
TRANSACTION MANAGEMENT

CS	564- Fall	2016

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan

EXAMPLE

Read(A);
Check (A > $50);
Pay($25);
A := A – 25;
Write(A);

2CS	564	[Fall	2016]	- Paris	Koutris

• Start	with	$100
• What	happens	if	the	DBMS	
crashes	right	after	we	pay?

• What	can	happen	if	we	
interleave	the	execution	of	
two	such	programs?

TRANSACTION MANAGEMENT

• Inconsistencies can	occur	when:
– interleaving	actions	of	different	user	programs
– system	crash,	user	abort

• Why	not	admit	only	one	query	into	the	system	at	
any	time?

• lower	utilization:	CPU/IO	overlap
• long	running	queries	starve	other	queries

• Provide	the	users	with	an	illusion	of	a	single-user	
system

3CS	564	[Fall	2016]	- Paris	Koutris

TRANSACTION

• A	collection	of	operations	that	form	a	single	atomic
logical	unit
BEGIN TRANSACTION

{SQL}
END TRANSACTION

• Operations:	
– READ(X), WRITE(X): X	is	a	tuple
– Special	actions:	COMMIT, ABORT

• Transactions	must	leave	the	database	in	a	
consistent	state

4CS	564	[Fall	2016]	- Paris	Koutris

THE ACID	PROPERTIES

Atomicity:	All	actions	in	the	transaction	happen,	or	
none	happen

5CS	564	[Fall	2016]	- Paris	Koutris

Begin
Read(A);
A := A – 25;
Write(A);
Read(B);
B := B + 25;
Write(B);
Commit

• Example:	if	the	system	
crashes	after	Write(A),	we	
undo the	actions	of	the	
transactions

THE ACID	PROPERTIES

Consistency:	a	database	in	a	consistent	state	will	
remain	in	a	consistent	state	after	the	transaction

6CS	564	[Fall	2016]	- Paris	Koutris

Begin
Read(A);
A := A – 25;
Write(A);
Read(B);
B := B + 25;
Write(B);
Commit

• Example:	A+B	must	remain	
the	same	after	the	transaction	
is	executed

THE ACID	PROPERTIES

Isolation:	the	execution	of	one	transaction	is	
isolated	from	other	(possibly	interleaved)	
transactions
• if	T1,	T2	are	interleaved,	the	result	should	be	the	same	as	
executing	first	T1	then	T2,	or	first	T2	then	T1	

7CS	564	[Fall	2016]	- Paris	Koutris

THE ACID	PROPERTIES

Durability:	if	a	transaction	commits,	its	effects	must	
persist
• for	example,	if	the	system	crashes	after	a	commit,	the	
effects	must	remain	

• what	happens	if	the	modified	data	is	not	written	on	disk?

8CS	564	[Fall	2016]	- Paris	Koutris

SCHEDULES

• Schedule:	An	interleaving	of	actions	from	a	set	of	
transactions,	where	the	actions	of	any	one	
transaction	are	in	the	original	order
– complete schedule:	each	transaction	ends	in	commit	or	
abort

– serial schedule:	no	interleaving	of	actions	from	different	
transactions

9CS	564	[Fall	2016]	- Paris	Koutris

WHAT IS A GOOD SCHEDULE?

Serializable schedule:
• final	state	is	what	some complete serial schedule	of	
committed	transactions	would	have	produced

• Can	different	serial	schedules	have	different	final	states?
– Yes,	there	is	no	specific	ordering

• Aborted	transactions?
– ignore	them	for	a	little	while	(can	be	made	to	
‘disappear’	using	logging)

10CS	564	[Fall	2016]	- Paris	Koutris

SERIALIZABILITY VIOLATIONS

When	execution	of	transactions	is	interleaved,	we	
can	have	3	different	violations:
• Write-Read	conflict	(dirty	read)
• Read-Write	conflict	(unrepeatable	read)
• Write-Write	conflict	(overwriting	uncommitted	
data)

11CS	564	[Fall	2016]	- Paris	Koutris

DIRTY READ

12CS	564	[Fall	2016]	- Paris	Koutris

@Start	(A,B)	=	(1000,	100)
• Interleaved	execution:

– (990,	210)
• T1 →	T2:	

– (900,	200)	→	(990,	220)
• T2 →	T1:	

– (1100,	110)	→	(1000,	210)

T1:	Transfer	
$100	from	A	to	B

T2:	Add	10%	
interest	to	A	&	B

begin
begin

R(A)	;	A	-=	100
W(A)

R(A) ;	A	*=	1.1
W(A)
R(B)	;	B	*=	1.1
W(B)
commit

R(B)	;	B	+=	100
W(B)
commit

UNREPEATABLE READ

• T1	reads	value	A:	RT1 (A)
• T2	interleaves	and	overwrites	the	value:	WT2 (A)
• T1	reads	again:	RT1 (A)	but	sees	a	different	value!

13CS	564	[Fall	2016]	- Paris	Koutris

OVERWRITING UNCOMMITTED DATA

• T2	overwrites	what	T1	wrote!
• Example:
– suppose	that	students	in	the	same	group	must	get	the	
same	project	grade

– T1:	W (X=A),	W (Y=A)			
– T2:	W (X=B),	W(Y=B)
– WT1(X=A)	→WT2(X=B)	→WT2(Y=B)	→WT1(Y=A)	

14CS	564	[Fall	2016]	- Paris	Koutris

ABORTED TRANSACTIONS

• A	serializable schedule	is	equivalent	to	a	serial	
schedule	of	committed transactions
– as	if	aborted	transactions	never	happened!

• Two	issues:
– How	does	one	undo	the	effects	of	a	transaction?

• by	logging/recovery
– What	if	another	transaction	sees	these	effects??

• Must	undo	that	transaction	as	well!

15CS	564	[Fall	2016]	- Paris	Koutris

CASCADING ABORTS

• cascading abort:	when	abort	of	T1	requires	an	
abort	of	T2

• What	happens	if	T2	has	already	committed?
• recoverable schedule:	Commit	only	after	all	
tranactions that	supply	dirty	data	have	committed

• ACA	(avoids	cascading	abort)	schedule:	
– transaction	only	reads	committed	data
– no	cascading	aborts	can	arise!

16CS	564	[Fall	2016]	- Paris	Koutris

LOCKING

• Locking	is	a	technique	for	concurrency	control
• Lock	information	maintained	by	a	lock	manager:
– stores	(TID,	RID,	Mode)	triples
– Mode	is	either	Shared	(S)	or	Exclusive	(X)

• If	a	transaction	cannot	get	a	lock,	it	has	to	wait	in	a	
queue

17CS	564	[Fall	2016]	- Paris	Koutris

-- S X

--

S

X

√

√

√

√ √

√

STRICT 2	PHASE LOCKING

• Each	transaction	must	obtain	a	S lock	on	object	
before	reading,	and	an	X lock	on	object	before	
writing

• All	locks	held	by	a	transaction	are	released	only	
when	the	transaction	completes

• If	a	transaction	holds	an	X lock	on	an	object,	no	
other	transaction	can	get	a	lock	(S	or	X)	on	that	
object

Strict	2PL	guarantees	serializability and	ACA!

18CS	564	[Fall	2016]	- Paris	Koutris

NON-STRICT 2	PHASE LOCKING

• Each	transaction	must	obtain	a	S lock	on	object	
before	reading,	and	an	X lock	on	object	before	
writing

• If	the	transaction	releases	any	lock,	it	can	not	
acquire	any	additional	locks

Non-Strict	2PL	guarantees	serializability (but	not	
ACA)

19CS	564	[Fall	2016]	- Paris	Koutris

EXAMPLE

Blackboard!

20CS	564	[Fall	2016]	- Paris	Koutris

DEADLOCKS

• Example:
XT1(B),	XT2(A),	ST1(A),	ST2(B)

• Deadlocks	can	cause	the	system	to	wait	
forever

• We	need	to	detect	deadlocks	and	break,	or	
prevent	deadlocks

• Simple	mechanism:	timeout	and	abort
• More	sophisticated	methods	exist

21CS	564	[Fall	2016]	- Paris	Koutris

PERFORMANCE OF LOCKING

• Locks	have	a	performance	penalty:
– blocked actions
– aborted transactions

• Because	of	blocking,	we	can	not	increase	forever	
the	throughput	of	transactions

• At	the	point	where	the	throughput	cannot	
increase,	we	say	that	the	system	thrashes

22CS	564	[Fall	2016]	- Paris	Koutris

TRANSACTIONS IN SQL

• Transaction	boundary
– begins	implicitly	when	a	statement	is	executed
– ends	by	COMMIT or	ROLLBACK

• For	long	running	transactions,	we	can	use	
SAVEPOINT
– we	can	then	roll	back	to	any	previous	savepoint

23CS	564	[Fall	2016]	- Paris	Koutris

TRANSACTIONS IN SQL

• What	object	should	we	lock?
SELECT COUNT(*)
FROM Employee
WHERE age = 20 ;

• We	can	apply	locking	at	different	granularities:
– lock	the	whole	table	Employee
– lock	only	the	rows	with	age	=	20

24CS	564	[Fall	2016]	- Paris	Koutris

THE PHANTOM PROBLEM

• So	far	we	have	assumed	the	database	to	be	a	static	
collection	of	elements	(=tuples)

• If	tuples	are	inserted/deleted	then	the	phantom	
problem appears

• Example:	blackboard!

25CS	564	[Fall	2016]	- Paris	Koutris

TRANSACTIONS IN SQL

Transaction	characteristics:
• Access	mode:	READ ONLY, READ WRITE
• Isolation	level
– Serializable:	default	 (Strict	2PL)
– Repeatable	reads:	(R/W	locks,	but	phantom	can	occur)

• Read	only	committed	records
• Between	two	reads	by	the	same	transaction,	no	
updates	by	another	transaction

– Read	committed	(W	locks	longterm,	R	locks	shortterm)
• Read	only	committed	records

– Read	uncommitted	(only	reads,	no	locks)
26CS	564	[Fall	2016]	- Paris	Koutris

CRASH RECOVERY

Motivation:
• Atomicity:	transactions	may	abort	(rollback)
• Durability:	the	DBMS	may	crash
Buffer	pool	strategies:
• Force: every	write	goes	to	disk	once	committed
– poor	response	time
– provides	durability

• Steal: buffer	pool	frames	write	to	disk	before	
commit

27CS	564	[Fall	2016]	- Paris	Koutris

STEAL AND FORCE

STEAL (why	enforcing	Atomicity	is	hard)
• To	steal	frame	F,		current	page	in	F	(say	P)	is	written	to	disk;	
some	transaction	holds	lock	on	P
– What	if	the	transaction	with	the	lock	on	P	aborts?
– We	must	remember	the	old	value	of	P	at	steal	time	(to	
support	UNDOing the	write	to	page	P)

NO	FORCE		(why	enforcing	Durability	is	hard)
• what	if	we	crash	before	a	modified	page	is	written	to	disk?
• write	as	little	as	possible,	in	a	convenient	place,	at	commit	
time,	to	support	REDOingmodifications.

28CS	564	[Fall	2016]	- Paris	Koutris

LOGGING

• Record	REDO and	UNDO information	for	every	
update	in	a	log

• Log:	An	ordered	list	of	REDO/UNDO	actions
• The	Write-Ahead	Logging	(WAL)	protocol:
– force	the	log	record	for	an	update	before	the	
corresponding	data	page	gets	to	disk	(guarantees	
atomicity)

– write	all	log	records	for	a	transaction	before	commit	
(guarantees	durability)

29CS	564	[Fall	2016]	- Paris	Koutris

ARIES

• ARIES is	a	recovery	algorithm	that	works	with	a	
steal,	no-force	approach

• Three	phases:
– Analysis
– UNDO
– REDO

• For	more	on	crashes	and	recovery,	take	CS	764!

30CS	564	[Fall	2016]	- Paris	Koutris

RECAP

• Transaction	management
• ACID properties
– atomicity
– consistency
– isolation
– durability

• Techniques	for	transaction	management
– aborts,	locking	(2PL,	strict	2PL)

• Crash	Recovery

31CS	564	[Fall	2016]	- Paris	Koutris

