
BIG DATA SYSTEMS

CS	564- Fall	2016

ACKs:	Magda	Balazinska



BIG DATA

Definition	from	industry:	
• high	volume	
• high	variety	
• high	velocity

2CS	564	[Fall	2015]	- Paris	Koutris



VOLUME

• Databases	parallelize	easily;	techniques	available	
from	the	80’s	(GAMMA	project)
– data	partitioning	
– parallel	query	processing	

• SQL	is	embarrassingly	parallel	

3CS	564	[Fall	2015]	- Paris	Koutris



VARIETY

• complex	workloads:
– Machine	Learning	tasks:	e.g.	click	prediction,	topic	
modeling,	SVM,	k-means	

• various	types	of	data:
– text	data
– semi-structured	data
– graph	data
– multimedia	(video,	photos)

4CS	564	[Fall	2015]	- Paris	Koutris



VELOCITY

• data	is	generated	very	fast	and	needs	to	be	
processed	very	fast
– real	time	analytics
– data	streaming	(each	data	item	can	be	processed	only	
once!)

5CS	564	[Fall	2015]	- Paris	Koutris



ANOTHER V:	VERACITY

The	data	collected	is	often	uncertain
• inconsistent	data
• incomplete	data
• ambiguous	data	

Example:	sensor	data

6CS	564	[Fall	2015]	- Paris	Koutris



DATA LANDSCAPE

7CS	564	[Fall	2015]	- Paris	Koutris



SOME EXAMPLES

• Greenplum:	founded	in	2003	acquired	by	EMC	in	
2010.	A	parallel	shared-nothing	DBMS	

• Vertica:	founded	in	2005	and	acquired	by	HP	in	
2011.	A	parallel	column-store	shared-nothing	
DBMS

• AsterData:	founded	in	2005	acquired	by	Teradata	
in	2011.	A	parallel,	shared-nothing,	MapReduce-
based	data	processing	system

• Netezza:	founded	in	2000	and	acquired	by	IBM	in	
2010.	A	parallel	shared-nothing	DBMS

8CS	564	[Fall	2015]	- Paris	Koutris



WE WILL SEE 2	APPROACHES

• Parallel	databases,	started	at	the	80s
– OLTP	(transaction	processing)
– OLAP	(decision	support	queries)

• MapReduce
– first	developed	by	Google,	published	in	2004
– only	for	decision	support	queries	
– ecosystem	around	it:	Hadoop,	PigLatin,	Hive,	…

9CS	564	[Fall	2015]	- Paris	Koutris



PARALLEL DBMS

• The	goal	is	to	improve	performance	by	executing	
multiple	operations	in	parallel	(scale-out)

• Terminology	to	measure	performance:	
– Speed-up:	using	more	processors,	how	much	faster	does	
the	task	run	(if	problem	size	is	fixed)?

– Scale-up:	using	more	processors,	does	performance	
remain	the	same	as	we	increase	the	problem	size?

10CS	564	[Fall	2015]	- Paris	Koutris



SCALE-UP VS SCALE-OUT

Scale-up
• using	more	powerful	machines,	more	
processors/RAM	per	machine

Scale-out
• using	a	larger	number	of	servers

11CS	564	[Fall	2015]	- Paris	Koutris



ARCHITECTURES

• Shared	memory
– nodes	share	RAM	+	disk
– easy	to	program,	expensive	to	scale

• Shared	disk
– nodes	access	the	same	disk,	hard	to	scale

• Shared	nothing
– nodes	have	their	own	RAM+disk
– connected	through	a	fast	network

12CS	564	[Fall	2015]	- Paris	Koutris



PARALLEL QUERY EVALUATION

• Inter-query	parallelism:
– each	query	runs	on	one	processor	

• Inter-operator	parallelism:	
– each	query	runs	on	multiple	processors
– an	operator	runs	on	one	processor	

• Intra-operator	parallelism:	
– An	operator	runs	on	multiple	processors

13CS	564	[Fall	2015]	- Paris	Koutris



PARALLEL DATA STORAGE

Horizontal	data	partitioning
• block partitioned
• hash partitioned
• rangepartitioned

Uniform	vs	skewed	partitioning

14CS	564	[Fall	2015]	- Paris	Koutris



PARALLEL QUERY EVALUATION

• Parallel	Selection

• Parallel	Join	
– hash	join
– broadcast	join

15CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE

• Google	[Dean	2004]	
• Open	source	implementation:	Hadoop
• MapReduce:	
– high-level	programming	model	and	implementation	for	
large-scale	parallel	data	processing

– designed	to	simplify	task	of	writing	parallel	programs

16CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE

• Hides	messy	details	in	MapReduce runtime	library
– automatic	parallelization
– load	balancing
– network	and	disk	transfer	optimizations
– handling	of	failures
– robustness

17CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE PIPELINE

• read	the	partitioned	data	(HDFS,	GFS)	
• Map:	extract	something	you	care	about	from	each	
record

• Shuffle	and	Sort	(done	by	the	system)
• Reduce:	aggregate,	summarize,	filter,	transform	
• write	the	results

18CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE DATAFLOW

19CS	564	[Fall	2015]	- Paris	Koutris

source:	Hadoop	– The	Definitive	Guide,	by	Tom	White



DATA MODEL

• A	file	=	a	bag	of	(key,	value)	pairs	

• A	MapReduce program:
– Input:	a	bag	of	(input	key,	value)	pairs
– Output:	a	bag	of	(output	key,	value)	pairs

20CS	564	[Fall	2015]	- Paris	Koutris



THE MAP FUNCTION

User	provides	the	MAP function:
• Input:	(input	key,	value)	
• Output:	bag	of	(intermediate	key,	value)	

The	system	applies	the	map	function	in	parallel	to	all	
(input	key,	value)	pairs	in	the	input	file	

21CS	564	[Fall	2015]	- Paris	Koutris



THE REDUCE FUNCTION

User	provides	the	REDUCE function:
• Input:	(intermediate	key,	bag	of	values)
• Output:	bag	of	(output	key,	values)	

The	system	groups	all	pairs	with	the	same	
intermediate	key,	and	passes	the	bag	of	values	to	the	
REDUCE	function

22CS	564	[Fall	2015]	- Paris	Koutris



EXAMPLE:	WORD COUNT

• Count	the	number	of	occurrences	of	each	word	in	
a	large	collection	of	documents

• Each	Document	
– key	=	document	id	(did)
– value	=	set	of	words	(word)	

23CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE JOBS

• A	MapReduce job	consists	of	one	single	“query”
– e.g.	count	the	words	in	all	docs	

• More	complex	queries	may	consist	of	multiple	jobs

24CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE ECOSYSTEM

Lots	of	extensions	to	address	limitations:
• Capabilities	to	write	DAGs	of	MapReduce jobs
• Declarative	languages	
• Most	companies	use	both	types	of	engines	(MR	
and	DBMS),	with	increased	integration

• Potential	replacement	to	MapReduce:	Spark

25CS	564	[Fall	2015]	- Paris	Koutris



MAPREDUCE ECOSYSTEM

PIG	Latin	(Yahoo!)
• New	language,	like	Relational	Algebra
• open	source	
Hive	(Facebook)
• SQL-like	language
• open	source
SQL	/	Tenzing (Google)
• SQL	on	MR	
• Proprietary	– morphed	into	BigQuery

26CS	564	[Fall	2015]	- Paris	Koutris



PARALLEL DBMS	VS MAPREDUCE

Parallel	DBMS:
• Relational	data	model	and	schema
• Declarative	query	language:	SQL
• Can	easily	combine	operators	into	complex	queries	
• Query	optimization,	indexing,	and	physical	tuning
• Streams	data	from	one	operator	to	the	next	without	
blocking	

27CS	564	[Fall	2015]	- Paris	Koutris



PARALLEL DBMS	VS MAPREDUCE

MapReduce:
• data	model	is	a	file	with	key-value	pairs
• no	need	to	“load	data”	before	processing
• easy	to	write	user-defined	operators
• can	easily	add	nodes	to	the	cluster
• intra-query	fault-tolerance	thanks	to	results	on	disk	
• Arguably	more	scalable,	but	also	needs	more	nodes

28CS	564	[Fall	2015]	- Paris	Koutris


