOOP JOIN (1)

• for	each	page	PR in	R
• for	each	page	PS in	S
• join	the	tuples	on	PRwith	the	tuples	in PS

The	I/O	cost	is	𝑀𝑅 +𝑀? : 𝑀𝑅

• MR =	number	of	pages	in	R
• MS =	number	of	pages	in	S

35CS	564	[Fall	2016]	- Paris	Koutris



NESTED LOOP JOIN (2)

• Which	relation	should	be	the	outer relation	in	
the	loop?
– The	smaller	of	the	two	relations

• How	many	buffer	pages	do	we	need?	
– only	3	pages	suffice

36CS	564	[Fall	2016]	- Paris	Koutris



BLOCK NESTED LOOP JOIN (1)

• for	each	block	of	B-2	pages	from	R
• for	each	page	PS in	S
• join	the	tuples	from	the	block	with	the	tuples	
in PS

The	I/O	cost	is	𝑀𝑅 +𝑀? :
@A
B,C

37CS	564	[Fall	2016]	- Paris	Koutris



BLOCK NESTED LOOP JOIN (2)

• To	increase	CPU	efficiency,	create	an	in-memory	
hash	table	for	each	block
– what	will	be	the	key	of	the	hash	table?

• What	happens	if	R fits	in	memory?	

38CS	564	[Fall	2016]	- Paris	Koutris



INDEX NESTED LOOP JOIN

S has	an	index	on	the	join	attribute
• for	each	page	PR in	R
• for	each	tuple	r in	R
• probe	the	index	of	S	to	retrieve	any	matching	
tuples

The	I/O	cost	is	𝑀𝑅 + 𝑅 : 𝐼∗

• 𝐼∗ depends	on	the	type	of	index	and	whether	it	is	
clustered	or	not

39CS	564	[Fall	2016]	- Paris	Koutris



BLOCK INDEX NESTED LOOP JOIN

• for	each	block	of	B-2 pages	in	R
• sort	the	tuples	in	the	block
• for	each	tuple	r in	the	block		
• probe	the	index	of	S	to	retrieve	any	matching	
tuples

• Why	do	we	need	to	sort	here?

40CS	564	[Fall	2016]	- Paris	Koutris



SORT MERGE JOIN (1)

The	simple	version:
• sort R	and	S	on	the	join	attribute
• read	the	sorted	relations	in	the	buffer	and	merge

The	I/O	cost	is	𝑠𝑜𝑟𝑡 𝑅 + 𝑠𝑜𝑟𝑡 𝑆 + 	𝑀𝑅 +𝑀?
• careful	when	a	join	value	appears	many	times!

41CS	564	[Fall	2016]	- Paris	Koutris



SORT MERGE JOIN (2)

• Generate	sorted	runs	of	size	B for	R and	S
• Merge	the	sorted	runs	for	R and	S
– while	merging	check	for	the	join	condition

The	I/O	cost	is	3(𝑀𝑅 +𝑀?)
• the	algorithm	works	only	if	𝐵 > 	 𝐿,	where	L	is	
the	number	of	pages	of	the	largest	relation!

42CS	564	[Fall	2016]	- Paris	Koutris



HASH JOIN (1)

Start	with	a	hash function	h on	the	join	attribute
• partition	R and	S into	k partitions	using	h
• join	each	partition	of	Rwith	the	corresponding	
partition	of	S	(using	an	in-memory	hash	table)

The	I/O	cost	is	3(𝑀𝑅 +𝑀?)
• but	only	if	it	fits	in	memory

43CS	564	[Fall	2016]	- Paris	Koutris



HASH JOIN (2)

• k	=	B-1
• The	hash	table	has	fudge	factor	f
• If	we	construct	the	hash	tuble for	the	smaller	
relation	of	size	M:

– 𝐵 > M@
B,N + 2

– so	approximately	𝐵 > 	 𝑓𝑀

44CS	564	[Fall	2016]	- Paris	Koutris



COMPARISON OF JOIN ALGORITHMS

Hash	Join	vs Block	Nested	Loop	Join
• the	same	if	smaller	table	fits	into	memory
• otherwise,	hash	join	is	much	better

45CS	564	[Fall	2016]	- Paris	Koutris



COMPARISON OF JOIN ALGORITHMS

Hash	Join	vs Sort	Merge	Join
• Suppose	MR >	MS

• To	do	a	two-pass	join,	SMJ	needs	𝐵 > 	 𝑀P

– the	IO	cost	is:	3(𝑀𝑅 +𝑀?)
• To	do	a	two-pass	join,	HJ	needs	𝐵 > 	 𝑀?
– the	IO	cost	is:	3(𝑀𝑅 +𝑀?)

46CS	564	[Fall	2016]	- Paris	Koutris



GENERAL JOIN CONDITIONS

• Equalities	over	multiple	attributes	
– e.g.,	R.sid=S.sidand R.rname=S.sname
– for	Index	NL

• index	on	<sid,	sname>
• index	on	sid or	sname

– for	SMJ	and	HJ,	we	can	sort/hash	on	combination	of	join	
attributes

47CS	564	[Fall	2016]	- Paris	Koutris



GENERAL JOIN CONDITIONS

• Inequality	conditions	
– e.g.,	R.rname <	S.sname
– For	Index	NL,	need	(clustered)	B+	tree	index
– SMJ	and	HJ	not	applicable
– Block	NL	likely	to	be	the	winner	(why?)

48CS	564	[Fall	2016]	- Paris	Koutris



SET OPERATIONS &	AGGREGATION

49CS	564	[Fall	2016]	- Paris	Koutris



SET OPERATIONS

• Intersection is	a	special	case	of	a	join
• Union and	difference are	similar
• Sorting:

– sort	both	relations	(on	all	attributes)
– merge	sorted	relations	eliminating	duplicates

• Hashing:
– partition	R	and	S
– build	in-memory	hash	table	for	partition	Ri
– probe	with	tuples	in	Si,	add	to	table	if	not	a	duplicate

50CS	564	[Fall	2016]	- Paris	Koutris



AGGREGATION:	SORTING

• sort	on	group	by	attributes	(if	any)
• scan	sorted	tuples,	computing	running	aggregate
– max/min:	max/min
– average:	sum,	count

• when	the	group	by	attribute	changes,	output	
aggregate	result

• cost =		sorting	cost

51CS	564	[Fall	2016]	- Paris	Koutris



AGGREGATION:	HASHING

• Hash	on	group	by	attributes	(if	any)
– Hash	entry =	group	attributes	+	running	
aggregate

• Scan	tuples,	probe	hash	table,	update	hash	entry
• Scan	hash	table,	and	output	each	hash	entry
• cost =	scan	relation
• What	happens	if	we	have	many	groups?

52CS	564	[Fall	2016]	- Paris	Koutris



AGGREGATION:	INDEX

• Without	grouping
– Can	use	B+	tree	on	aggregate	attribute(s)

• With	grouping
– B+	tree	on	all	attributes	in	SELECT,	WHERE	and	GROUP	
BY	clauses
• Index-only	scan
• If	group-by	attributes	prefix	of	search	key,	the	data	
entries/tuples	are	retrieved	in	group-by	order

53CS	564	[Fall	2016]	- Paris	Koutris



RECAP

Implementation	of	relational	operators:
• select,	project,	join,	set	operators,	aggregation

Key	ideas:
• sort-based	methods
• hash-based	methods
• indexes	can	help	in	certain	cases

54CS	564	[Fall	2016]	- Paris	Koutris


