
INTRODUCTION TO SQL

CS	564- Spring	2018

ACKs:	Dan	Suciu,	Jignesh Patel,	AnHai Doan

ANNOUNCEMENTS

• Enroll	in	Piazza!
• PS	#1	will	be	posted	tomorrow	(due	next	Sunday)
• Let	me	know	if	you	are	still	in	the	waitlist
• Group	formation:
– send	an	email	to	Ting	(xwang973@wisc.edu) with:
– 3	x (Student	IDs	+	emails)
– only	one	person	from	every	team!

2CS	564	[Spring	2018]	- Paris	Koutris

WHAT IS THIS LECTURE ABOUT

• The	Relational	Model
• SQL:	Basics
– creating	a	table
– primary	keys

• SQL:	Single-table	queries
– SELECT-FROM-WHERE	structure
– DISTINCT/ORDER	BY/LIMIT

• SQL:	Multi-table	queries
– foreign	keys
– joins

3CS	564	[Spring	2018]	- Paris	Koutris

RELATIONAL MODEL

CS	564	[Spring	2018]	- Paris	Koutris 4

RELATIONAL MODEL

• first	proposed	by	Codd in	1969
• has	just	a	single	concept:	relation
• the	world	is	represented	as	a	collection	of	tables
• well-suited	for	efficient	manipulations	on	
computers

CS	564	[Spring	2018]	- Paris	Koutris 5

RELATION

The	data	is	stored	in	tables (or	relations)

CS	564	[Spring	2018]	- Paris	Koutris

name category price manufacturer
iPad tablet $399.00 Apple
Surface tablet $299.00 Microsoft
… … … …

attribute	name

record/tuple

PRODUCT

table	name

6

DOMAINS

• Each	attribute	has	an	atomic type	called	domain
• A	domain specifies	the	set	of	values	allowed
• Examples:
– integer
– string
– real

CS	564	[Spring	2018]	- Paris	Koutris 7

PRODUCT(name:	string,	
category:	string,	
price:	real,
manufacturer:	string)

SCHEMA

The	schema of	a	relation:
– relation	name	+	attribute	names
– Product(name,	price,	category,	manufacturer)
– In	practice	we	add	the	domain	for	each	attribute

The	schema of	a	database:
– a	collection	of	relation	schemas

CS	564	[Spring	2018]	- Paris	Koutris 8

INSTANCE

The	instance of	a	relation:
– a set	of	tuples	or	records

The	instance of	a	database:
– a	collection	of	relation	instances

CS	564	[Spring	2018]	- Paris	Koutris 9

EXAMPLE

CS	564	[Spring	2018]	- Paris	Koutris

name category price manufacturer
iPad tablet $399.00 Apple
Surface tablet $299.00 Microsoft
… … … …

schema

instance

PRODUCT(name:	string,	
category:	string,	
price:	real,
manufacturer:	string)

10

SCHEMA VS INSTANCE

• Analogy	with	programming	languages:
– schema	~	type
– instance	~ value

• Important	distinction
– schema:	stable	over	long	periods	of	time
– instance:	changes	constantly,	as	data	is	
inserted/updated/deleted

CS	564	[Spring	2018]	- Paris	Koutris 11

SQL:	BASICS

CS	564	[Spring	2018]	- Paris	Koutris 12

WHAT IS SQL?

• The	most	widely	used	database	language
• Used	to	query and	manipulate data

• SQL	stands	for	Structured	Query	Language
– many	SQL	standards:	SQL-92,	SQL:1999,	SQL:2011
– vendors	support	different	subsets	
– we	will	discuss	the	common	functionality

13CS	564	[Spring	2018]	- Paris	Koutris

CREATING A TABLE

CREATE TABLE Author(
authorid INTEGER PRIMARY KEY,
firstname CHAR(20),
lastname CHAR(30),

);

14CS	564	[Spring	2018]	- Paris	Koutris

table	name

atomic	types
attributes

PRIMARY KEYS

A	primary	key is	a	minimal	subset	of	attributes	that	
is	a	unique	identifier	of	tuples	in	a	relation	

• A	key	is	an	implicit	constraint	on	which	tuples	can	
be	in	the	relation	

• In	SQL	we	specify	that	an	attribute	is	the	primary	
key	with	the	keyword	PRIMARY KEY

15CS	564	[Spring	2018]	- Paris	Koutris

UNIQUE KEYS

• We	can	also	define	a	unique	key:	a	subset	of	attributes	that	
uniquely	defines	a	row:

CREATE TABLE Author(
authorid INTEGER UNIQUE,
firstname CHAR(20)) ;

• There	can	be	only	one	primary	key,	but	many	unique	keys!

16CS	564	[Fall	2016]	- Paris	Koutris

NULL VALUES

• tuples	in	SQL	relations	can	have	NULL as	a	value	
for	one	or	more	attributes

• The	meaning	depends	on	context:
– missing	value:	e.g.	we	know	that	Greece	has	
some	population,	but	we	don’t	know	what	it	is

– inapplicable:	e.g.	the	value	of	attribute	spouse
for	an	unmarried	person

17CS	564	[Spring	2018]	- Paris	Koutris

NULL VALUES

When	creating	a	table	in	SQL,	we	can	assert	that	a	
particular	attribute	takes	no	NULL values

CREATE TABLE Author(
authorid INTEGER PRIMARY KEY,
firstname CHAR(20) NOT NULL,
lastname CHAR(30)

);

18CS	564	[Spring	2018]	- Paris	Koutris

POPULATING A TABLE

• To	insert	a	single	tuple:
INSERT INTO <relation>
VALUES (<list	of	values>);

• We	may	add	to	the	relation	name	a	list	of	
attributes	(if	we	forget	the	order)

INSERT INTO Author
VALUES(001, 'Dan’, 'Brown');

19CS	564	[Spring	2018]	- Paris	Koutris

SQL:	SINGLE-TABLE QUERIES

CS	564	[Spring	2018]	- Paris	Koutris 20

BASIC SQL QUERY

21CS	564	[Spring	2018]	- Paris	Koutris

SELECT			[DISTINCT] attributes
FROM one	or	more	tables
WHERE conditions	on	the	tables

optional

conditions	of	the	form:		Attr1	op	Attr2

EXAMPLE

What	is	the	population	of	USA?

SELECT Population
FROM Country
WHERE Code = 'USA';

22CS	564	[Spring	2018]	- Paris	Koutris

SELECTION:	filters	the	tuples	of	the	relation	

PROJECTION:	keeps	only	the	
specified	attributes

SEMANTICS

1. Think	of	a	tuple	variable ranging	over	each	tuple	
of	the	relation	mentioned	in	FROM

2. Check	if	the	current	tuple	satisfies	the	WHERE
clause

3. If	so,	compute	the	attributes	or	expressions	of	the	
SELECT clause	using	this	tuple

23CS	564	[Spring	2018]	- Paris	Koutris

*	IN SELECT CLAUSES

When	there	is	one	relation	in	the	FROM clause,	*	in	
the	SELECT clause	stands	for	“all	attributes	of	this	
relation”

24CS	564	[Spring	2018]	- Paris	Koutris

SELECT *
FROM City
WHERE Population >= '1000000'
AND CountryCode = 'USA';

RENAMING ATTRIBUTES

If	we	want	the	output	schema	to	have	different	
attribute	names,	we	can	use	AS <new	name>	to	
rename	an	attribute

25CS	564	[Spring	2018]	- Paris	Koutris

SELECT Name AS LargeUSACity
FROM City
WHERE Population >= '1000000'
AND CountryCode = 'USA';

ARITHMETIC EXPRESSIONS

We	can	use	any	arithmetic	expression	(that	makes	
sense)	in	the	SELECT clause

26CS	564	[Spring	2018]	- Paris	Koutris

SELECT Name,
(Population/ 1000000) AS PopulationInMillion
FROM City
WHERE Population >= '1000000’ ;

WHAT CAN WE USE IN WHERE CLAUSES?

• attribute	names	of	the	relations	that	appear	in	the	
FROM clause

• comparison	operators:		=,	<>,	<,	>,	<=,	>=
• arithmetic	operations	(+,	-,	/,	*)
• AND,	OR,	NOT to	combine	conditions
• operations	on	strings	(e.g.	concatenation)
• pattern	matching:			s LIKE p
• special	functions	for	comparing	dates	and	times

27CS	564	[Spring	2018]	- Paris	Koutris

PATTERN MATCHING

s	LIKE p:		pattern	matching	on	strings
– %		=	any	sequence	of	characters
– _			=	any	single	character

28CS	564	[Spring	2018]	- Paris	Koutris

SELECT Name, GovernmentForm
FROM Country
WHERE GovernmentForm LIKE '%Monarchy%';

USING DISTINCT

• The	default	semantics	of	SQL	is	bag semantics	
(duplicate	tuples	are	allowed	in	the	output)

• The	use	of	DISTINCT in	the	SELECT clause	
removes	all	duplicate	tuples	in	the	result,	and	
returns	a	set

29CS	564	[Spring	2018]	- Paris	Koutris

SELECT DISTINCT GovernmentForm
FROM Country;

ORDER BY

The	use	of	ORDER BY orders	the	tuples	by	the	
attribute	we	specify	in	decreasing	(DESC)	or	
increasing (ASC)	order

30CS	564	[Spring	2018]	- Paris	Koutris

SELECT Name, Population
FROM City
WHERE Population >= ‘1000000’
ORDER BY Population DESC;

LIMIT

• The	use	of	LIMIT <number>		limits	the	output	to	
be	only	the	specified	number	of	tuples

• It	can	be	used	with	ORDER BY to	get	the	
maximum	or	minimum	value	of	an	attribute!

31CS	564	[Spring	2018]	- Paris	Koutris

SELECT Name, Population
FROM City
ORDER BY Population DESC
LIMIT 2;

SQL:	MULTI-TABLE QUERIES

CS	564	[Spring	2018]	- Paris	Koutris 32

FOREIGN KEYS

Suppose	that	we	want	to	create	a	table	Book,	and	
make	sure	that	the	author	of	the	book	exists	in	the	
table	Author

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
authorid INTEGER,
FOREIGN KEY (authorid) REFERENCES
Author(authorid));

33CS	564	[Fall	2016]	- Paris	Koutris

FOREIGN KEYS

• Use	the	keyword	REFERENCES,	as:

FOREIGN KEY (<list	of	attributes>)
REFERENCES <relation>	(<attributes>)

• Referenced	attributes	must	be	declared	PRIMARY
KEY or	UNIQUE

34CS	564	[Fall	2016]	- Paris	Koutris

ENFORCING FK CONSTRAINTS

If	there	is	a	foreign-keyconstraint from	attributes	of	
relation	R to	the	primary	key	of	relation	S,	two	
violations	are	possible:
1. An	insert	or	update	to	R introduces	values	not	

found	in	S
2. A	deletion	or	update	to	S causes	some	tuples	of	R

to	dangle

There	are	3	ways	to	enforce	foreign	key	constraints!

35CS	564	[Fall	2016]	- Paris	Koutris

ACTION 1:	REJECT

• The	insertion/deletion/update	query	is	rejected
and	not	executed	in	the	DBMS

• This	is	the	default	action	if	a	foreign	key	constraint	
is	declared

36CS	564	[Fall	2016]	- Paris	Koutris

ACTION 2:	CASCADE UPDATE

When	a	tuple	referenced	is	updated,	the	update	
propagates to	the	tuples	that	reference	it

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
authorid INTEGER,
FOREIGN KEY (authorid) REFERENCES
Author(authorid)
ON UPDATE CASCADE);

37CS	564	[Fall	2016]	- Paris	Koutris

ACTION 2:	CASCADE DELETE

When	a	tuple	referenced	is	deleted,	the	deletion	
propagates to	the	tuples	that	reference	it

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
authorid INTEGER,
FOREIGN KEY (authorid) REFERENCES
Author(authorid)
ON DELETE CASCADE);

38CS	564	[Fall	2016]	- Paris	Koutris

ACTION 3:	SET NULL

• When	a	delete/update	occurs,	the	values	that	
reference	the	deleted	tuple	are	set	to	NULL

CREATE TABLE Book(
bookid INTEGER PRIMARY KEY,
title TEXT,
authorid INTEGER,
FOREIGN KEY (authorid) REFERENCES
Author(authorid)
ON UPDATE SET NULL);

39CS	564	[Fall	2016]	- Paris	Koutris

WHAT SHOULD WE CHOOSE?

• When	we	declare	a	foreign	key,	we	may	choose	
policies	SET NULL or	CASCADE independently for	
deletions	and	updates

ON [UPDATE,	DELETE]	[SET	NULL,	CASCADE]

• Otherwise,	the	default	policy	(reject)	is	used

40CS	564	[Fall	2016]	- Paris	Koutris

MULTIPLE RELATIONS

• We	often	want	to	combine	data	from	more	than	
one	relation

• We	can	address	several	relations	in	one	query	by	
listing	them	all	in	the	FROM clause

• If	two	attributes	from	different	relations	have	the	
same	name,	we	can	distinguish	them	by	writing	
<relation>.<attribute>

41CS	564	[Spring	2018]	- Paris	Koutris

EXAMPLE

What	is	the	name	of	countries	that	speak	Greek?

SELECT Name
FROM Country, CountryLanguage
WHERE Code = CountryCode

AND Language = 'Greek';

42CS	564	[Spring	2018]	- Paris	Koutris

This	is	BAD style!!

EXAMPLE:	GOOD STYLE

SELECT Country.Name
FROM Country, CountryLanguage
WHERE Country.Code=CountryLanguage.CountryCode
AND CountryLanguage.Language = 'Greek';

SELECT C.Name
FROM Country C, CountryLanguage L
WHERE C.Code = L.CountryCode
AND L.Language = 'Greek';

43CS	564	[Spring	2018]	- Paris	Koutris

VARIABLES

Variables	are	necessary	when	we	want	to	use	two	
copies	of	the	same	relation	in	the	FROM clause

SELECT C.Name
FROM Country C, CountryLanguage L1,
CountryLanguage L2
WHERE C.Code = L1.CountryCode

AND C.Code = L2.CountryCode
AND L1.Language = 'Greek’
AND L2.Language = 'English';

44CS	564	[Spring	2018]	- Paris	Koutris

SEMANTICS:	SELECT-FROM-WHERE

1. Start	with	the	cross	product	of	all	the	relations	in	
the	FROM clause

2. Apply	the	conditions	from	the	WHERE clause
3. Project	onto	the	list	of	attributes	and	expressions	

in	the	SELECT clause
4. If	DISTINCT is	specified,	eliminate	duplicate	

rows

45CS	564	[Spring	2018]	- Paris	Koutris

SEMANTICS OF SQL:	EXAMPLE

SELECT R.D
FROM R, S
WHERE R.A = S.B AND S.C = ‘e’ ;

46CS	564	[Spring	2018]	- Paris	Koutris

A D
1 a
2 b
2 c

B C
1 d
2 e

cross	product

A D B C
1 a 1 d
1 a 2 e
2 b 1 d
2 b 2 e
2 c 1 d
2 c 2 e

select
A D B C
2 b 2 e
2 c 2 e

project

D
b
c

SEMANTICS OF SQL:	NESTED LOOP

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

answer	:=	{}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then answer	:=	answer	∪ {(a1,…,ak)}

return answer

47CS	564	[Spring	2018]	- Paris	Koutris

SEMANTICS OF SQL

• The	query	processor	will	almost	never	evaluate	
the	query	this	way	

• SQL	is	a	declarative language
• The	DBMS	figures	out	the	most	efficient	way	to	
compute	it	(we	will	discuss	this	later	in	the	
course	when	we	talk	about	query	optimization)

48CS	564	[Spring	2018]	- Paris	Koutris

