
QUERY OPTIMIZATION

CS	564- Fall	2016

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan

EXAMPLE QUERY

• EMP(ssn, ename, addr, sal, did)
– 10000	tuples,	1000	pages

• DEPT(did, dname, floor, mgr)
– 500	tuples,	50	pages

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’ ;

2CS	564	[Fall	2016]	- Paris	Koutris

EVALUATION PLAN (1)

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’;

3CS	564	[Fall	2016]	- Paris	Koutris

X

EMP DEPT

σEMP.did = DEPT.did

σdname =‘Toy’

πename

EVALUATION PLAN (2)

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’;

4CS	564	[Fall	2016]	- Paris	Koutris

Nested Loop Join

EMP DEPT

σdname =‘Toy’

πename

EVALUATION PLAN (3)

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’;

5CS	564	[Fall	2016]	- Paris	Koutris

Sort Merge Join

EMP DEPT

σdname =‘Toy’

πename

buffer	size	B=	50

EVALUATION PLAN (4)

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’;

6CS	564	[Fall	2016]	- Paris	Koutris

Sort Merge Join

DEPT EMP

σdname =‘Toy’

πename

buffer	size	B=	50

index	on	dname

PIPELINED EVALUATION

• Instead	of	materializing the	temporary	relation	to	
disk,	we	can	instead	pipeline to	the	next	operator	
in	memory

• By	using	pipelining	we	benefit	from:
– no	reading/writing	to	disk	of	the	temporary	relation
– overlapping	execution	of	operators

• Pipelining	is	not	always	possible!

7CS	564	[Fall	2016]	- Paris	Koutris

QUERY OPTIMIZATION

The	query	optimizer

1. identifies	candidate	equivalent	trees
2. for	each	tree	it	finds	the	best	annotated	version	

(using	any	available	indexes):	this	is	called	a	plan
3. chooses	the	best	overall	plan	by	estimating	the	

cost	of	each	plan

8CS	564	[Fall	2016]	- Paris	Koutris

ARCHITECTURE OF AN OPTIMIZER

9CS	564	[Fall	2016]	- Paris	Koutris

query

Query	Parser

parsed	query

Query	Optimizer
• Plan	generator
• Plan	cost	estimator

evaluation	plan

System	Catalog

QUERY OPTIMIZATION

• query	plan:	annotated	Relational	Algebra	tree
– iterator	interface:	open()	/getNext()	/close()
– can	be	pipelined or	materialized

• The	optimizer	must	solve	two	main	issues:
– What	is	the	space	of	possible	query	plans?
– How	can	we	estimate	the	cost	of	each	plan?

• Ideally:	best	plan!
• Practically:	avoid	worst	plans	+	look	at	a	subset	of	all	plans

10CS	564	[Fall	2016]	- Paris	Koutris

COST ESTIMATION

Estimating	the	cost	of	a	query	plan	involves:
• estimating	the	cost of	each	operation	in	the	plan
– depends	on	input	cardinalities
– algorithm	cost	(we	know	this!)

• estimating	the	size of	intermediate	results
– we	need	statistics	about	input	relations
– for	selections	and	joins,	we	typically	assume	
independence	of	predicates

11CS	564	[Fall	2016]	- Paris	Koutris

COST ESTIMATION

• Statistics	are	stored	in	the	system	catalog:
– number	of	tuples	(cardinality)
– size	in	pages
– #	distinct	keys	(when	there	is	an	index	on	the	attribute)
– range	(for	numeric	values)

• The	system	catalog	is	updated	periodically	
• Commercial	systems	use	additional	statistics,	
which	provide	more	accurate	estimates:
– histograms
– wavelets

12CS	564	[Fall	2016]	- Paris	Koutris

EVALUATION PLANS

• The	space	of	possible	query	plans	is	typically	huge	
and	it	is	hard	to	navigate	through

• The	RA	formalism	provides	us	with	mathematical	
rules	that	transform	one	RA	expression	to	an	
equivalent	one:	for	example
– push	selections	down
– reorder	joins

• This	way	we	can	construct	many	equivalent	
alternative	query	plans

13CS	564	[Fall	2016]	- Paris	Koutris

RA	EQUIVALENCE (1)

• Commutativity of	σ
𝜎"#	(𝜎"&(𝑅)) 	≡ 𝜎"&(𝜎"#(𝑅))	

• Cascadingof	σ
𝜎"#∧"&∧⋯∧",(𝑅) 	≡ 𝜎"#(𝜎"&(…	𝜎",(𝑅)))

• Cascadingof	π
𝜋/#(𝑅) 	≡ 𝜋/#(𝜋/&(…𝜋/,(𝑅)…))when	𝑎1 ⊆ 𝑎134

• We	can	evaluate	selections	in	any	order!

14CS	564	[Fall	2016]	- Paris	Koutris

RA	EQUIVALENCE (2)

• Commutativity of	join
𝑅 ⋈ 𝑆	 ≡ 𝑆 ⋈ 𝑅

• Associativity	of	join
𝑅 ⋈ 𝑆 ⋈ 𝑇 ≡ 𝑅 ⋈ (𝑆 ⋈ 𝑇)

• We	can	reorder	the	computation	of	joins	in	any	way	
(exponentially	many	orders)!

15CS	564	[Fall	2016]	- Paris	Koutris

RA	EQUIVALENCE (3)

• Selections	+	Projections

𝜎8	(𝜋9(𝑅)) 	≡ 𝜋9(𝜎"(𝑅))	(if	the	selection	involves	
attributes	that	remain	after	projection)

• Selections	+	Joins
𝜎8 𝑅 ⋈ 𝑆 ≡ 𝜎8(𝑅) ⋈ 𝑆 (if	the	selection	involves	

attributes	only	in	R)

• We	can	push	selections	down	the	plan	tree!

16CS	564	[Fall	2016]	- Paris	Koutris

EVALUATION PLANS

Single	relation	plan	(no	joins):
• file	scan
• index	scan(s):	clustered	or	non-clustered
– more	than	one	index	may	“match”	predicates

• The	optimizer	chooses	one	with	the	least	estimated	cost
• We	can	also	merge or	pipeline selection	and	projection	
(and	aggregate	when	there	is	no	group	by)

17CS	564	[Fall	2016]	- Paris	Koutris

EVALUATION PLANS

Multiple	relation	plan
• joins	can	be	evaluated	in	any	order
• selections	can	be	combined	into	the	join	operator
• selections	and	projections	can	be	pushed	down	the	
plan	tree	using	the	RA	equivalence	
transformations

18CS	564	[Fall	2016]	- Paris	Koutris

JOIN REORDERING

Consider	the	following	join:		𝑅 ⋈ 𝑆 ⋈ 𝑇 ⋈ 𝑈
• Most	DBMSs	consider	left-deep join	plans	
• These	allow	for	fully	pipelined	evaluation

19CS	564	[Fall	2016]	- Paris	Koutris

R S

⋈ T

⋈

⋈

U

