QUERY OPTIMIZATION

CS 564-Fall 2016

ACKs: Jeff Naughton, Jignesh Patel, AnHai Doan

EXAMPLE QUERY

e EMP(ssn, ename, addr, sal, did)
— 10000 tuples, 1000 pages

« DEPT(did, dname, floor, mgr)
— 500 tuples, 50 pages

SELECT DISTINCT ename

FROM Emp E, Dept D
WHERE E.did = D.did

AND D.dname = ‘Toy’ ;

EVALUATION PLAN (1)

SELECT DISTINCT ename

FROM
WHERE

AND

Emp E, Dept D
E.did = D.did

D.dname = ‘Toy’;

T[ename

Odname =‘Toy’

OEMP.did = DEPT.did

X

N

EMP DEPT

EVALUATION PLAN (2)

SELECT DISTINCT ename

FROM
WHERE

AND

Emp E, Dept D
E.did = D.did

D.dname = ‘Toy’;

T[ename

Odname =‘Toy’

Nested Loop Join

N

EMP DEPT

EVALUATION PLAN (3)

T[ename

SELECT DISTINCT ename |

FROM Emp E, Dept D o
WHERE E.did = D.did dname =‘Toy

AND D.dname = ‘Toy’; ‘

Sort Merge Join

buffer size B= 50 /\

EMP DEPT

EVALUATION PLAN (4)

SELECT DISTINCT ename

FROM Emp E, Dept D
WHERE E.did = D.did

AND D.dname = ‘Toy’;

index on dname

Odname =‘Toy’

T[ename

buffer size B= 50

Sort Merge Join

DEPT

EMP

PIPELINED EVALUATION

Instead of materializing the temporary relation to
disk, we can instead pipeline to the next operator
In memory

By using pipelining we benefit from:
— no reading/writing to disk of the temporary relation

— overlapping execution of operators

Pipeliningis not always possible!

QUERY OPTIMIZATION

The query optimizer

1. identifies candidate equivalent trees

2. for each tree it finds the best annotated version
(using any available indexes): this is called a plan

3. chooses the best overall plan by estimating the
cost of each plan

ARCHITECTURE OF AN OPTIMIZER

Quel‘y Optimizer s
:* Plan generator f——— System Catalog
:» Plan cost estlmator

\ evaluation plan

QUERY OPTIMIZATION

* query plan: annotated Relational Algebra tree
— iteratorinterface: open() /getNext() /close()

— can be pipelined or materialized

* The optimizer must solve two main issues:
— What is the space of possible query plans?
— How can we estimate the cost of each plan?

* Ideally: best plan!

* Practically: avoid worst plans + look at a subset of all plans

COST ESTIMATION

Estimating the cost of a query plan involves:

* estimating the cost of each operation in the plan
— dependson input cardinalities
— algorithm cost (we know this!)

- estimating the size of intermediate results
— we need statistics about input relations

— for selections and joins, we typically assume
independence of predicates

COST ESTIMATION

 Statistics are stored in the system catalog:
— number of tuples (cardinality)
— Size 1n pages
— # distinct keys (when there is an index on the attribute)
— range (for numeric values)

* The system catalog is updated periodically

 Commercial systems use additional statistics,
which provide more accurate estimates:

— histograms
— wavelets

EVALUATION PLANS

* The space of possible query plans is typically huge
and it is hard to navigate through

* The RA formalism provides us with mathematical
rules that transform one RA expression to an
equivalent one: for example

— push selections down
— reorder joins

* This way we can construct many equivalent
alternative query plans

RA EQUIVALENCE (1)

Commutativity of o

op, (0p,(R)) = 0p,(0p, (R))

Cascadingof o

O-Pl/\PZ/\---/\Pn(R) = Op, (UPZ(UPn(R)))
Cascadingof 1t

Ty, (R) = Ty, (naz(...nan(R) ..))whena; € a;,,

We can evaluate selections in any order!

RA EQUIVALENCE (2)

* Commutativity of join
RxS =SXR

* Associativity of join
(RxS)XMT=Rx(SxT)

* We can reorder the computation of joins in any way
(exponentially many orders)!

RA EQUIVALENCE (3)

* Selections + Projections

op (m,(R)) = m,(0p(R)) (if the selection involves
attributes that remain after projection)

* Selections + Joins

op(R ™ S) = op(R) ™ S (if the selection involves
attributes only in R)

* We can push selections down the plan tree!

EVALUATION PLANS

Single relation plan (no joins):
 filescan
* index scan(s): clustered or non-clustered
— more than one index may “match” predicates
* The optimizer chooses one with the least estimated cost

* We can also merge or pipeline selection and projection
(and aggregate when there is no group by)

EVALUATION PLANS

Multiple relation plan
- joins can be evaluated in any order
. selections can be combined into the join operator

- selections and projections can be pushed down the
plan tree using the RA equivalence
transformations

JOIN REORDERING

Consider the followingjoin: R) S X T x U
 Most DBMSs consider left-deep join plans
* These allow for fully pipelined evaluation

